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Linear Algebra of IPM for LP

Linear Algebra in IPMs

e LP, QP, NLP: Linear Algebra is the same

Symmetric Systems:

— Positive Definite vs Indefinite Systems
— Quasi-definite Systems
— Primal and Dual Regularization

Unavoidable Ill-conditioning

— IPM Scaling Matrices
— Dikin’'s Bound

Primal-Dual Regularized Factorization

Exploiting Structure in IPMs

IPMs: LP, QP & NLP

First order optimality conditions

Ax = b,
ATy4+s = ¢
XSe = pe.
Newton’s direction
A 0 O] Az &p
0 AT 1 Ay | =& |,
S 0 X || As Eu
where
&p [ b— Ax
§a | =|c—ATy—s
& | pne— XSe

Use the third equation to eliminate
As = X (¢ - SAx)
= —X"1saz+ x"1¢,,
from the second equation and get

—o 1l AT || Az | _ | ¢ —X"1¢,
A 0 Ay | &p '

where © = XS~ 1 is a diagonal scaling matrix.
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Augmented system in LP

—o-1 AT Az | _ | r
A 0 Ay | | AT

Eliminate Ax from the first equation and get

normal equations

(AeANH Ay = g.

Augmented system in QP

—Q—@_l AT Az | | r
A 0 Ay | | A

Eliminate Ax from the first equation and get

normal equations

(AQ+oe HtaAay = g.

Augmented system in NLP

Qz,y) A(x)T Aw}z[r}
A(z) —zy 1 || Ay h|"

Eliminate Ax from the first equation and get

normal equations

AQ AT+ o Hay =g



Two step solution method:

e factorization to LDLT form,

e backsolve to compute direction Ay.

Two options are possible:

1. Replace diagonal matrix D with a block-
diagonal one and allow 2 x 2 (indefinite) pivots

0 a and 0 a

a O a d |’
Hence obtain a decomposition H = LDLT with
block-diagonal D.

2. Regularize indefinite matrix to produce a
quasidefinite matrix

—-E AT
A F

)

|

where

E ¢ R™*™ js positive definite,

F € R™*™ js positive definite, and
A € R™*" has full row rank.

From Indefinite to Quasidefinite Matrix

Indefinite matrix
_[-@-et AT
"= A 0

Vanderbei SIOPT 5 (1995) 100-113.
Replace Az = b with Az +s=1b

—o;1 0 I
Hy = 0 —-Q-o1 4T
I A 0

and eliminate ©;1
—Q—@_l AT
A O

|

Saunders (1996) SIAM Adams & Nazareth (eds)

_[-@-et aT —7?I 0
Hg = A 0 0 8%, |’

g

Altman & Gondzio OMS 11-12 (99) 275-302.
Use dynamic regularization
—o-1 AT ~R, O }

H:{AO 0 Ry

Rp € R™"™ is a primal regularization
Ry € R™* ™ is a dual regularization.

A symmetric matrix is called quasidefinite if

—-E AT
A F

)

|

where E € R"*" and
F € R™M*™ are positive definite, and
A € R™*™ has full row rank.

Symmetric nonsingular matrix K is factorizable
if there exists a diagonal matrix D and a unit
lower triangular matrix L such that K = LDLT.

The symmetric matrix K is strongly factorizable
if for any permutation matrix P a factorization
PKPT = LDLY exists.

Vanderbei (1995) proved that
Symmetric QDFM'’s are strongly factorizable.
SIOPT 5 (1995) 100-113.

For any quasidefinite matrix
there exists a Cholesky-like factorization

A=1LDL",
where
D is diagonal but not positive definite:

has n negative pivots;
and m positive pivots. 6

Primal Regdularization

Primal barrier problem

min ZP:CTZL‘+%£BTQ:L‘—/,LZ?:1(|n:L‘j+|nSj)
s. to Az =b,

r+s=u,

z,s >0

Q-0 AT | Az | _|f
A 0 Ay |~ | h|”

Primal regularized barrier problem

min ZP+%(x—CL'0)TRp(QJ—.’£0)
s. to Ax = b,

T+ s=u,

z,s >0

-Q-©71-R, AT
A 0

=1

f'=f = Rp(z — 20).

where



Dual barrier problem

3
max zp= bTy—uTw—%xTQ;L’—Fp,AZl(lnzj—Hnwj)
]:

s.to Aly4z—w—Qz=c,

z>0,z,w>0
Q-1 AT || Az | | f
Ay | | h|”

A 0

Dual regularized barrier problem

1
max  zp—(y - v0)" Ra(y — v0)
s. to ATy—}—z—w—Qx:c,
z>0,z,w>0

=10

h'=h— Ry(y — yo)-

—Q _ @—1 AT
A Ry

where

Ill-conditioning

Assume Normal Equations are used in LP and

the feasible IPM is used ({ =0 and £; = 0)
(A0ATY Ay = Aor,

where © = XS~! and r = —X~1¢,.

Optimal Partition:
Bas.ic var?ables rp—2>0 sp—sp=0
Non-basic variables zy — 23 =0 sy — sy >0

For basic variables: Q= ;pj/sj — 00;
For non-basic variables: ©; =z;/s; — O.

Hence

T _ T T T
A@A - Z Qja_jalj —|— Z Gja.jalj — Z Qja‘ja.j.
jeB JEN JjeB

The matrix H = A® AT usually has a huge condi-
tion number x(H). Although x(H) > 1/¢, where
e is the relative precision of the computer (e.g.
e = 10716), IPMs do converge.
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Higher Order Primal Dual Method

Problem Dimensions LOQO HOPDM
m n nz(A) nz(Q) nz(L) nz(L)
nugl2 3192 8856 44244 0 | 3091223 1969957
nugls 6330 22275 110700 0 - 7374972
cvxgpl-m 500 1000 1498 2984 71487 75973
cvxqgpl_| 5000 10000 14998 29984 | 4056820 3725045
cvxgp2_m 250 1000 749 2984 52917 51923
cvxgp?2_| 2500 10000 7499 29984 | 2923584 2754141
cvxgp3_-m 750 1000 2247 2984 79957 90433
cvxqgp3._| 7500 10000 22497 29984 | 4411197 4291057
200 MHz Pentium II PC, Linux.
Problem LOQO HOPDM

iters time | iters time

nugl2 24 4417.7 13 1140.3

nugls - - 15 10276.6

cvxgpl-m 32 13.78 9 6.63

cvxapl_| 72 18361.1 11 2874.4

cvxgp2-m 16 4.06 9 4.02

cvxgp2.l 25 3849.4 38 1353.7

cvxgp3-m 49 25.45 9 9.11

cvxqp3._l 100 27447.6 8 2461.2

Dikin’s Bound
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Theorem: (Dikin, 1974)

Upraviaemye Sistemy 12 (1974) pp 54-60.

Let A € R™X™ be a full row rank matrix;
g be a vector of dimension n; and

D_ be the set of n x n diagonal positive definite
matrices.
Then

sup [[(ADAT)"1ADy|
D€D+

sup ||[(ADATY1AD|
D€D+

= max
JeJ(A)

= max
JeIT(A)

=T
147

g7l

1AZ"

where J(A) is the set of column indices associ-
ated with nonsingular m x m submatrices of A.

Corollary:
The linear system arising in IPMs for LP

(A0ATY Ay

AO©r,

produces more accurate solutions than those one

could have expected from a

case

analysis.

“classical”

worst-

12



Forsgren and Sporre (2001) generalized Dikin's
result for a subclass of positive definite weight
matrices W. SIMAX 22 (2001) 42-56.

Lemma:

Let A € R™X™ be a full row rank matrix;

g be a vector of dimension n; and

W, be the set of n X n matrices defined as

k
W = Z a; Wi,
i=1

where o; > 0 and W; = U;D;U! with U; bounded
and D; diagonal positive definite Vi =1, ..., k.
Then

sup [[(AWAT)"LAawyg||
W€W+
sup [[(AWAT)"Law ||
W€W+
are bounded.

This Lemma extends Dikin's result to quadratic
and nonlinear optimization.

The Lemma does not hold for arbitrary positive

definite matrix W.
13

Tree Description of Block-Structures

Structured Matrix:

Associated Tree:
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Interior Point Methods:

e are well-suited to large-scale optimization
e can take advantage of the parallelism

Large problems are “structured”:

e partial separability
spatial distribution
dynamics

uncertainty
e etc.

Object-Oriented Parallel Solver (OOPS)
e Exploits structure
e Runs in parallel
e Solves problems with millions of variables

Andreas Grothey will talk about OOPS.

Gondzio & Sarkissian:

Math Prog 96 (2003) 561-584.

Gondzio & Grothey:

SIOPT 13 (2003) 842-864. 14

Reordered Augmented Matrix

16



Cholesky factors sometimes get hopelessly dense.

QAP (Quadratic Assignment Problems) and
NUG problems (dual QAPs)

Prob Dimensions
rows columns nonzeros
gapl2 | 3192 8856 38304

dapl5 | 6330 22275 94950
nugl2 | 3192 8856 38304
nugl5 | 6330 22275 94950

Normal Equations:

Prob | nz(AAt) nz(LLt) Flops
gapl2 74592 2135388 2.378e+9
gapl5 | 186075 8191638 1.792e+10
nugl2 74592 2789960 4.014e+49
nuglb5 | 186075 11047639 3.240e+410

Augmented System:
Prob nz(A) nz(LLt) Flops
gapl2 | 38304 1969957 2.046e+49
gapl5 | 94950 7374972 1.522e+10
nugl2 | 38304 1969957 2.046e+49
nugl5 | 94950 7374972 1.522e+410 17

Iterative Methods

Normal Equations or Augmented System:

e NE is positive definite:
can use conjugate gradients;

e AS is indefinite:
can use BICGSTAB, GMRES, QMR;

AS is generally more flexible.

Oliveira (1997) PhD Thesis, Rice Univ.
Oliveira & Sorensen (1997) TR, Rice Univ.
— It is better to precondition AS.

O, OS show that all preconditioners for the NE
have an equivalent for the AS while the opposite

is not true.

After all, NE is equivalent to a restricted order
of pivoting in AS.
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Unavoidable Ill-conditioning:

— benign in direct approach;
— challenge for iterative approach.

Positive Definite vs Indefinite Systems

Preconditioners for Structured Matrices

Preconditioners for Indefinite System
— Motivation

* Sparsity Issues
* Numerical Properties

— Spectral Analysis

— Influence of Regularizations

Conclusions

What's to Come in IPMs
18

Iterative Methods

Many attempts (LP, QP, NLP and PDE):

Gill, Murray, Ponceleon, Saunders
SIMAX 13 (1992) 292-311.

Luk3an & Vicek
NLAA 5 (1998) 219-247.

Golub & Wathen
SISC 19 (1998) 530-539.

Murphy, Golub & Wathen
SISC 21 (2000) 1969-1972.

Keller, Gould & Wathen
SIMAX 21 (2000) 1300-1317.

Perugia & Simoncini
NLAA 7 (2000) 585-616.

Castro
SIOPT 10 (2000) 852-877.

Gould, Hribal & Nocedal
SISC 23 (2001) 1376-1395.

Durazzi & Ruggiero
NLAA (to appear).

Rozloznik & Simoncini
SIMAX 24 (2002) 368-391. 20



Castro SIOPT 10 (2000) 852-877.

Normal-equations matrix

A1AT . AlBi
A2A2 N AQ:B2 _|:E BT
' ' —|\B F |’
ApAT A, BT

B1AT ByAL ... B,AT 'l BBT
where E and F are positive definite.
E is easily invertible (block-diagonal).

The inverse of Schur complement matrix
F—BE-1BT can be written as the power series:

OO .
(F-BE BTy 1 =Y (Fr1BE-1BT)iF1
=0

Finite approximation of the series:

— Very efficient preconditioner. o

CG with Indefinite Preconditioner

Consider the indefinite matrix

Q AT
A 0

)

|

where

Q € R™ ™ is positive definite, and

A € R™MX" has full row rank.

The CG method may fail when applied to an
indefinite system.

Rozloznik & Simoncini
SIMAX 24 (2002) 368-391.

RS consider the preconditioner P which guaran-
tees that all eigenvalues of the preconditioned
matrix P~1H are positive and bounded away
from zero.

Although P~1H is indefinite
e the CG can be applied to this problem,

e the asymptotic rate of convergence of CG
is approximately the same as that obtained
for a positive definite matrix with the same
eigenvalues as the original system.
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Murphy, Golub & Wathen
SISC 21 (2000) 1969-1972.

Consider a matrix

Q AT
A 0

)

|

where
Q € R™ ™ is positive definite, and
A € R™X™ has full row rank.

Consider the preconditioner which incorporates
an exact Schur complement AQ—1A7.
For example:

@ 0 _|l@ AT
Pl_{o aQraT| o F2=lg ag1ar

The preconditioned matrices P~1H nhave only
two or three distinct eigenvalues.

MGW conclude:
“The approximations of the Schur complement
lead to preconditioners which can be very effec-
tive even though they are in no sense approxi-
mate inverses” .

22

Indefinite Block Preconditioner

Consider again the matrix

Q AT
A 0

)

|

where
Q € R™*" is positive definite, and
A € R™X" has full row rank.

Consider a preconditioner of the form:

T
P:{DA ,

A O

where D € R™*" is positive definite.

Keller, Gould & Wathen
SIMAX 21 (2000) 1300-1317.

Theorem. Assume that A has rankm (m <n).
Then, P~1H has at least 2m unit eigenvalues,
and the other eigenvalues are positive and satisfy

Amin(D71Q) < A < Amaa(D7Q).

24



Proof: The preconditioned matrix (left) reads

-1
1,, _ |D AT Q AT| _
=088 %)=
_ D7 1-DTATMTADT DTATM|[Q AT
- M~1AD-1 -M1 A 0
D@ -D1ATM-1AU 0] _[X O
- M-laU Im| Y Im|’

where M=AD AT U=D"1Q-1.

P 1H has m linearly independent eigenvectors
associated with the eigenvalue A=1 since for

w; ER™
pig|9] =10

The remaining n eigenvectors are the same as
those of the matrix X = D~ 1Q—-D1AT M1 AU.

Matrix X has at least m other unit eigenvalues.
Indeed, for any z€R™ we write

XTATy = (40T - ATMTADI)AT: =
= ATe 4+ 0T ATz — ATz) = AT2.

25

How to choose D?

Bergamaschi, Gondzio & Zilli,
Preconditioning indefinite systems in interior
point methods for optimization,

Tech. Rep. MS-02-02.

Augmented system in QP, NLP

_ *Q— @71 AT

H A 0

Drop off-diagonal elements from Q:
Replace

Q-1
with
D = —diag(Q) —©~ 1.
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The remaining n—m eigenvalues and eigenvectors
of P~1H have to satisfy

Qx +ATy = XDz +XATy

Ax = MAx.
If A # 1 the second equation yields Az = 0.
Let us multiply the first equation by z7.
Recalling that 27’ AT = 0 we obtain

T

Tl = (D 71Q),
The last expression is the Rayleigh quotient of
the generalized eigenproblem Dv = puQu. Since
both D and @Q are positive definite we have for
every z € R"

t'Qr=Xxe"Dz, = M=

' Qux
D

T S )\max(D_lQ)
X X

0< )\min(D_lQ) <
and finally
Amin(DilQ) <A< Amax(DilQ)
Conclusion:

The preconditioner satisfies the requirements of

Rozloznik & Simoncini.
26

Preconditioners: Motivation

Sparsity issues: irreducible blocks in QP.
Consider the matrices

X X

X X z z
T T
Q= T N and A= T s |
" T x
giving [x x T x i
X X T x
T r T
T T
H= T T T
X xX
T T
T x T
T T
If the elimination starts from hi1 oOr hop, then
[x x x x £ ]
X X f fx =z
X r T
T T
H= T T T
z f T
z f =z
f z T
f =z T
Conclusion:

Drop off-diagonal elements form Q. 28



D is a diagonal matrix
— Free choice between NE and AS.

Preconditioner 1
Compute the Cholesky-like factorization.

D AT

Plz[A 0 =LDLT.

Preconditioner 2
Reduce the system to Normal Equations AD—1 AT
compute the Cholesky factorization

AD AT = LoDoLY,

and use:
D AT I ol]lD o I D AT
Py= = -1 T
A 0 AD™Y Lg| |0 —Do | |0 L]

29

Influence of Regularization: q25fv47
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The regularization
-Q AT 4| B O
A 0 0 Ry’

changes the eigenvalues of the preconditioned
matrix:

HR:

without the regularization:
L' Qux

NP 1) =
( ) 2T Dz

with the regularization:

—2TQx +6

—a2TDx 4§’
where § =z Rpz +yTRyy > 0.

ANPRHR) =

For any «,f8,t > 0, the function h(t) = g—j_'i

is increasing if % <1, and decreasing if % > 1.

Hence:
if \(P~1H) < 1, then A(PR HRg) > \(P~1H).
if \(P~1H) > 1, then N(Py1HR) < A\(P~1H).

The use of regularization improves
the clustering of eigenvalues.
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HOPDM: Direct vs Iterative Methods

Problem Dimensions nonzeros(L)
nz(A) nz(Q) Direct AS-Prec NE-Prec
cvxgpl-m 1498 2984 75973 4739 4768
cvxqgpl_l 14998 29984 (3725045 71833 89241
cvxgp2-m 749 2984 51923 1031 315
cvxqp2_| 7499 29984 |2754141 10579 3379
cvxgp3_m | 2247 2984 90433 9527 14018
cvxqp3.| 22497 29984 4291057 149488 271780
QMR: Freund & Nachtigal (1991,1994).
QMR is asked for 103 accuracy.
500 MHz Pentium III PC, Linux, 256 MB.
Problem Direct AS-Prec NE-Prec
its time | its time | its time
cvxgpl-m 9 2.35 | 11 1.59 | 11 1.64
cvxqpl_l 11 1267.53 | 13 32.51 | 13 38.50
cvxgp2-m 9 1.27 | 10 1.01 | 10 1.06
cvxqp2_l 38 547,91 | 10 17.87 | 10 18.10
cvxgp3-m 9 3.40 | 11 1.94 | 11 2.37
cvxagp3._| 8 958.59 | 10 42.03 | 10 57.12
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QMR: Freund & Nachtigal (1991,1994).
QMR is asked for 10~3 accuracy.
500 MHz Pentium III PC, Linux, 256 MB.

GMRES: Saad & Schultz (1986).
BiCGSTAB: Van der Vorst (1992).
QMR: Freund & Nachtigal (1991,1994).

Problem AS-Prec NE-Prec All approaches iterate until 10~3 accuracy is
IPM ItSI Max Avr |[IPM ItSI Max Avr reached but perform no more than 20 iterations.
cvxgpl.m | 11 338 20 14| 11 338 20 14 o
cvxgpl._| 13 481 20 17| 13 487 20 17 All approaches use the AS preconditioner.
cvxgp2-m 10 307 20 13 10 307 20 13
cvxgp2_| 10 389 20 18| 10 389 20 18 . .
cvxgp3.m 11 303 20 13 11 206 20 12 500 MHz Pentium III PC, Linux, 256 MB.
i 10 41 2 1 1 4 2 1
cvxqp3 0 415 20 19| 10 374 20 17 Problem GMRES BICGSTAB QMR
IP ItSI time | IP ItSI time | IP ItSI time
NL iterations (QMR) in the last IPM iteration: cvxagpls [12 177 0.1 12 137 0.1] 9 189 0.1
cvxgpl-m | 11 307 1.3 |11 233 13|11 338 1.6
Problem AS-Prec NE-Prec cvxgpl_l 13 503 24.9 | 13 357 28.9 | 13 481 32.5
Predictor Corrector | Predictor Corrector cvxqgp2.s 27 217 0.1 |16 153 0.1 |10 235 0.1
cvxgpl_-m 11 11 11 11 cvxgp2.m | 16 270 0.9 (21 221 1.1 |10 307 1.0
cvxapl_| 16 12 14 12 cvxgp2_| 19 404 16.1 | 10 243 149 |10 389 18.1
cvxgp2_m 9 1 9 1 cvxgp3.s |11 162 0.1 |11 114 0.1 |11 181 0.1
cvxqgp2_l 18 16 18 16 cvxgp3_m | 11 306 1.6 |11 226 1.7 |11 303 1.9
cvxgp3_m 10 7 9 7 cvxgp3_| 10 375 28.8 | 10 272 32.5| 10 415 42.0
cvxqp3.l 20 14 15 13
33 34
Conclusions What’s to come in IPMs?
Direct Methods are reliable but Direct Methods:

occasionally excessively expensive.
e small improvements:

Iterative Methods are promising but: — reordering strategies

e are sometimes unpredictable: — implementation (cache, supernodes)

e need tuning; e exploiting structure in huge problems

(implicit inverse representations)
e depend upon preconditioners.

Iterative Methods:

An Augmented System offers more freedom o
e new preconditioners

e when used in the direct approach,

e when used to compute the preconditioners Challenge:

for the iterative approach.
PP Find an inverse representation with the number

Q AT

of nonzeros comparable to that of A0

Regularization is helpful.
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