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• Linear Algebra in IPMs

• LP, QP, NLP: Linear Algebra is the same

• Symmetric Systems:

{ Positive De�nite vs Inde�nite Systems

{ Quasi-de�nite Systems

{ Primal and Dual Regularization

• Unavoidable Ill-conditioning

{ IPM Scaling Matrices

{ Dikin's Bound

• Primal-Dual Regularized Factorization

• Exploiting Structure in IPMs
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Linear Algebra of IPM for LP

First order optimality conditions

Ax = b,

ATy+ s = c,

XSe = µe.

Newton's direction A 0 0

0 AT I
S 0 X


 �x
�y
�s

=
 ξpξd
ξµ

 ,
where  ξpξd

ξµ

=
 b−Ax
c−ATy − s
µe−XSe

 .
Use the third equation to eliminate

�s = X−1(ξµ − S�x)

= −X−1S�x+X−1ξµ,

from the second equation and get[
−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

where � = XS−1 is a diagonal scaling matrix.
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IPMs: LP, QP & NLP

Augmented system in LP[
−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(A�AT)�y = g.

Augmented system in QP[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(A(Q+�−1)−1AT)�y = g.

Augmented system in NLP[
Q(x, y) A(x)T

A(x) −ZY −1

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(AQ−1AT +�−1)�y = g.
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Two step solution method:

• factorization to LDLT form,

• backsolve to compute direction �y.

Two options are possible:

1. Replace diagonal matrix D with a block-

diagonal one and allow 2× 2 (inde�nite) pivots[
0 a
a 0

]
and

[
0 a
a d

]
.

Hence obtain a decomposition H = LDLT with

block-diagonal D.

2. Regularize inde�nite matrix to produce a

quaside�nite matrix

K =

[
−E AT

A F

]
,

where

E ∈ Rn×n is positive de�nite,

F ∈ Rm×m is positive de�nite, and

A ∈ Rm×n has full row rank.
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A symmetric matrix is called quaside�nite if

K =

[
−E AT

A F

]
,

where E ∈ Rn×n and

F ∈ Rm×m are positive de�nite, and

A ∈ Rm×n has full row rank.

Symmetric nonsingular matrix K is factorizable

if there exists a diagonal matrix D and a unit

lower triangular matrix L such that K = LDLT .

The symmetric matrix K is strongly factorizable

if for any permutation matrix P a factorization

PKPT = LDLT exists.

Vanderbei (1995) proved that

Symmetric QDFM's are strongly factorizable.

SIOPT 5 (1995) 100-113.

For any quaside�nite matrix

there exists a Cholesky-like factorization

�H = LDLT ,

where

D is diagonal but not positive de�nite:

has n negative pivots;

and m positive pivots. 6

From Inde�nite to Quaside�nite Matrix

Inde�nite matrix

H =

[
−Q−�−1 AT

A 0

]
.

Vanderbei SIOPT 5 (1995) 100-113.

Replace Ax= b with Ax+ s = b

HV =

 −�−1s 0 I

0 −Q−�−1 AT

I A 0


and eliminate �−1s

K =

[
−Q−�−1 AT

A �s

]
.

Saunders (1996) SIAM Adams & Nazareth (eds)

HS =

[
−Q−�−1 AT

A 0

]
+

[
−γ2In 0

0 δ2Im

]
,

where
γδ ≥

√
ε = 10−8.

Altman & Gondzio OMS 11-12 (99) 275-302.

Use dynamic regularization

�H =

[
−�−1 AT

A 0

]
+

[
−Rp 0
0 Rd

]
,

Rp ∈ Rn×n is a primal regularization

Rd ∈ Rm×m is a dual regularization.
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Primal Regularization

Primal barrier problem

min zP = cTx+1
2x

TQx−µ∑n
j=1(ln xj+ln sj)

s. to Ax= b,
x+ s = u,
x, s > 0

[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
f
h

]
.

Primal regularized barrier problem

min zP +
1

2
(x− x0)TRp(x− x0)

s. to Ax= b,

x+ s = u,

x, s > 0[
−Q−�−1 −Rp AT

A 0

] [
�x
�y

]
=

[
f ′

h

]
,

where

f ′ = f −Rp(x− x0).
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Dual barrier problem

max zD = bTy−uTw−12x
TQx+µ

n∑
j=1

(ln zj+lnwj)

s. to ATy+ z − w −Qx= c,
x ≥ 0, z, w > 0

[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
f
h

]
.

Dual regularized barrier problem

max zD −
1

2
(y − y0)TRd(y − y0)

s. to ATy+ z − w −Qx = c,

x ≥ 0, z, w > 0[
−Q−�−1 AT

A Rd

] [
�x
�y

]
=

[
f
h′

]
,

where

h′ = h−Rd(y − y0).
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Higher Order Primal Dual Method

Problem Dimensions LOQO HOPDM
m n nz(A) nz(Q) nz(L) nz(L)

nug12 3192 8856 44244 0 3091223 1969957
nug15 6330 22275 110700 0 - 7374972
cvxqp1 m 500 1000 1498 2984 71487 75973
cvxqp1 l 5000 10000 14998 29984 4056820 3725045
cvxqp2 m 250 1000 749 2984 52917 51923
cvxqp2 l 2500 10000 7499 29984 2923584 2754141
cvxqp3 m 750 1000 2247 2984 79957 90433
cvxqp3 l 7500 10000 22497 29984 4411197 4291057

200 MHz Pentium II PC, Linux.

Problem LOQO HOPDM
iters time iters time

nug12 24 4417.7 13 1140.3
nug15 - - 15 10276.6
cvxqp1 m 32 13.78 9 6.63
cvxqp1 l 72 18361.1 11 2874.4
cvxqp2 m 16 4.06 9 4.02
cvxqp2 l 25 3849.4 8 1353.7
cvxqp3 m 49 25.45 9 9.11
cvxqp3 l 100 27447.6 8 2461.2
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Ill-conditioning

Assume Normal Equations are used in LP and

the feasible IPM is used (ξp = 0 and ξd = 0)

(A�AT)�y = A�r,

where � = XS−1 and r = −X−1ξµ.

Optimal Partition:
Basic variables xB → x∗B > 0 sB → s∗B = 0

Non-basic variables xN → x∗N = 0 sN → s∗N > 0

For basic variables: �j = xj/sj →∞;
For non-basic variables: �j = xj/sj → 0.

Hence

A�AT =
∑
j∈B

θja.ja
T
.j +

∑
j∈N

θja.ja
T
.j →

∑
j∈B

θja.ja
T
.j.

The matrix H = A�AT usually has a huge condi-

tion number κ(H). Although κ(H)� 1/ε, where

ε is the relative precision of the computer (e.g.

ε = 10−16), IPMs do converge.
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Dikin's Bound

Theorem: (Dikin, 1974)

Upravlaemye Sistemy 12 (1974) pp 54-60.

Let A ∈ Rm×n be a full row rank matrix;

g be a vector of dimension n; and

D+ be the set of n× n diagonal positive de�nite
matrices.

Then

sup
D∈D+

‖(ADAT)−1ADg‖ = max
J∈J (A)

‖A−TJ gJ ‖

sup
D∈D+

‖(ADAT)−1AD‖ = max
J∈J (A)

‖A−TJ ‖

where J (A) is the set of column indices associ-

ated with nonsingular m×m submatrices of A.

Corollary:

The linear system arising in IPMs for LP

(A�AT)�y = A�r,

produces more accurate solutions than those one

could have expected from a \classical" worst-

case analysis.
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Forsgren and Sporre (2001) generalized Dikin's

result for a subclass of positive de�nite weight

matrices W . SIMAX 22 (2001) 42-56.

Lemma:

Let A ∈ Rm×n be a full row rank matrix;

g be a vector of dimension n; and
W+ be the set of n× n matrices de�ned as

W =
k∑
i=1

αiWi,

where αi > 0 and Wi = UiDiU
T
i with Ui bounded

and Di diagonal positive de�nite ∀i= 1, ..., k.
Then

sup
W∈W+

‖(AWAT)−1AWg‖

sup
W∈W+

‖(AWAT)−1AW‖

are bounded.

This Lemma extends Dikin's result to quadratic

and nonlinear optimization.

The Lemma does not hold for arbitrary positive

de�nite matrix W .
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Interior Point Methods:

• are well-suited to large-scale optimization

• can take advantage of the parallelism

Large problems are \structured":

• partial separability
• spatial distribution
• dynamics
• uncertainty
• etc.

Object-Oriented Parallel Solver (OOPS)

• Exploits structure
• Runs in parallel

• Solves problems with millions of variables

Andreas Grothey will talk about OOPS.

Gondzio & Sarkissian:

Math Prog 96 (2003) 561-584.

Gondzio & Grothey:

SIOPT 13 (2003) 842-864. 14

Tree Description of Block-Structures

Structured Matrix:
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Associated Tree:

A

D1 D2 D30 C31 C32

D D1211 D10 B B11 12 D D D D B B B21 22 23 20 21 22 23
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Reordered Augmented Matrix
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Cholesky factors sometimes get hopelessly dense.

QAP (Quadratic Assignment Problems) and

NUG problems (dual QAPs)

Prob Dimensions
rows columns nonzeros

qap12 3192 8856 38304
qap15 6330 22275 94950
nug12 3192 8856 38304
nug15 6330 22275 94950

Normal Equations:

Prob nz(AAt) nz(LLt) Flops

qap12 74592 2135388 2.378e+9
qap15 186075 8191638 1.792e+10
nug12 74592 2789960 4.014e+9
nug15 186075 11047639 3.240e+10

Augmented System:

Prob nz(A) nz(LLt) Flops

qap12 38304 1969957 2.046e+9
qap15 94950 7374972 1.522e+10
nug12 38304 1969957 2.046e+9
nug15 94950 7374972 1.522e+10 17

• Unavoidable Ill-conditioning:

{ benign in direct approach;

{ challenge for iterative approach.

• Positive De�nite vs Inde�nite Systems

• Preconditioners for Structured Matrices

• Preconditioners for Inde�nite System

{ Motivation

∗ Sparsity Issues
∗ Numerical Properties

{ Spectral Analysis

{ Inuence of Regularizations

• Conclusions

• What's to Come in IPMs
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Iterative Methods

Normal Equations or Augmented System:

• NE is positive de�nite:

can use conjugate gradients;

• AS is inde�nite:

can use BiCGSTAB, GMRES, QMR;

AS is generally more exible.

Oliveira (1997) PhD Thesis, Rice Univ.

Oliveira & Sorensen (1997) TR, Rice Univ.

→ It is better to precondition AS.

O, OS show that all preconditioners for the NE

have an equivalent for the AS while the opposite

is not true.

After all, NE is equivalent to a restricted order

of pivoting in AS.

19

Iterative Methods

Many attempts (LP, QP, NLP and PDE):

• Gill, Murray, Ponceleon, Saunders

SIMAX 13 (1992) 292-311.

• Luk�san & Vl�cek

NLAA 5 (1998) 219-247.

• Golub & Wathen

SISC 19 (1998) 530-539.

• Murphy, Golub & Wathen

SISC 21 (2000) 1969-1972.

• Keller, Gould & Wathen

SIMAX 21 (2000) 1300-1317.

• Perugia & Simoncini

NLAA 7 (2000) 585-616.

• Castro
SIOPT 10 (2000) 852-877.

• Gould, Hribal & Nocedal

SISC 23 (2001) 1376-1395.

• Durazzi & Ruggiero

NLAA (to appear).

• Rozlozn��k & Simoncini

SIMAX 24 (2002) 368-391. 20



Castro SIOPT 10 (2000) 852-877.
I I II- - -

A

A

A


Normal-equations matrix
A1A

T
1 A1B

T
1

A2A
T
2 A2B

T
2

. . . ...

AnATn AnBTn
B1A

T
1 B2A

T
2 · · · BnATn

∑n+1
i=1 BiB

T
i

=
[
E BT

B F

]
,

where E and F are positive de�nite.

E is easily invertible (block-diagonal).

The inverse of Schur complement matrix

F−BE−1BT can be written as the power series:

(F −BE−1BT )−1 =
∞∑
i=0

(F−1BE−1BT )iF−1.

Finite approximation of the series:

→ Very e�cient preconditioner.
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Murphy, Golub & Wathen

SISC 21 (2000) 1969-1972.

Consider a matrix

H =

[
Q AT

A 0

]
,

where

Q ∈ Rn×n is positive de�nite, and

A ∈ Rm×n has full row rank.

Consider the preconditioner which incorporates

an exact Schur complement AQ−1AT .
For example:

P1=

[
Q 0

0 AQ−1AT

]
or P2=

[
Q AT

0 AQ−1AT

]
.

The preconditioned matrices P−1H have only

two or three distinct eigenvalues.

MGW conclude:

\The approximations of the Schur complement

lead to preconditioners which can be very e�ec-

tive even though they are in no sense approxi-

mate inverses".
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CG with Inde�nite Preconditioner

Consider the inde�nite matrix

H =

[
Q AT

A 0

]
,

where

Q ∈ Rn×n is positive de�nite, and

A ∈ Rm×n has full row rank.

The CG method may fail when applied to an

inde�nite system.

Rozlozn��k & Simoncini

SIMAX 24 (2002) 368-391.

RS consider the preconditioner P which guaran-

tees that all eigenvalues of the preconditioned

matrix P−1H are positive and bounded away

from zero.

Although P−1H is inde�nite

• the CG can be applied to this problem,

• the asymptotic rate of convergence of CG

is approximately the same as that obtained

for a positive de�nite matrix with the same

eigenvalues as the original system.
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Inde�nite Block Preconditioner

Consider again the matrix

H =

[
Q AT

A 0

]
,

where

Q ∈ Rn×n is positive de�nite, and

A ∈ Rm×n has full row rank.

Consider a preconditioner of the form:

P =

[
D AT

A 0

]
,

where D ∈ Rn×n is positive de�nite.

Keller, Gould & Wathen

SIMAX 21 (2000) 1300-1317.

Theorem. Assume that A has rank m (m < n).

Then, P−1H has at least 2m unit eigenvalues,

and the other eigenvalues are positive and satisfy

λmin(D
−1Q) ≤ λ ≤ λmax(D

−1Q).

24



Proof: The preconditioned matrix (left) reads

P−1H =

[
D AT

A 0

]−1 [
Q AT

A 0

]
=

=

[
D−1−D−1ATM−1AD−1 D−1ATM−1

M−1AD−1 −M−1

][
Q AT

A 0

]

=

[
D−1Q−D−1ATM−1AU 0

M−1AU Im

]
=

[
X 0
Y Im

]
,

where M=AD−1AT, U=D−1Q− I.

P−1H has m linearly independent eigenvectors

associated with the eigenvalue λ=1 since for

wi∈Rm

P−1H

[
0
wi

]
=

[
0
wi

]
.

The remaining n eigenvectors are the same as

those of the matrix X = D−1Q−D−1ATM−1AU .

Matrix X has at least m other unit eigenvalues.

Indeed, for any x∈Rm we write

XTATx = (I + UT(I −ATM−1AD−1))ATx=
= ATx+ UT(ATx−ATx) = ATx.
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The remaining n−m eigenvalues and eigenvectors

of P−1H have to satisfy

Qx +ATy = λDx +λATy
Ax = λAx.

If λ 6= 1 the second equation yields Ax= 0.

Let us multiply the �rst equation by xT .

Recalling that xTAT = 0 we obtain

xTQx= λxTDx, ⇒ λ=
xTQx

xTDx
= q(D−1Q).

The last expression is the Rayleigh quotient of

the generalized eigenproblem Dv = µQv. Since

both D and Q are positive de�nite we have for

every x ∈ Rn

0 < λmin(D
−1Q) ≤ xTQx

xTDx
≤ λmax(D−1Q)

and �nally

λmin(D
−1Q) ≤ λ ≤ λmax(D−1Q).

Conclusion:

The preconditioner satis�es the requirements of

Rozlozn��k & Simoncini.
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How to choose D?

Bergamaschi, Gondzio & Zilli,

Preconditioning inde�nite systems in interior

point methods for optimization,

Tech. Rep. MS-02-02.

Augmented system in QP, NLP

H =

[
−Q−�−1 AT

A 0

]
.

Drop o�-diagonal elements from Q:

Replace

−Q−�−1

with

D = −diag(Q)−�−1.
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Preconditioners: Motivation

Sparsity issues: irreducible blocks in QP.

Consider the matrices

Q =


x x
x x

x
x

x

 and A =

 x x
x x

x x x
x x

 ,
giving

H =



x x x x
x x x x

x x x
x x

x x x
x x
x x

x x x
x x


.

If the elimination starts from h11 or h22, then

H =



x x x x f f
x x f f x x

x x x
x x

x x x
x f x
x f x
f x x x
f x x


.

Conclusion:

Drop o�-diagonal elements form Q. 28



D is a diagonal matrix

→ Free choice between NE and AS.

Preconditioner 1

Compute the Cholesky-like factorization.

P1 =

[
D AT

A 0

]
= L �DLT .

Preconditioner 2

Reduce the system to Normal Equations AD−1AT ,
compute the Cholesky factorization

AD−1AT = L0D0L
T
0 ,

and use:

P2=

[
D AT

A 0

]
=

[
I 0

AD−1 L0

] [
D 0
0 −D0

] [
I D−1AT

0 LT0

]
.
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The regularization

�HR =

[
−Q AT

A 0

]
+

[
−Rp 0
0 Rd

]
,

changes the eigenvalues of the preconditioned

matrix:

without the regularization:

λ(P−1H) =
xTQx

xTDx

with the regularization:

λ(P−1R HR) =
−xTQx+ δ

−xTDx+ δ
,

where δ = xTRp x+ yTRd y > 0.

For any α, β, t > 0, the function h(t) = α+t
β+t

is increasing if αβ ≤ 1, and decreasing if αβ > 1.

Hence:

if λ(P−1H) < 1, then λ(P−1R HR) > λ(P−1H).
if λ(P−1H) > 1, then λ(P−1R HR) < λ(P−1H).

The use of regularization improves

the clustering of eigenvalues.

30

Inuence of Regularization: q25fv47

0 10 20 30
iteration number

0.0

10.0

20.0

30.0

λ

m
a
x

λ

m
in

D−1Q
P−1R HR

0 10 20 30
iteration number

0

5

10

15

20

# 
of

 e
ig

ee
nv

al
ue

s 
ou

ts
id

e 
[0

.9
,1

.1
]

D−1Q
P−1R HR

31

HOPDM: Direct vs Iterative Methods

Problem Dimensions nonzeros(L)
nz(A) nz(Q) Direct AS-Prec NE-Prec

cvxqp1 m 1498 2984 75973 4739 4768
cvxqp1 l 14998 29984 3725045 71833 89241
cvxqp2 m 749 2984 51923 1031 315
cvxqp2 l 7499 29984 2754141 10579 3379
cvxqp3 m 2247 2984 90433 9527 14018
cvxqp3 l 22497 29984 4291057 149488 271780

QMR: Freund & Nachtigal (1991,1994).

QMR is asked for 10−3 accuracy.

500 MHz Pentium III PC, Linux, 256 MB.

Problem Direct AS-Prec NE-Prec
its time its time its time

cvxqp1 m 9 2.35 11 1.59 11 1.64
cvxqp1 l 11 1267.53 13 32.51 13 38.50
cvxqp2 m 9 1.27 10 1.01 10 1.06
cvxqp2 l 8 547.91 10 17.87 10 18.10
cvxqp3 m 9 3.40 11 1.94 11 2.37
cvxqp3 l 8 958.59 10 42.03 10 57.12
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QMR: Freund & Nachtigal (1991,1994).

QMR is asked for 10−3 accuracy.

500 MHz Pentium III PC, Linux, 256 MB.

Problem AS-Prec NE-Prec
IPM ItSl Max Avr IPM ItSl Max Avr

cvxqp1 m 11 338 20 14 11 338 20 14
cvxqp1 l 13 481 20 17 13 487 20 17
cvxqp2 m 10 307 20 13 10 307 20 13
cvxqp2 l 10 389 20 18 10 389 20 18
cvxqp3 m 11 303 20 13 11 296 20 12
cvxqp3 l 10 415 20 19 10 374 20 17

NL iterations (QMR) in the last IPM iteration:

Problem AS-Prec NE-Prec
Predictor Corrector Predictor Corrector

cvxqp1 m 11 11 11 11
cvxqp1 l 16 12 14 12
cvxqp2 m 9 1 9 1
cvxqp2 l 18 16 18 16
cvxqp3 m 10 7 9 7
cvxqp3 l 20 14 15 13

33

GMRES: Saad & Schultz (1986).

BiCGSTAB: Van der Vorst (1992).

QMR: Freund & Nachtigal (1991,1994).

All approaches iterate until 10−3 accuracy is

reached but perform no more than 20 iterations.

All approaches use the AS preconditioner.

500 MHz Pentium III PC, Linux, 256 MB.

Problem GMRES BiCGSTAB QMR
IP ItSl time IP ItSl time IP ItSl time

cvxqp1 s 12 177 0.1 12 137 0.1 9 189 0.1
cvxqp1 m 11 307 1.3 11 233 1.3 11 338 1.6
cvxqp1 l 13 503 24.9 13 357 28.9 13 481 32.5
cvxqp2 s 27 217 0.1 16 153 0.1 10 235 0.1
cvxqp2 m 16 270 0.9 21 221 1.1 10 307 1.0
cvxqp2 l 19 404 16.1 10 243 14.9 10 389 18.1
cvxqp3 s 11 162 0.1 11 114 0.1 11 181 0.1
cvxqp3 m 11 306 1.6 11 226 1.7 11 303 1.9
cvxqp3 l 10 375 28.8 10 272 32.5 10 415 42.0
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Conclusions

Direct Methods are reliable but

occasionally excessively expensive.

Iterative Methods are promising but:

• are sometimes unpredictable;

• need tuning;

• depend upon preconditioners.

An Augmented System o�ers more freedom

• when used in the direct approach,

• when used to compute the preconditioners

for the iterative approach.

Regularization is helpful.
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What's to come in IPMs?

Direct Methods:

• small improvements:

{ reordering strategies

{ implementation (cache, supernodes)

• exploiting structure in huge problems

(implicit inverse representations)

Iterative Methods:

• new preconditioners

Challenge:

Find an inverse representation with the number

of nonzeros comparable to that of

[
Q AT

A 0

]
.
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