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Structural optimization

» Consider the following design domain and loading conditions.

?
oo
f S

» The goal is to find the lightest structure that is able to carry the given set of
loads.

» Several approaches of structural optimization.
Topology optimization (continuum*) Topology optimization (truss)

*0. Sigmund. A 99 line topology optimization code written in Matlab. Structural and
Multidisciplinary Optimization, 21:120-127, 2001.
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Application

oiwiki ia%E2%80%93Megler_Bridge

https:/len.wikipedia.org/wiki/London_King27s_Cross
_railway_station

http://iwww.buildingtalk.com/wpcontent/uploads/arsenal-1.ipa
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The underlying minimum weight problem

/T

minimize a
a,qe,Ue
subject to qu’,-%-: f, (=1,---.n
i
’/ rYI,TLM:qKJ 6217...7,71_’,':17...,,«”
i
—ac” <q<octa, (=1,---.n
a>0

n; number of load cases,

| € R" is a vector of bar lengths,

a € R" is a vector of bar cross-sectional areas,
fo € R™ is a vector of applied load forces,

ge € R" are axial forces in members,

vV V. vV vV VY

o~ >0and o > 0 are the the material’s yield
stresses in compression and tension,

» E is Young's modulus.
Bendsge, M., Sigmund, O, Topology Optimization: Theory, Methods and Applications.
Springer (2003)
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Stability constraints
» Consider the following three dimensional problem.

lﬂ I W M

a) Design domains, bc, ) Without stability (c) With stability
and loads. conS|derat|ons. considerations.

» Without stability considerations:
> The optimal design (a slender of six bars in compression) needs some kind of
support or bracing from orthogonal directions.
> The optimal design for the bridge problem includes independent planar trusses. It
lacks connectivity.
» With stability considerations:

> The bar has bracing.
> The independent planar trusses in the bridge are connected
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The minimum weight problem with global stability

constraints
IT

minimize a
a,qe,Ue
subject to qu’,-fy,- =f, (=1,---.n
i
a,E
'/_ ’Yl,Tug:CIgJ =1, ,n,i=1--,m (2)
1
—ac  <q<ota, L=1,--.,n
K(a)+7G(qe) =0 £=1,---,n
a>0

where the stiffness matrix K and geometry stiffness matrix G are given by

m m
_ E; , 1
K(a) = aK;, with K; = T-J'WT’ and G(q) = > _ q;G;, with G; = I(ajaf +nin/
j=1 J j=1 Y

» The loading factor 7, > 1.

> (9j,7j,m;) are mutually orthogonal. (7 = 0 for 2D problems)
M. Kocvara. On the modelling and solving of the truss design problem with global
stability constraints. Structural and Multidisciplinary Optimization, 23:189-203, 2002.
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The minimum weight problem with global stability
constraints

minimize

a
a,qe,Ue
subject to Z qe.ivi = fo, (=1,---.n
i
a,E
’/_ rYiTug:qu b=1,--- ,n,i=1---,m (2)
1

—ao  <q <ota, (=1,---,n
K(a) +71G(qe) =0 ¢=1,---,n
a>0

The problem (2) is large-scale nonlinear non-convex semidefinite program.

“#nodes=15 nodes = h #nodes = 153
#bars = 105 #bars = 995 #bars = 11623
| Refining the grid ~
For d number nodes, there are m = ¢(d — 1) potential member bars.
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Simplification

» |gnore the kinematic compatibility constraints

a,E '
/ ’YI Uy = QZ’,',€:1,...7nL,I:]_,...,m.
» Hence, we solve the linear formulation
minimize /7a
a,qe
subject to Z qe,ivi = fr, (=1,--,m
i G
_QU_SQZ§U+3, 6:17.'.?nL
K(a)+7G(q) =0 £=1,---,n
a>0.

» We then measure the violation due to ignoring the kinematic compatibility
constraints by solving the least-squares problem

Ue

L 1 a’E «
minimize  max IRIE Z g ST~ %,i)27 (4)
¢ i

where a* and g are the solution of the relaxed problem (3).
Semidefinite Programming: Theory b Application, Edinburgh, 19 October 2018 A. Weldeysiis, J. Gondzio 9



Simplification

The (relaxation) SDP problem

minimize /7a
a,qe
subject to ZQZ,i’Vi = fr, =1,---,n
T X (5)
—ac- <q<ocTa, {L=1,---,n
K(a) +7G(q) =0 £=1,---,n
a>0

» can be efficiently solved.
» provides lower bounds to the nonlinear and non-convex formulation.

> its solution has (usually) small violation in the kinematic compatibility constraints
for realistic input and reasonable value of 7,

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio



Primal-Dual Interior Point Method

» Consider the following primal and dual semidefinite programs.

Primal maxir;]iz[gualey
miniXmize CeX v .
subjectto A;jeX =b;, i=1...m subject to ZYIAI +5=C
i=1
X =0
- 50

where C,A; € S"™", b,y e R", and Ue V = Z,Zj U;jVij for U,V € R™".
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Primal-Dual Interior Point Method

» Consider the following primal and dual semidefinite programs.

Primal maxir;]iz[gualey
miniXmize CeX . .
subjectto A;eX =b;, i=1,...m subject to ZyiAi +5=C
i=1
X >0
- S$>0

where C,A; € S"™", b,y e R", and Ue V = Z,Zj U;jVij for U,V € R™".

» The first-order optimality conditions are (solved for p, — 0)

AX =b
Ay+5=C (6)
X =pS™t

where A:S" - R™: AX = (A; e X)™, and A* :R™ = S": Ay =357 yiA;

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Primal-Dual Interior Point Method

» Consider the following primal and dual semidefinite programs

Primal maX|m|ze bT
miniXmize CeX y:S .
subjectto A;eX =b;, i=1,...,m subject to ZYIAI +5=C
X =0 .
$§=0

where C,A; € S"™", b,y e R™, and Ue V = E,EJ UV for U,V e R™".
» The first-order optimality conditions i{g{(soll\)/ed for i — 0)

A'y+5=C (6)
X =puS™t.
where A:S" - R™: AX = (A; e X)™; and A* : R™ 5 S": A*y =37 yiA
» Apply Newton method to solve (6).
0 A T| [AX &d
A 0 0 Ay | = gp
E 0 F||AS €e

where E=101,F=X®S5"1, and
PoQ:S"=S": (Po®Q)U=3(PUQT)+ QUPT)
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Primal-Dual Interior Point Method

» Consider the following primal and dual semidefinite programs.

Primal maxir;]iz[gualey

miniXmize CeX v .

subjectto A;jeX =b;, i=1...m subject to ZYIAI +5=C
X t 0 i=1

S=0
where C,A; € S"™", b,y e R", and Ue V = Z,Zj U;jVij for U,V € R™".

» The first-order optimality conditions are (solved for p, — 0)

AX =b
Ay+5=C (6)
X =pS™t

where A:S" 5 R™: AX = (A; @ X)™; and A* :R™ = S": Ay =37 yiA;
» Usually solved for the reduced system (normal equations)

AETVFA Ay = &, + AE (&g — FEo).
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Primal-Dual Interior Point Method

» The method obtains solution within modest number of iterations.

» Every iteration requires solving the linear system
AETITFA Ay = &, + AEH &y — FEL).

» Forming the system requires O(mn® + m?n?) arithmetic operations
(straightforward expressions) (bottle-neck)

» Large storage requirement (bottle-neck). AE~1F.A* is usually full matrix.

minimize /7 a
a,qe,ur
subject to  Bgy = fy, (=1,---,nL
—ao_§q4§0+a, {=1,---,n, (7)
K(a)+ mG(q)) =0 £=1,---,n
a>0

| soP »
nz = 11680486 nz 210769

.
Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 15



Exploiting algebraic structures
» The reduced system

AETYFA Ay = —€, + AE (&g — FEC).
for the truss problem is

A AL 0 Aa 3]
A12 A22 BT ACM = 62 3 where (8)
0 B 0 AN &3

(All)ij = — ZXzK,'SEI [ ] KJ + (Dll)ij
£

(Ar2)ij = —XeKiS; @ Gi+ (Dr2)jj, (Ana)j = —XeGiS; ' @ Gj+ (Dn)jj
E: 1
Kj= T-J%'%'T, G = E(‘SJ‘SJT +nimf).

Dy, diagonal matrices, and Ue V = ZiZj U Vjj for U,V € R™".

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 16



Exploiting algebraic structures

>
A AL 0 Aa 3]
A Ax BT| |Aq| = |&|, where (8)
0 B 0 JAV)Y} &

(An)j = — Y XeKiS; o K; + (D)
14

(A12)j = —XeKiS; ' o G+ (D12)jj, (An);j = —XiG:S;* @ G; + (D2);
E;
Kj= 7 ; s G = (5 5 +nin),
» We exploit the low rank property (and sparsity) of the Ki's and G;'s.

B E2
XcKiS; e K = W TS i Xy, (9)

» The matrix in (8) can be computed in O(n?m) instead of O(nm> + n’>m?)
arithmetic operations.

A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite
programming. SIAM Journal on Optimization, 7(4):991-1016, 1997.
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Member adding

(b) Mem add iter.=1, 444 bars, (c) Mem add iter.=2, 518 bars,
vol= 0.05681m> vol= 0.05429m?

(d) Mem add iter.=3, 564 bars, (e) Mem add iter.=4, 588 bars,
vol=0.05417m’ vol= 0.05414m?

(f) Mem add iter.=5, 592 bars, (g) Mem add iter.=6, 600 bars,
vol= 0.05414m’ vol= 0.05414m’>

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Member adding

» Primal
(# inital bars) (# all bars)
minimize Z liaj + Z laj
>4 J€K jeky
subject to > iqej+ ¥ vq; =1, Ve
J€Ko JERy
—cr_aqug,jgoJ“aj, Jj € Ko, V¢
—J_aqug,jgaJraj, Jje Ky,
ZajKj—l-Zaj}@—l-nzcle,jc;j-l-nzclz,j@io N4
JEKo JEK JEKo JjEK,
aj>0,j€Ko,a>0,j €1,V
» Dual
max £ e
X
[
/ 1
st — J—_(IJ-—ZKjng) > (4 A+ G e Xe) <= =Y KjeXe),j € Ko, VL
¢ ¢ ¢
1
(=Y Ko X)) <> (W A+ TG e Xp) <= = > Kje Xe)j € Ka, VL
¢ ¢ ¢
Xe > 0, VL.
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Member adding

» Seta=0,qg=0.
» Primal

0

mlnalyrplze Z liaj + /XZ‘//
JEK LKA

subject to Z iqe.j +);/q/' =,
JEKo

—0 g <q;<o'a,

—0_a <o a,,

aJK —|— i +Te Z qe,;jGj +
JEK J€K

aj>OJ€lCo,aJ

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio
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Member adding

» Dual
DA
‘

s.t.

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018
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Member adding

Solve the primal restricted problem (RMP)

minimize l:a;
i E ljaj

JEK

subject to Z YiGej = fe, v/
JEK
—o a<q;<ota, J € Ko, vt
ZajKj—i—TngjszO, N4
JEK JEK,
aj >0, J € Ko

and the dual restricted problem (D-RMP)
2
¢

/ 1
t = —(l - K. e X;) < T\ Gie X)) < — (I — K; e Xy)
s O/ D Ko Xe) <D (1 A+ G e Xp) s > K e Xp), j€ Ko

Semidefinite Programming: Theory agd Application, Edinburgh, 1% October 2018 A. Weldeysus, J. G0n£lo 22



Member adding

> Generate the columns(matrices) as below.
K= {J e{l,--, mH\Ko| Z(AUT)‘[ + 170G e X)) < —— Z KieX;)
0

S (A TG e Xp) > ZK.X }

’ (10)

where A7 and X/ are solution of the D-RMPs.
» Filter, add, and the next problem instance.
» The sparsity of K;'s and G; is exploited to generate the set K

(a) Mem add iter.=1, 444 bars, (b) Mem add iter.=2, 518 bars,
vol= 0.05681m> vol= 0.05429m?
Figure
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Member adding

> Generate the columns(matrices) as below.

~ [ \ 1 3 * / *
/\/{j € {1.-~-.m}\/&/o\Z(7jT>\/ TG e X)) < F(/J ZKjng)or
S ()N G e Xp) ﬁ ZK °X/) }

14

(10)

where A7 and X/ are solution of the D-RMPs.
» Filter, add, and the next problem instance.
» The sparsity of K;'s and G; is exploited to generate the set K

(a) Mem add iter.=1, 444 bars, (b) Mem add iter.=2, 518 bars,
vol= 0.05681m> vol= 0.05429m?
Figure
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Member addin

> the primal restrict % problem (RMP)

minimize Z liaj + Z liaj

a,q

Jj€Kq JjeEK

subject to Z Yiqej + Z Vqes = fe,
J€Ko
—0c aque,J’SU aj, j € Ko, Ve
—0 a < quj<o'aj, jEeK,WV/L
ZQJK—‘,—ZBJK+leq€,jG+Tquijj>o Ve
JEKy JEKy

aj>0,j€ ICo,aj >0,/ € K,V
> the duaITrestricted problem (D-RMP)

max fo e
A, X
4
o 1
s.t. — I—ZKng <Z(% At TG e Xe) < —(h =Y KjeXe),j € Ko, VL

I3
f,(/ﬁZKnméZ(fAﬁnGjoxzg% ST Ko X)) € Ko
1 ¢ J4
Xe = 0, VL.

ite Progi i Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Warm-start strategy

(b) Mem add iter.=1, 444 bars, (c) Mem add iter.=2, 518 bars,
vol= 0.05681m> vol= 0.05429m?

(d) Mem add iter.=3, 564 bars, (e) Mem add iter.=4, 588 bars,
vol=0.05417m’ vol= 0.05414m?

(f) Mem add iter.=5, 592 bars, (g) Mem add iter.=6, 600 bars,
vol= 0.05414m’ vol= 0.05414m’>

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Warm-start strategy

> We extend the warm-start strategy

+ - - oot =
(av quZaSe Sy )_> (av d, QE,CIMSLSZ y Sy 1S 55y )

()\e,Xg,Xz_,Xé_) — (AZ)X%X;a)_((A)Xe_a)?F)
The variables with the super-bar are vectors in R¥, k = |K|

» Computing a warm-start point
» Old variables «+— solution of the preceding save problem with loose tolerance, say
Eopt = 01
» New variables (those with super-bar)
_ 1
> 5 =max{y/ A+ 76 e Xe,ud }, Vi € K,
~ 1
> X, = max{—ﬁle)\g —1Gi e Xy, ug }, Vj €K,
- - - _ 1
(%)) =max{|lj — o* 32, (xTe)j — 07 Xp(xTe)j — Ki @ Xel,ug }, Vi €
6, =0vee {1}
a = ;,L()?;l)j, Vj e K,
5 =o0ta Vee{l,..,n}
5, =07a Vle{l,..,n}

vV vYyYVvYVvYy

ite Progr i Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 27




Violation estimations

> Primal infeasibility (€5, ;. &p, ;5 €p3 ¢+ 6pg o)

— - 0
6oy oo = I1fe = 3" e — S deilloe = 11 — 32 qevilloe = 11€% olloc,
i i i

1€y ¢ lloe = ll073 = e = 5/ ||oo =0,
P2.¢ B i (11)
||§P3,[Hoo =|lo”a+ e -5 [lec =0,
_ _ 1 E
1€y ¢ Iloo = I = K(a) = TeG(qe) + Se — K(8) — 70 G(Ge)|| o < HE?,MHoo + ug Z/T,

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 28



Violation estimations

> Primal infeasibility (£5, ,,&p, ;1 &p3 ¢ Epa ()

- = 0
1€py ¢ lloo = 11fe = D> aeivi = D @e,iilloo = |Ife = > ae,ivilloo = [1€5 ¢lloo
i i i

[1€ps ¢ lloc = lloFa—Ge = 5/ [|oo = 0,
||€P37[H00 =lle”a+ 3 —5 |l =0,

_ _ o 1
[1€pg ¢ lloo = [l = K(a) = T¢G(qe) + Se — K(8) = 76G(@e)lloo < 1€, ,lloo + 1g >

> Dual infeasibility (¢4, , €4, ,)

€ lloo= 11D (0" x¢ +07x, +KXe) + x5 —Il]oo
£
_ _ 1
ST+ D (omax(ey +e7) = KXe)) + (400 + 1)ug el
14

_ 1
1oy glloo = 11BTXe = 55 + %7 +7eGXel| < 1§

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Violation estimations

> Primal infeasibility (€5, ;. &p, ;5 €p3 ¢+ 6pg o)

— - 0
6oy oo = I1fe = > e — S deilloe = l1fe = 3 qe.imilloe = 11€%, ¢l
i i i

1€y ¢ lloe = ll073 = e = 5/ ||oo =0,
P2.¢ B i (11)
||§P3,[Hoo =|lo”a+ e -5 [lec =0,
_ _ 1 E
1€y ¢ Iloo = I = K(a) = TeG(qe) + Se — K(8) — 70 G(Ge)|| o < HE?,MHoo + ug Z/T,

> Dual infeasibility (€4, , £d, ,)

_ L 1
€ay oo < 1207+ > (omax(ey +27) = KXo)) + (40 + 1)pd €|l oo
4

_ _ B _ 1
1€y oIl = 11BTAe = %5 + %7 +70GXel| < g

> Centrality (3,35.), (X¢, 5¢), (%, ,5, ), (%), 8))
(3,5), (Xe, Se) are po centered.

ot

-

1
- po < G < oo™ + w0 (ef, +<1), Vi V.
O max NL Lo 2 (maxz(azj + alfj) + Ki e Xp) +2n,

o

1
_— —— — 5 = = + .
= po < (%, )i(8¢ )i < poo + g o (e +ey), VI, VL
O max LIy 2 (maxz(s;j + EIJ.) + K; @ Xp) + 2n;
Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio 30



Example: Nonlinear Vs the relaxation

Nonlinear
minimize /Ta Relaxation
a,qe Uy .
subject to Z qe.ivi = fr, %7 m;f‘(;m'[ze I"a
a.iE subject to Z Ge,ivi = fo,
’/ ’YiTUE = qu,i Ve, i
i _ a0 +
—ac” <q<o"a, N K(z)0+ f qu(qg)i ‘Z)’
1G(qe) =
—
KS)O+TeG(qz),0 74 250
a —

> Least-squares (LSQ) problem

a‘E
ol - ai ),
1

L 1
minimize maxiz(
ug o llarl? 4

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio
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Example: Nonlinear Vs the relaxation

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018
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Example: Nonlinear Vs the relaxation

(C) T = 1, (d) T = 1
Relaxation Nonlinear

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

A. Weldeysus, J. Gondzio
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Example: Nonlinear Vs the relaxation

R

A
A\ YA

=

R
A\ YAV

£
21X

=
=7

A

—

s

-—

A

(C) Tg:]., (d) Tg:]. (e) TngO, (f) Tg:].o,
Relaxation Nonlinear Relaxation Nonlinear

(a) (b) e =0

T 0 1 10

Volume (nonlinear SDP) | 0.062 | 0.06222 | 0.06464
Volume (relaxed SDP ) | - 0.06217 | 0.06433
Violation (LSQ problem) | - 4.96e-06 | 5.32e-4

M. Kocvara. On the modelling and solving of the truss design problem with global
stability constraints. Structural and Multidisciplinary Optimization, 23:189-203, 2002.
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p) By solving

-(

)
80

a)-(h) By solving the relaxation linear SDP. (i

20,30, 40, ..., 90. (

90

0.1251
0.1117
0.0702

0.1139
0.1028
0.0591

70

0.1031
0.0947
0.0459

60

0.0933
0.0871
0.0368

50

0.0846
0.0805
0.0306

70

0.0772
0.0749
0.0164

30

0.0717
0.0703
0.0066

20

0.0677
0.0670
0.0024

35
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Example: Nonlinear Vs the relaxation

Volume (nonlinear SDP)
Volume (relaxed SDP )
Violation (LSQ problem)

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018

the nonlinear SDP.

Figure: 7o




Example: Nonlinear Vs the relaxation

b0 ©m=L (@dn=1 ()r=10 (f)mn=10,
Relaxation Nonlinear Relaxation Nonlinear

T 0 1 10

Volume (nonlinear SDP) | 0.0300 | 0.0302 | 0.0320

Volume (relaxed SDP ) - 0.0301 | 0.0310

Violation (LSQ problem) | - 3.7e-6 | 5.1e-5

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio



Example: Nonlinear Vs the relaxation

—— -

N
. B
X[

Figure: Optimal design with stability constraints for 7, = 20, 30,40. (a)-(c) By solving the
linear SDP relaxation. (d)-(f) By solving the nonlinear SDP.

T 20 30 40

Volume (nonlinear SDP) | 0.0370 | 0.0507 | 0.0663
Volume (relaxed SDP ) | 0.0358 | 0.0499 | 0.0642
Violation (LSQ problem) | 0.0151 | 0.0510 | 0.5889

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018 A. Weldeysus, J. Gondzio




Example: Validating the member adding

All at once | With member adding
Volume (m?3) 0.05414 0.05414
Final number of bars | 3240 600
Mem. add. iter 1 6
Total CPU (Sec) 145 28

. ... (c) With stability, no (d) With stability,
(a) Problem (b) Without stability om. add. mem. add.

The violation of the compatibility constraints by stable design is equal to 5.8336e — 06.

Semidefinite Programming: Theory and Application, Edinburgh, 19 October 2018
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Example: Large-scale truss problems (SDP)

> #bars =90, 100 (n = 1,263, m = 180, 200 in standard SDP notation).

» The full-scale SDP requires at least 240GB memory.

|

(a) Problem

(b) Without stability

(c) With stability

optimality tolerance = [le-2,1e-2,1e-3,1e-4,1e-5,1e-5,...]

without warm-start

with warm-start

Volume (m3)

0.05147

0.05147

Mem. add. iter

7

7

IPM iter in each m. add.

19, 21, 23, 28, 33, 33, 32

19, 21, 23, 20, 23, 20, 18

Number of bars in each
mem. add.

2904, 3922, 4584, 4808,
4976, 5064, 5078

2904, 3922, 4584, 4808,
4984, 5084, 5088

Total CPU

3638

2654

The violation of the compatibility constraints by stable design is equal to 52354e — 06.
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Example: Stadium roof (multiple-load cases)
36856 members, 3-loads case, 2487 bars and 6 mem add iter needed. CPU=2238Sec.

‘ : - =
(a) Problem (b) Without stability (c) With stability

Figure: fi (red), f> (blue), and f3 (green). A=(0,0,2.3), B =(5,0,0), C =(15,0,0),
D = (20,0,0), E =(40,0,2.8), F =(15,0,2.4.2). The roof is 80m the y-direction.

The violation of the compatibility constraints by unstable design is equal to 0.0011.
The violation of the compatibility constraints by stable design is equal to 0.3190.
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Conclusions and future works

Conclusions
» Extended the member adding procedure to SDP.

» Developed and implemented a specialized primal-dual interior point method
The method and its implementation:

> exploits the structure of the problem.
> uses warm-start strategy.

Future work
» Comparison to other SDP solvers.

> Look into the possibilities of using iterative methods for solving the linear systems.
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Thank you for your attention!
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