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Primal-Dual Pair of Linear Programs

Primal Dual

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Lagrangian

L(x, y) = cTx− yT (Ax− b).

Optimality Conditions

Ax = b,

ATy + s = c,

XSe = 0, ( i.e., xj · sj = 0 ∀j),

x ≥ 0,

s ≥ 0,

where X = diag{x1, · · · , xn}, S = diag{s1, · · · , sn} and e = (1, 1, · · · , 1) ∈ Rn.
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Complementarity
Recall that the Simplex Method works with a partitioned formulation:

LP constraint matrix A = [B,N ], B is nonsingular

primal variables x = (xB, xN),

reduced costs s = (sB, sN).

The simplex method maintains the complementarity of primal and dual solution

xj · sj = 0 ∀j = 1, 2, ..., n.

For basic variables, sB = 0 and

(xB)j · (sB)j = 0 ∀j ∈ B.

For non-basic variables, xN = 0 hence

(xN)j · (sN)j = 0 ∀j ∈ N .
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What’s wrong with the Simplex Method?
A vertex is defined by a set of n equations:[

B N
0 In−m

] [
xB

xN

]
=

[
b
0

]
.

The linear program with m constraints and n variables (n ≥ m) has at most

NV =

(
n
m

)
=

n!

m!(n−m)!

vertices and the simplex method can make a non-polynomial number of iteration
to reach the optimality.

V. Klee and G. Minty’s example LP: simplex method needs 2n iterations.

How good is the simplex algorithm,
in: Inequalities-III, O. Shisha, ed., Academic Press, 1972, 159–175.
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First Order Optimality Conditions

Simplex Method: Interior Point Method:

Ax = b
ATy + s = c

XSe = 0
x, s ≥ 0.

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.

Basic: x > 0, s = 0 Nonbasic: x = 0, s > 0

x x

s s

"Basic": x > 0, s = 0 "Nonbasic": x = 0, s > 0

x x

s s

Theory: IPMs converge in O(
√

n) or O(n) iterations
Practice: IPMs converge in O(log n) iterations
... but one iteration may be expensive!
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Logarithmic barrier − lnxj
“replaces” the inequality xj ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n

j=1 ln xj ⇐⇒ max
n∏

j=1

xj

The minimization of −∑n
j=1 ln xj is equivalent to the maximization of the product

of distances from all hyperplanes defining the positive orthant: it prevents all xj

from approaching zero.
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Use Logarithmic Barrier

Primal Problem Dual Problem

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Primal Barrrier Problem Dual Barrrier Problem

min cTx−
n∑

j=1

ln xj max bTy +
n∑

j=1

ln sj

s.t. Ax = b, s.t. ATy + s = c,
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Primal Barrier Program: min cTx− µ
n∑

j=1

ln xj

s.t. Ax = b.

Lagrangian: L(x, y, µ) = cTx− yT (Ax− b)− µ

n∑
j=1

ln xj,

Stationarity: ∇xL(x, y, µ) = c− ATy − µX−1e = 0

Denote: s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

XSe = µe
(x, s) > 0.
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Central Trajectory

Parameter µ controls the distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTs = nµ.

Analytic center (µ-center): a (unique) point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the first order optimality conditions.

The path
{(x(µ), y(µ), s(µ)) : µ > 0}

is called the primal-dual central trajectory.
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Newton Method
The first order optimality conditions for the barrier problem form a large system
of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =


 Ax − b

ATy + s − c
XSe − µe


 .

Actually, the first two terms of it are linear; only the last one, corresponding to
the complementarity condition, is nonlinear.

For a given point (x, y, s) we find the Newton direction (∆x, ∆y, ∆s) by solving
the system of linear equations:

 A 0 0
0 AT I
S 0 X


 ·


 ∆x

∆y
∆s


 =


 b− Ax

c− ATy − s
µe−XSe


 .
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Follow the Central Path

Ax = b,
ATy + s = c,

XSe ≈ µe, i.e. ‖XSe− µe‖ ≤ θµ,

where θ ∈ (0, 1) and the barrier µ satisfies xTs = nµ.

2
θN  (   ) neighbourhoodof the central path
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Progress to optimality
Reduce the barrier: µk+1 = σµk, where σ = 1− β/

√
n for some β ∈ (0, 1).

Compute Newton direction:
 A 0 0

0 AT I
S 0 X


 ·


 ∆x

∆y
∆s


 =


 0

0
σµe−XSe


 ,

and make step.

At the new iterate (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk, ∆yk, ∆sk)
duality gap is reduced 1− β/

√
n times.

Note that since at one iteration duality gap is reduced 1 − β/
√

n times, aft
√

n iterations the reduction becomes:

(1− β/
√

n)
√

n ≈ e−β.

After C · √n iterations, the reduction is e−Cβ.
For sufficiently large constant C the duality gap becomes arbitrarily small.
Hence this algorithm has complexity O(

√
n).
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IPM for QP
min cTx + 1

2x
TQx → min cTx + 1

2x
TQx− µ

∑n
j=1 ln xj

s.t. Ax = b, s.t. Ax = b,
x ≥ 0.

The first order conditions (for the barrier problem)

Ax = b,

ATy + s−Qx = c,

XSe = µe.

Newton direction
 A 0 0
−Q AT I

S 0 X





 ∆x

∆y
∆s


 =


 ξp

ξd

ξµ


 =


 b− Ax

c− ATy − s+Qx
µe−XSe


 .

Augmented system[ −Q− Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
ξd −X−1ξµ

ξp

]
.
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IPM for NLP min f(x) → min f(x)− µ
m∑

i=1

ln zi

s.t. g(x) + z = 0 s.t. g(x) + z = 0,
z ≥ 0.

Lagrangian: L(x, y, z, µ) = f(x) + yT (g(x) + z)− µ
m∑

i=1

ln zi.

The first order conditions (for the barrier problem)

∇f(x) +∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.

Newton direction
 Q(x, y) A(x)T 0

A(x) 0 I
0 Z Y





∆x

∆y
∆z


 =


 −∇f(x)− A(x)Ty

−g(x)− z
µe− Y Ze


 .

Augmented system[
Q(x, y) A(x)T

A(x) −ZY −1

] [
∆x
∆y

]
=

[−∇f(x)−A(x)Ty
−g(x)−µY −1e

]
where

A(x) = ∇g
Q(x, y) = ∇2

xxL
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Self-concordant Barrier
Def: Let C ∈ Rn be an open nonempty convex set.

Let f : C 7→ R be a three times continuously differentiable convex function.

A function f is called self-concordant if there exists a constant p > 0 such tha

|∇3f (x)[h, h, h]| ≤ 2p−1/2(∇2f (x)[h, h])3/2,

∀x ∈ C, ∀h : x + h ∈ C. (We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by the quadrat
model because the error of such an approximation can be bounded by the 3/
power of ∇2f(x)[h, h].

Lemma The barrier function − log x is self-concordant on R+.
Proof: Compute: f

′
(x) = −x−1, f

′′
(x) = x−2 and f

′′′
(x) = −2x−3

and check that the self-concordance condition is satisfied for p = 1.

Use self-concordant barriers in optimization
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Linear Matrix Inequalities
Def. A matrix H ∈ Rn×n is positive semidefinite if xTHx ≥ 0 for any x 6= 0.
We write H � 0.
Def. A matrix H ∈ Rn×n is positive definite if xTHx > 0 for any x 6= 0.
We write H � 0.

We denote with SRn×n the set of symmetric positive semidefinite matrices.
We denote with SRn×n

+ the set of symmetric positive definite matrices.

Let U, V ∈ SRn×n.
Define the inner product between U and V as U • V = trace(UTV),
where trace(H) =

∑n
i=1 hii.

The associated Frobenius norm writes ‖U‖F = (U • U )1/2 (or just ‖U‖).
Def. Linear Matrix Inequalities
Let U, V ∈ SRn×n.
Write U � V iff U − V � 0 (write U � V iff U − V � 0).
Write U � V iff U − V � 0 (write U ≺ V iff U − V ≺ 0).
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Primal-Dual Pair of SDPs

Primal Dual

min C •X max bTy
s.t. Ai •X = bi, i = 1..m s.t.

∑m
i=1 yiAi + S = C,

X � 0; S � 0,

where Ai ∈ SRn×n, b ∈ Rm, C ∈ SRn×n are given;
and X, S ∈ SRn×n, y ∈ Rm are the variables.

SDP Example: stabilizing a differential equation
Let A(x)=A0+x1A1+. . .+xkAk, where Ai ∈ Rn×n and Ai = AT

i .
Choose x ∈ Rk to minimize the maximum eigenvalue of A(x).
Observe that λmax(A(x)) ≤ t if and only if tI − A(x) � 0.
So we get the SDP in the dual form:

max −t

s.t. tI − A(x) � 0,

where the variable is y := (t, x).
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Logarithmic Barrier Function for the cone SRn×n
+ of positive definite

matrices, f : SRn×n
+ 7→ R

f(X) =

{ − ln det X if X � 0
+∞ otherwise.

LP: Replace x ≥ 0 with −µ
∑n

j=1 ln xj.

SDP: Replace X � 0 with −µ
∑n

j=1 ln λj = −µ ln(
∏n

j=1 λj).

Nesterov and Nemirovskii, Interior Point Polynomial Algorithms in Con-
vex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

IPM for SDP min C •X → min C •X + µf(X)
s.t. AX = b s.t. AX = b

X � 0.

where AX = (Ai •X)mi=1 ∈ Rm and A∗y =
m∑

i=1

yiAi .
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IPM for SDP
Lagrangian: L(X, y, S) = C •X + µf(X)− yT (AX − b),

The first order conditions (for the barrier problem)

C + µf ′(X)−A∗y = 0.

Use f(X) = − ln det(X) and f ′(X) = −X−1.
Therefore the FOC become:

C + µX−1 −A∗y = 0.

Denote S = µX−1, i.e., XS = µI .
X is positive definite matrix hence its inverse is also positive definite.
The FOC now become:

AX = b,
A∗y + S = C,

XS = µI,

with X � 0 and S � 0.
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Optimality Conditions: Newton Direction:

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.


 A 0 0

0 AT I
S 0 X





 ∆x

∆y
∆s


 =


 ξp

ξd

ξµ


 .

Linear Algebra involves an (ill-conditioned) scaling matrix Θ = XS−1.

Augmented System vs Normal Equations

LP QP NLP

[
Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q+Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q(x, y) A(x)T

A(x) −ZY−1

][
∆x
∆y

]
=

[
f
d

]

(AΘAT )∆y=g (A(Q+Θ−1)−1AT )∆y=g (AQ−1AT +ZY −1)∆y=g
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Direct Methods: Symmetric LDLT Factorization

Indefinite Quasidefinite Positive Definite

H =

[
Q AT

A 0

]
H =

[
Q AT

A −R

]
H = AQ−1AT

2×2 pivots needed 1×1 pivots (any sign) 1×1 pivots (positive)
[

0 a
a 0

]
and

[
0 a
a d

]
strongly factorizable easy

Vanderbei, SIOPT (1995): Symmetric QDFM’s are strongly factorizable.
For any quasidefinite matrix there exists a Cholesky-like factorization

H̄ = LDLT,

where D is diagonal but not positive definite:
D has n negative pivots and m positive pivots.
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Minimum Degree Ordering

Sparse Matrix Pivot h11 Pivot h22

H =




x x x x
x x

x x x
x x x
x x x

x x x







p x x x
x x

x x f f x
x f x f x
x x f f x

x x x







x x x x
p x

x x x
x x x
x x x

x x x




Minimum degree ordering:
choose a diagonal element corresponding to a row with the min number of nonzeros.
Permute rows and columns of H accordingly.
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From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix Pivot Block H11 Pivot Block H22

H =










P






P




Object-Oriented Parallel Solver → problems of size 106, 107, 108,109, .
G. & Sarkissian, MP 96 (2003) 561-584.
G. & Grothey, SIOPT 13 (2003) 842-864.
G. & Grothey, AOR (to appear).

Talk of Andreas Grothey later today: “How to solve QPs with 109 variables
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Iterative Methods (with Indefinite Preconditioners)

LP QP NLP[
Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q+Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q(x, y) A(x)T

A(x) −ZY−1

][
∆x
∆y

]
=

[
f
d

]

It is important to keep Θ−1 in the preconditioner. Θ is ill-conditioned:

For “basic” variables: Θj = xj/sj →∞ Θ−1
j → 0;

For “non-basic” variables: Θj = xj/sj → 0 Θ−1
j →∞.

see my talk at SIAM Conference on Optimization, Stockholm, May 2005.

Optimization: KKT System PDE: Saddle Point Problem[
Q + Θ−1

1 AT

A −Θ2

] [
∆x
∆y

]
=

[
f
d

] [
H AT

A −C

] [
∆x
∆y

]
=

[
f
d

]

Benzi, Golub & Liesen, “Numerical Solution of Saddle Point Problems”,
Acta Numerica 2005 (to appear).
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Predictor-Corrector
Mehrotra, SIOPT 2 (1992) pp. 575-601.

Split the right hand side of the Newton direction:
 A 0 0

0 AT I
S 0 X





 ∆ x

∆ y
∆ s


 =


 b− Ax

c− ATy − s
µe−XSe


 =


 b− Ax

c− ATy − s
−XSe


 +


 0

0
µe




and compute two steps:

• put µ = 0 to compute the predictor ∆p,

• “guess” µ and compute the corrector ∆c.

Then combine two components:

∆ = ∆p + ∆c.

NA Conference, Dundee, June 2005 27

J. Gondzio Interior Point Methods

Mehrotra’s Predictor-Corrector

The third equation in Affine-Scaling Direction satisfies:

S∆x + X∆s = −XSe.

If a full step in this direction is made, then the new complementarity product is

X̄S̄e = (X + ∆X)T (S + ∆S)e

= XSe + (S∆x + X∆s) + ∆X∆Se

= XSe−XSe + ∆X∆Se

= ∆X∆Se.

Hence the second component of direction comes from:
 A 0 0

0 AT I
S 0 X





 ∆cx

∆cy
∆cs


 =


 0

0
µe−∆X∆Se


 .

C. Cartis → new insight into Mehrotra’s P-C method.
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Multiple Centrality Correctors
G. COAP 6 (1996) pp. 137–156.
Compute Newton’s direction

 A 0 0
0 AT I
S 0 X





∆x

∆y
∆s


 =


 b− Ax

c− ATy − s
−XSe


 +


 0

0
target


 .

combining it from two components:

∆ = ∆p + ∆c.

Assume that a predictor direction is given and feasible stepsizes αP and α
are determined.
We look for a centrality corrector such that larger steps will be made in a ne
composite direction ∆ = ∆p + ∆c.
We want to enlarge the stepsizes to

α̃P = min(αP +δ, 1) and α̃D = min(αD+δ, 1),

respectively.
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Multiple Centrality Correctors
Compute a trial point

x̃ = x + α̃P∆px,

s̃ = s + α̃D∆ps.

and the corresponding complementarity products

ṽ = X̃S̃e ∈ Rn.

Correct only the outliers:
move small products (x̃js̃j ≤ γminµ) to γminµ;
move large products (x̃js̃j ≥ γmaxµ) to γmaxµ.

Technique used by
BPMPD, Cplex, HOPDM, OOPS, OOQP, PCx, XPress.

New results obtained recently:
M. Colombo → significant computational improvements (talk later today
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Interpretation of Correctors

Mehrotra’s Predictor-Corrector Multiple Centrality Correctors

X k

C
T

µ−center

X k

C
T

µ−center

target

δ

NA Conference, Dundee, June 2005 31

J. Gondzio Interior Point Methods

Krylov Subspace Directions
Mehrotra and Li, SIOPT (2005) (to appear).

At iteration k set µ = 0 and solve
 A 0 0

0 AT I
Sk 0 Xk





 ∆ x

∆ y
∆ s


 =


 b− Axk

c− ATyk − sk

µe−XkSke


 =


 ξp

ξd

ξµ


 , i.e. Hk∆ = ξ.

Compute:

x̄ = xk + αP∆x
ȳ = yk + αD∆y
s̄ = sk + αD∆s

and ξ̄ =


 ξ̄p

ξ̄d

ξ̄µ


 =


 b− Ax̄

c− AT ȳ − s̄
µe− X̄S̄e


 .

At the trial point (x̄, ȳ, s̄) IPM would have to solve:
 A 0 0

0 AT I
S̄ 0 X̄





 ∆ x̄

∆ ȳ
∆ s̄


 =


 b− Ax̄

c− ATȳ − s̄
µe− X̄S̄e


 , i.e. H̄∆̄ = ξ̄.
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Define Krylov Subspace for H̄∆̄ = ξ̄. Precondition H̄ with Hk.

Kj(Hk, H̄, ξ̄ ) := span{ξH, GξH,G2ξH, . . . , GjξH},
where ξH = H−1

k ξ̄ and G = I −H−1
k H̄ .

Observe that[
A 0 0
0 AT I

]
H−1

k


 ξ̄p

ξ̄d

ξ̄µ


 =

[
ξ̄p

ξ̄d

]
and

[
A 0 0
0 AT I

]
GiH−1

k


 ξ̄p

ξ̄d

ξ̄µ


 =

[
0
0

]

Idea: Use the affine-scaling direction ∆aff ,
the first j directions from Kj(Hk, H̄, ξ̄ ) that is ∆0, ∆1, . . . , ∆j,
and the centering direction ∆cen

and combine them:

∆ = ∆aff +

j∑
i=0

ρi∆
i + ρcen∆cen.

Choose the scalars ρi and ρcen to satisfy the following objectives:

• reduce duality (complementarity) gap,

• produce well-centered point.
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Conclusions:

• Interior Point Methods are the key optimization technique.

• The theory of IPMs is well understood.

• IPMs demonstrate spectacular efficiency.

• Today IPMs can solve problems of dimension 109.

Numerical analysis keeps inspiring optimization field

A development of new preconditioners for IPMs is a challenge.
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A plea to:

David Griffiths and Alistair Watson

The community needs the Dundee NA Conference!
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Thank you for your attention!
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