

1

Linear Algebra Techniques in Interior Point Methods for Optimization

Jacek Gondzio

Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

NA Conference, Dundee, June 2003

- Linear Algebra in IPMs
- LP, QP, NLP: Linear Algebra is the same
- Symmetric Systems:
 - Positive Definite vs Indefinite Systems
 - Quasi-definite Systems
 - Primal and Dual Regularization
- Unavoidable Ill-conditioning
 - IPM Scaling Matrices
 - Dikin's Bound
- Primal-Dual Regularized Factorization
- Exploiting Structure in IPMs

Linear Algebra of IPM for LP

First order optimality conditions

$$Ax = b,$$

$$A^Ty + s = c,$$

$$XSe = \mu e.$$

Newton's direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

where

$$\begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T y - s \\ \mu e - XSe \end{bmatrix}.$$

Use the third equation to eliminate

$$\Delta s = X^{-1}(\xi_{\mu} - S\Delta x)$$

= $-X^{-1}S\Delta x + X^{-1}\xi_{\mu}$

from the second equation and get

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1}\xi_\mu \\ \xi_p \end{bmatrix}.$$

where $\Theta = XS^{-1}$ is a diagonal scaling matrix.

IPMS: LP, QP & NLP

Augmented system in LP

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(A\Theta A^T)\Delta y = g.$$

Augmented system in **QP**

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(A(Q + \Theta^{-1})^{-1}A^T)\Delta y = g.$$

Augmented system in NLP

$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(AQ^{-1}A^T + \Theta^{-1})\Delta y = g.$$

Two step solution method:

- factorization to LDL^T form,
- backsolve to compute direction Δy .

Two options are possible:

1. Replace diagonal matrix D with a blockdiagonal one and allow 2×2 (indefinite) pivots

$\left[\begin{array}{cc} 0 & a \\ a & 0 \end{array}\right]$	and	$\left[\begin{array}{c} 0\\ a\end{array}\right]$	$\left[egin{a} a \\ d \end{array} ight]$	•
---	-----	--	--	---

Hence obtain a decomposition $H = LDL^T$ with **block-diagonal** D.

2. Regularize indefinite matrix to produce a **quasidefinite** matrix

$$K = \left[\begin{array}{cc} -E & A^T \\ A & F \end{array} \right],$$

where

 $E \in \mathcal{R}^{n \times n}$ is positive definite, $F \in \mathcal{R}^{m \times m}$ is positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.

From Indefinite to Quasidefinite Matrix

Indefinite matrix

$$H = \left[\begin{array}{cc} -Q - \Theta^{-1} & A^T \\ A & 0 \end{array} \right]$$

Vanderbei SIOPT 5 (1995) 100-113. Replace Ax = b with Ax + s = b

$$H_V = \begin{bmatrix} -\Theta_s^{-1} & 0 & I \\ 0 & -Q - \Theta^{-1} & A^T \\ I & A & 0 \end{bmatrix}$$

and eliminate Θ_{s}^{-1}

$$K = \begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & \Theta_s \end{bmatrix}$$

Saunders (1996) SIAM Adams & Nazareth (eds)

$$H_{S} = \begin{bmatrix} -Q - \Theta^{-1} & A^{T} \\ A & 0 \end{bmatrix} + \begin{bmatrix} -\gamma^{2}I_{n} & 0 \\ 0 & \delta^{2}I_{m} \end{bmatrix},$$

where $\gamma \delta > \sqrt{\varepsilon} = 10^{-8}.$

Altman & Gondzio *OMS* 11-12 (99) 275-302. Use dynamic regularization

 $\bar{H} = \begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} + \begin{bmatrix} -R_p & 0 \\ 0 & R_d \end{bmatrix},$

 $R_p \in \mathcal{R}^{n imes n}$ is a *primal* regularization $R_d \in \mathcal{R}^{m imes m}$ is a *dual* regularization.

A symmetric matrix is called quasidefinite if

$$K = \left[\begin{array}{cc} -E & A^T \\ A & F \end{array} \right],$$

where $E \in \mathcal{R}^{n \times n}$ and $F \in \mathcal{R}^{m \times m}$ are positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.

Symmetric nonsingular matrix K is factorizable if there exists a diagonal matrix D and a unit lower triangular matrix L such that $K = LDL^{T}$.

The symmetric matrix K is strongly factorizable if for any permutation matrix P a factorization $PKP^T = LDL^T$ exists.

Vanderbei (1995) proved that Symmetric QDFM's are strongly factorizable. *SIOPT* 5 (1995) 100-113.

For any quasidefinite matrix there exists a **Cholesky-like** factorization

$$\bar{H} = LDL^T$$
,

where

5

D is **diagonal** but **not positive definite**: has n negative pivots; and m positive pivots.

Primal Regularization

Primal barrier problem

min
$$z_P = c^T x + \frac{1}{2} x^T Q x - \mu \sum_{j=1}^n (\ln x_j + \ln s_j)$$

s. to $Ax = b$,
 $x + s = u$,
 $x, s > 0$

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ h \end{bmatrix}.$$

Primal regularized barrier problem

min
$$z_P + \frac{1}{2}(x - x_0)^T R_p(x - x_0)$$

s. to $Ax = b$,
 $x + s = u$,
 $x, s > 0$

$$\begin{bmatrix} -Q - \Theta^{-1} - R_p & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f' \\ h \end{bmatrix},$$
 where

$$f' = f - R_p(x - x_0).$$

8

Dual barrier problem

$$\max \quad z_D = b^T y - u^T w - \frac{1}{2} x^T Q x + \mu \sum_{j=1}^n (\ln z_j + \ln w_j)$$

s. to
$$A^T y + z - w - Q x = c,$$
$$x \ge 0, z, w > 0$$
$$\left[\begin{array}{c} -Q - \Theta^{-1} & A^T \\ A & 0 \end{array} \right] \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] = \left[\begin{array}{c} f \\ h \end{array} \right].$$

Dual regularized barrier problem

max
$$z_D - \frac{1}{2}(y - y_0)^T R_d(y - y_0)$$

s. to $A^T y + z - w - Qx = c,$
 $x \ge 0, z, w > 0$

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & R_d \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ h' \end{bmatrix},$$

where

$$h' = h - R_d(y - y_0)$$

Problem		Dim	ensions		LOQO	HOPDM	
	m	n	nz(A)	nz(Q)	nz(L)	nz(L)	
nug12	3192	8856	44244	0	3091223	1969957	
nug15	6330	22275	110700	0	-	7374972	
cvxqp1_m	500	1000	1498	2984	71487	75973	
cvxqp1_	5000	10000	14998	29984	4056820	3725045	
cvxqp2_m	250	1000	749	2984	52917	51923	
cvxqp2_l	2500	10000	7499	29984	2923584	2754141	
cvxqp3_m	750	1000	2247	2984	79957	90433	
cvxqp3_l	7500	10000	22497	29984	4411197	4291057	

200 MHz Pentium II PC, Linux.

Problem	L'	OQO	HC HC	DPDM
	iters	time	iters	time
nug12	24	4417.7	13	1140.3
nug15	-	-	15	10276.6
cvxqp1_m	32	13.78	9	6.63
cvxqp1_l	72	18361.1	11	2874.4
cvxqp2_m	16	4.06	9	4.02
cvxqp2_l	25	3849.4	8	1353.7
cvxqp3_m	49	25.45	9	9.11
cvxqp3_	100	27447.6	8	2461.2

10

Ill-conditioning

Assume Normal Equations are used in LP and the feasible IPM is used ($\xi_p = 0$ and $\xi_d = 0$)

$$(A\Theta A^T)\Delta y = A\Theta r,$$

where $\Theta = XS^{-1}$ and $r = -X^{-1}\xi_{\mu}$.

Optimal Partition:

Basic variables $x_B \rightarrow x_B^* > 0$ $s_B \rightarrow s_B^* = 0$ Non-basic variables $x_N \rightarrow x_N^* = 0$ $s_N \rightarrow s_N^* > 0$

For **basic** variables: $\Theta_j = x_j/s_j \rightarrow \infty$; For **non-basic** variables: $\Theta_j = x_j/s_j \rightarrow 0$.

Hence

$$A \Theta A^T = \sum_{j \in \mathcal{B}} \theta_j a_{.j} a_{.j}^T + \sum_{j \in \mathcal{N}} \theta_j a_{.j} a_{.j}^T \to \sum_{j \in \mathcal{B}} \theta_j a_{.j} a_{.j}^T$$

The matrix $H = A \Theta A^T$ usually has a huge condition number $\kappa(H)$. Although $\kappa(H) \gg 1/\epsilon$, where ϵ is the relative precision of the computer (e.g. $\epsilon = 10^{-16}$), IPMs do converge.

Dikin's Bound

Theorem: (Dikin, 1974) *Upravlaemye Sistemy* 12 (1974) pp 54-60.

Let $A \in \mathbb{R}^{m \times n}$ be a full row rank matrix; g be a vector of dimension n; and D_+ be the set of $n \times n$ diagonal positive definite matrices.

Then

$$\sup_{D \in D_{+}} \|(ADA^{T})^{-1}ADg\| = \max_{\mathcal{J} \in \mathcal{J}(A)} \|A_{\mathcal{J}}^{-T}g_{\mathcal{J}}\|$$
$$\sup_{D \in D_{+}} \|(ADA^{T})^{-1}AD\| = \max_{\mathcal{J} \in \mathcal{J}(A)} \|A_{\mathcal{J}}^{-T}\|$$

where $\mathcal{J}(A)$ is the set of column indices associated with nonsingular $m \times m$ submatrices of A.

Corollary:

The linear system arising in IPMs for LP

$$(A\Theta A^T)\Delta y = A\Theta r,$$

produces more accurate solutions than those one could have expected from a "classical" worst-case analysis.

Forsgren and Sporre (2001) generalized Dikin's result for a subclass of positive definite weight matrices *W*. *SIMAX* 22 (2001) 42-56.

Lemma:

Let $A \in \mathcal{R}^{m \times n}$ be a full row rank matrix; g be a vector of dimension n; and W_+ be the set of $n \times n$ matrices defined as

$$W = \sum_{i=1}^{k} \alpha_i W_i,$$

where $\alpha_i > 0$ and $W_i = U_i D_i U_i^T$ with U_i bounded and D_i diagonal positive definite $\forall i = 1, ..., k$. Then

$$\sup_{W \in W_{+}} \|(AWA^{T})^{-1}AWg\|$$
$$\sup_{W \in W_{+}} \|(AWA^{T})^{-1}AW\|$$

are bounded.

This Lemma extends Dikin's result to quadratic and nonlinear optimization.

The Lemma does not hold for arbitrary positive definite matrix W.

13

Interior Point Methods:

- are well-suited to large-scale optimization
- can take advantage of the parallelism

Large problems are "structured":

- partial separability
- spatial distribution
- dynamics
- uncertainty
- etc.

Object-Oriented Parallel Solver (OOPS)

- Exploits structure
- Runs in parallel
- Solves problems with millions of variables

Andreas Grothey will talk about OOPS.

Gondzio & Sarkissian: Math Prog 96 (2003) 561-584. Gondzio & Grothey: SIOPT 13 (2003) 842-864.

14

Tree Description of Block-Structures

Structured Matrix:

Associated Tree:

Reordered Augmented Matrix

Cholesky factors sometimes get hopelessly dense.

QAP (Quadratic Assignment Problems) and NUG problems (dual QAPs)

Prob		Dimensions					
	rows	columns	nonzeros				
qap12	3192	8856	38304				
qap15	6330	22275	94950				
nug12	3192	8856	38304				
nug15	6330	22275	94950				

Normal Equations:

Prob	nz(AAt)	nz(LLt)	Flops
qap12	74592	2135388	2.378e+9
qap15	186075	8191638	1.792e+10
nug12	74592	2789960	4.014e+9
nug15	186075	11047639	3.240e+10

Augmented System:

Prob	nz(A)	nz(LLt)	Flops	
qap12	38304	1969957	2.046e+9	
qap15	94950	7374972	1.522e+10	
nug12	38304	1969957	2.046e+9	
nug15	94950	7374972	1.522e+10	1
nug15	94950	7374972	1.522e+10	

Iterative Methods

Normal Equations or Augmented System:

- NE is positive definite: can use conjugate gradients;
- AS is indefinite: can use BiCGSTAB, GMRES, QMR;

AS is generally more flexible.
Oliveira (1997) PhD Thesis, Rice Univ.
Oliveira & Sorensen (1997) TR, Rice Univ.
→ It is better to precondition AS.

O, **OS** show that all preconditioners for the NE have an equivalent for the AS while the opposite is not true.

After all, NE is equivalent to a restricted order of pivoting in AS.

- Unavoidable Ill-conditioning:
 - benign in direct approach;
 - challenge for iterative approach.
- Positive Definite vs Indefinite Systems
- Preconditioners for Structured Matrices
- Preconditioners for Indefinite System
 - Motivation
 - * Sparsity Issues
 - * Numerical Properties
 - Spectral Analysis
 - Influence of Regularizations
- Conclusions
- What's to Come in IPMs

18

Iterative Methods

Many attempts (LP, QP, NLP and PDE):

- Gill, Murray, Ponceleon, Saunders SIMAX 13 (1992) 292-311.
- Lukšan & Vlček
 NLAA 5 (1998) 219-247.
- Golub & Wathen SISC 19 (1998) 530-539.
- Murphy, Golub & Wathen *SISC* 21 (2000) 1969-1972.
- Keller, Gould & Wathen *SIMAX* 21 (2000) 1300-1317.
- Perugia & Simoncini
 NLAA 7 (2000) 585-616.
- Castro *SIOPT* 10 (2000) 852-877.
- Gould, Hribal & Nocedal SISC 23 (2001) 1376-1395.
- Durazzi & Ruggiero NLAA (to appear).
- Rozlozník & Simoncini *SIMAX* 24 (2002) 368-391.

Castro SIOPT 10 (2000) 852-877.

Normal-equations matrix

$$\begin{bmatrix} A_1 A_1^T & & A_1 B_1^T \\ & A_2 A_2^T & & A_2 B_2^T \\ & & \ddots & & \vdots \\ & & & A_n A_n^T & A_n B_n^T \\ & & & B_1 A_1^T & B_2 A_2^T & \cdots & B_n A_n^T & \sum_{i=1}^{n+1} B_i B_i^T \end{bmatrix} = \begin{bmatrix} E & B^T \\ B & F \end{bmatrix},$$
where *E* and *E* are positive definite.

where E and F are positive definite.

E is easily invertible (block-diagonal). The inverse of Schur complement matrix $F-BE^{-1}B^{T}$ can be written as the power series:

$$(F - BE^{-1}B^T)^{-1} = \sum_{i=0}^{\infty} (F^{-1}BE^{-1}B^T)^i F^{-1}.$$

Finite approximation of the series:

→ Very efficient preconditioner.

CG with Indefinite Preconditioner

Consider the indefinite matrix

$$H = \left[\begin{array}{cc} Q & A^T \\ A & 0 \end{array} \right],$$

where

 $Q \in \mathcal{R}^{n imes n}$ is positive definite, and $A \in \mathcal{R}^{m imes n}$ has full row rank.

The CG method may fail when applied to an indefinite system.

Rozlozník & Simoncini

SIMAX 24 (2002) 368-391.

RS consider the preconditioner P which guarantees that all eigenvalues of the preconditioned matrix $P^{-1}H$ are positive and bounded away from zero.

Although $P^{-1}H$ is indefinite

- the CG can be applied to this problem,
- the asymptotic rate of convergence of CG is approximately the same as that obtained for a positive definite matrix with the same eigenvalues as the original system.

Murphy, Golub & Wathen *SISC* 21 (2000) 1969-1972.

Consider a matrix

$$H = \left[\begin{array}{cc} Q & A^T \\ A & 0 \end{array} \right],$$

where

 $Q \in \mathcal{R}^{n imes n}$ is positive definite, and $A \in \mathcal{R}^{m imes n}$ has full row rank.

Consider the preconditioner which incorporates an exact Schur complement $AQ^{-1}A^{T}$. For example:

$$P_1 = \begin{bmatrix} Q & 0 \\ 0 & AQ^{-1}A^T \end{bmatrix} \quad \text{or} \quad P_2 = \begin{bmatrix} Q & A^T \\ 0 & AQ^{-1}A^T \end{bmatrix}.$$

The preconditioned matrices $P^{-1}H$ have only two or three distinct eigenvalues.

MGW conclude:

"The approximations of the Schur complement lead to preconditioners which can be very effective even though they are in no sense approximate inverses".

22

Indefinite Block Preconditioner

Consider again the matrix

$$H = \left[\begin{array}{cc} Q & A^T \\ A & 0 \end{array} \right],$$

where

 $Q \in \mathcal{R}^{n imes n}$ is positive definite, and $A \in \mathcal{R}^{m imes n}$ has full row rank.

Consider a preconditioner of the form:

$$P = \left[\begin{array}{cc} D & A^T \\ A & 0 \end{array} \right],$$

where $D \in \mathcal{R}^{n \times n}$ is positive definite.

Keller, Gould & Wathen

SIMAX 21 (2000) 1300-1317.

Theorem. Assume that A has rank m (m < n). Then, $P^{-1}H$ has at least 2m unit eigenvalues, and the other eigenvalues are positive and satisfy

$$\lambda_{min}(D^{-1}Q) \leq \lambda \leq \lambda_{max}(D^{-1}Q).$$

Proof: The preconditioned matrix (left) reads

$$P^{-1}H = \begin{bmatrix} D & A^{T} \\ A & 0 \end{bmatrix}^{-1} \begin{bmatrix} Q & A^{T} \\ A & 0 \end{bmatrix} = \\ = \begin{bmatrix} D^{-1} - D^{-1}A^{T}M^{-1}AD^{-1} & D^{-1}A^{T}M^{-1} \\ M^{-1}AD^{-1} & -M^{-1} \end{bmatrix} \begin{bmatrix} Q & A^{T} \\ A & 0 \end{bmatrix} \\ = \begin{bmatrix} D^{-1}Q - D^{-1}A^{T}M^{-1}AU & 0 \\ M^{-1}AU & I_{m} \end{bmatrix} = \begin{bmatrix} X & 0 \\ Y & I_{m} \end{bmatrix},$$
where $M = AD^{-1}A^{T}, \ U = D^{-1}Q - I.$

 $P^{-1}H$ has m linearly independent eigenvectors associated with the eigenvalue $\lambda=1$ since for $w_i\!\in\!\mathcal{R}^m$

$$P^{-1}H\begin{bmatrix}0\\w_i\end{bmatrix} = \begin{bmatrix}0\\w_i\end{bmatrix}.$$

The remaining *n* eigenvectors are the same as those of the matrix $X = D^{-1}Q - D^{-1}A^TM^{-1}AU$.

Matrix X has at least m other unit eigenvalues. Indeed, for any $x\!\in\!\mathcal{R}^m$ we write

$$X^{T}A^{T}x = (I + U^{T}(I - A^{T}M^{-1}AD^{-1}))A^{T}x = A^{T}x + U^{T}(A^{T}x - A^{T}x) = A^{T}x.$$

25

The remaining $n\!-\!m$ eigenvalues and eigenvectors of $P^{-1}H$ have to satisfy

$$\begin{array}{rcl} Qx & +A^Ty & = & \lambda Dx & +\lambda A^Ty \\ Ax & & = & \lambda Ax. \end{array}$$

If $\lambda \neq 1$ the second equation yields Ax = 0. Let us multiply the first equation by x^T . Recalling that $x^T A^T = 0$ we obtain

$$x^T Q x = \lambda x^T D x, \quad \Rightarrow \quad \lambda = \frac{x^T Q x}{x^T D x} = q(D^{-1}Q).$$

The last expression is the Rayleigh quotient of the generalized eigenproblem $Dv = \mu Qv$. Since both D and Q are positive definite we have for every $x \in \mathcal{R}^n$

$$0 < \lambda_{\min}(D^{-1}Q) \leq rac{x^TQx}{x^TDx} \leq \lambda_{\max}(D^{-1}Q)$$

and finally

$$\lambda_{\min}(D^{-1}Q) \le \lambda \le \lambda_{\max}(D^{-1}Q)$$

Conclusion:

The preconditioner satisfies the requirements of **Rozlozník & Simoncini**.

26

How to choose D?

Preconditioners: Motivation

Sparsity issues: irreducible blocks in QP.

If the elimination starts from h_{11} or h_{22} , then

Conclusion:

Drop off-diagonal elements form Q.

28

Bergamaschi, Gondzio & Zilli,

Preconditioning indefinite systems in interior point methods for optimization, Tech. Rep. MS-02-02.

Augmented system in QP, NLP

$$H = \left[\begin{array}{cc} -Q - \Theta^{-1} & A^T \\ A & 0 \end{array} \right].$$

Drop off-diagonal elements from Q: Replace

$$-Q - \Theta^{-1}$$

with

$$D = -diag(Q) - \Theta^{-1}$$

D is a diagonal matrix

 \rightarrow Free choice between NE and AS.

Preconditioner 1

Compute the Cholesky-like factorization.

$$P_1 = \begin{bmatrix} D & A^T \\ A & 0 \end{bmatrix} = L\bar{D}L^T.$$

Preconditioner 2

Reduce the system to Normal Equations $AD^{-1}A^T$, compute the Cholesky factorization

$$AD^{-1}A^T = L_0 D_0 L_0^T,$$

and use:

$$P_2 = \begin{bmatrix} D & A^T \\ A & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ AD^{-1} & L_0 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & -D_0 \end{bmatrix} \begin{bmatrix} I & D^{-1}A^T \\ 0 & L_0^T \end{bmatrix}.$$

29

The regularization

$$\bar{H}_R = \begin{bmatrix} -Q & A^T \\ A & 0 \end{bmatrix} + \begin{bmatrix} -R_p & 0 \\ 0 & R_d \end{bmatrix},$$

changes the **eigenvalues** of the preconditioned matrix:

without the regularization:

$$\lambda(P^{-1}H) = \frac{x^T Q x}{x^T D x}$$

with the regularization:

$$\lambda(P_R^{-1}H_R) = \frac{-x^TQx + \delta}{-x^TDx + \delta},$$
 where $\delta = x^TR_px + y^TR_dy > 0.$

For any $\alpha, \beta, t > 0$, the function $h(t) = \frac{\alpha+t}{\beta+t}$ is increasing if $\frac{\alpha}{\beta} \le 1$, and decreasing if $\frac{\alpha}{\beta} > 1$.

Hence:

If
$$\lambda(P^{-1}H) < 1$$
, then $\lambda(P_R^{-1}H_R) > \lambda(P^{-1}H)$.
If $\lambda(P^{-1}H) > 1$, then $\lambda(P_R^{-1}H_R) < \lambda(P^{-1}H)$.

The use of regularization improves the **clustering** of eigenvalues.

30

HOPDM: Direct vs Iterative Methods

Problem	Dime	nsions		nonzeros(L)		
	nz(A)	nz(Q)	Direct	AS-Prec	NE-Prec	
cvxqp1_m	1498	2984	75973	4739	4768	
cvxqp1_	14998	29984	3725045	71833	89241	
cvxqp2_m	749	2984	51923	1031	315	
cvxqp2_	7499	29984	2754141	10579	3379	
cvxqp3_m	2247	2984	90433	9527	14018	
cvxqp3_	22497	29984	4291057	149488	271780	

QMR: Freund & Nachtigal (1991,1994). QMR is asked for 10^{-3} accuracy. 500 MHz Pentium III PC, Linux, 256 MB.

Problem	Direct		AS-Prec		NE-Prec	
	its	time	its	time	its	time
cvxqp1_m	9	2.35	11	1.59	11	1.64
cvxqp1_	11	1267.53	13	32.51	13	38.50
cvxqp2_m	9	1.27	10	1.01	10	1.06
cvxqp2_	8	547.91	10	17.87	10	18.10
cvxqp3_m	9	3.40	11	1.94	11	2.37
cvxqp3_	8	958.59	10	42.03	10	57.12

Influence of Regularization: q25fv47

QMR: Freund & Nachtigal (1991,1994). QMR is asked for 10^{-3} accuracy. 500 MHz Pentium III PC, Linux, 256 MB.

Problem		AS-	Prec			NE-	Prec	
	IPM	ItS	Max	Avr	IPM	ItS	Max	Avr
cvxqp1_m	11	338	20	14	11	338	20	14
cvxqp1_	13	481	20	17	13	487	20	17
cvxqp2_m	10	307	20	13	10	307	20	13
cvxqp2_l	10	389	20	18	10	389	20	18
cvxqp3_m	11	303	20	13	11	296	20	12
cvxqp3_	10	415	20	19	10	374	20	17

NL iterations (QMR) in the last IPM iteration:

Problem	AS-	Prec	NE-	Prec			
	Predictor Corrector F		Predictor	Corrector			
cvxqp1_m	11	11	11	11			
cvxqp1_	16	12	14	12			
cvxqp2_m	9	1	9	1			
cvxqp2_	18	16	18	16			
cvxqp3_m	10	7	9	7			
cvxqp3_	20	14	15	13			

33

GMRES: Saad & Schultz (1986). BiCGSTAB: Van der Vorst (1992). QMR: Freund & Nachtigal (1991,1994).

All approaches iterate until 10^{-3} accuracy is reached but perform no more than 20 iterations. All approaches use the AS preconditioner.

500 MHz Pentium III PC, Linux, 256 MB.

Problem	(GMRES	Bi	CGSTAB	QMR		
	IP	ItS∣ time	IP	ItSI time	IP	ItSI time	
cvxqp1_s	12	177 0.1	12	137 0.1	9	189 0.1	
cvxqp1_m	11	307 1.3	11	233 1.3	11	338 1.6	
cvxqp1_	13	503 24.9	13	357 28.9	13	481 32.5	
cvxqp2_s	27	217 0.1	16	153 0.1	10	235 0.1	
cvxqp2_m	16	270 0.9	21	221 1.1	10	307 1.0	
cvxqp2_	19	404 16.1	10	243 14.9	10	389 18.1	
cvxqp3_s	11	162 0.1	11	114 0.1	11	181 0.1	
cvxqp3_m	11	306 1.6	11	226 1.7	11	303 1.9	
cvxqp3_	10	375 28.8	10	272 32.5	10	415 42.0	

34

Conclusions

What's to come in IPMs?

Direct Methods are reliable but occasionally excessively expensive.

Iterative Methods are promising but:

- are sometimes unpredictable;
- need tuning;
- depend upon preconditioners.

An Augmented System offers more freedom

- when used in the direct approach,
- when used to compute the preconditioners for the iterative approach.

Regularization is helpful.

Direct Methods:

- small improvements:
 - reordering strategies
 - implementation (cache, supernodes)
- exploiting structure in huge problems (implicit inverse representations)

Iterative Methods:

• new preconditioners

Challenge:

Find an inverse representation with the number of nonzeros comparable to that of $\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}$.