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Gondzio Stochastic Nonlinear Programming

Outline

• Convexity

– convex sets, convex functions

– local optimum, global optimum

• Duality

– Lagrange duality

– Wolfe duality

– primal-dual pairs of LPs and QPs

• Nonlinear Stochastic Program with Recourse

• Interior Point Methods for Optimization

⇒ unified view of Linear, Quadratic and Nonlinear programming
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Gondzio Stochastic Nonlinear Programming

Consider the general optimization problem

min f(x)

s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm

are convex, twice differentiable.

Basic Assumptions:

f and g are convex
⇒ If there exists a local minimum then it is a global one.

f and g are twice differentiable
⇒ We can use the second order Taylor approximations of them.
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Gondzio Stochastic Nonlinear Programming

Convexity

Reading:

Bertsekas, D., Nonlinear Programming,
Athena Scientific, Massachusetts, 1995. ISBN 1-886529-14-0.
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Gondzio Stochastic Nonlinear Programming

Convexity is a key property in optimization.

Def. A set C ⊂ Rn is convex if λx + (1 − λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ [0, 1].

y

z

x

x

y

z

Convex set Nonconvex set

Def. Let C be a convex subset of Rn. A function f : C 7→ R is convex if
f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

x z y zx y

Convex function Nonconvex function
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Gondzio Stochastic Nonlinear Programming

Convexity and Optimization

Consider a problem

minimize f(x)

subject to x ∈ X,

where X is a set of feasible solutions
and f : X → R is an objective function.

Def. A vector x̂ is a local minimum of f if

∃ε > 0 such that f(x̂) ≤ f(x), ∀x | ‖x − x̂‖ < ε.

Def. A vector x̂ is a global minimum of f if

f(x̂) ≤ f(x), ∀x ∈ X.
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Gondzio Stochastic Nonlinear Programming

Lemma. If X is a convex set and f : X 7→ R is a convex function, then a local

minimum is a global minimum.

Proof.

Suppose that x is a local minimum, but not a global one. Then ∃y 6=x such that
f(y)<f(x).
From convexity of f , for all λ∈ [0, 1], we have

f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y)

< (1−λ)f(x)+λf(x) = f(x).

In particular, for a sufficiently small λ, the point z = (1−λ)x+λy lies in the
ε-neighbourhood of x and f(z) < f(x). This contradicts the assumption that x

is a local minimum.
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Gondzio Stochastic Nonlinear Programming

Useful properties

1. For any collection {Ci | i ∈ I} of convex sets, the intersection
⋂

i∈I Ci is convex.

2. If C is a convex set and f : C 7→ R is a convex function, the level sets
{x ∈ C | f(x) ≤ α} and {x ∈ C | f(x) < α} are convex for all scalars α.

3. Let C ∈ Rn be a convex set and f : C 7→ R be differentiable over C.
(a) The function f is convex if and only if

f(y) ≥ f(x) + ∇Tf(x)(y − x), ∀x, y ∈ C.

(b) If the inequality is strict for x 6= y, then f is strictly convex.

4. Let C ∈ Rn be a convex set and f : C 7→ R be twice continuously differentiable
over C.
(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex.
(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex.
(c) If f is convex, then ∇2f(x) is positive semidefinite for all x ∈ C.
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Gondzio Stochastic Nonlinear Programming

Lemma. If f : Rn 7→R and g : Rn 7→Rm are convex, then the following general
optimization problem

min f(x)

s.t. g(x) ≤ 0

is convex.
Proof. Since the objective function f is convex, we only need to prove that the
feasible set of the above problem

X = {x ∈ Rn : g(x) ≤ 0}
is convex. Define for i = 1, 2, ...,m

Xi = {x ∈ Rn : gi(x) ≤ 0}.
From Property 2, Xi is convex for all i.
We observe that

X = {x ∈ Rn : gi(x) ≤ 0, ∀i = 1..m} =
⋂

i

Xi.

i.e., X is an intersection of convex sets and from Property 1, X is a convex set.
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Duality

Reading:

Bertsekas, D., Nonlinear Programming,
Athena Scientific, Massachusetts, 1995. ISBN 1-886529-14-0.
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Gondzio Stochastic Nonlinear Programming

Consider a general optimization problem

min f(x)

s.t. g(x) ≤ 0, (1)

x ∈ X ⊆ Rn,

where f : Rn 7→ R and g : Rn 7→ Rm.
The set X is arbitrary; it may include, for example, an integrality constraint.

Let x̂ be an optimal solution of (1) and define

f̂ = f(x̂).

Introduce the Lagrange multiplier yi ≥ 0 for every inequality constraint gi(x) ≤ 0.
Define y = (y1, . . . , ym)T and the Lagrangian

L(x, y) = f(x) + yTg(x),

y are also called dual variables.
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Gondzio Stochastic Nonlinear Programming

Consider the problem

LD(y) = min
x

L(x, y) s.t. x ∈ X ⊆ Rn.

Its optimal solution x depends on y and so does the optimal objective LD(y).

Lemma. For any y ≥ 0, LD(y) is a lower bound on f̂ (the optimal solution of
(1)), i.e.,

f̂ ≥ LD(y) ∀y ≥ 0.

Proof.

f̂ = min {f(x) | g(x) ≤ 0, x ∈ X}
≥ min

{

f(x) + yTg(x) | g(x) ≤ 0, y ≥ 0, x ∈ X
}

≥ min
{

f(x) + yTg(x) | y ≥ 0, x ∈ X
}

= LD(y).

Corollary.

f̂ ≥ max
y≥0

LD(y), i.e., f̂ ≥ max
y≥0

min
x∈X

L(x, y).
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Gondzio Stochastic Nonlinear Programming

Lagrangian Duality
If ∃i gi(x) > 0, then

max
y≥0

L(x, y) = +∞

(we let the corresponding yi grow to +∞).
If ∀i gi(x) ≤ 0, then

max
y≥0

L(x, y) = f(x),

because ∀i yigi(x) ≤ 0 and the maximum is attained when

yigi(x) = 0, ∀i = 1, 2, ...,m.

Hence the problem (1) is equivalent to the following MinMax problem

min
x∈X

max
y≥0

L(x, y),

which could also be written as follows:

f̂ = min
x∈X

max
y≥0

L(x, y).
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Consider the following problem

min {f(x) | g(x) ≤ 0, x ∈ X} ,

where f , g and X are arbitrary.
With this problem we associate the Lagrangian

L(x, y) = f(x) + yTg(x),

y are dual variables (Lagrange multipliers).
The weak duality always holds:

min
x∈X

max
y≥0

L(x, y) ≥ max
y≥0

min
x∈X

L(x, y).

We have not made any assumption about functions f and g and set X .

If f and g are convex, X is convex and certain regularity conditions are satisfied,
then

min
x∈X

max
y≥0

L(x, y) = max
y≥0

min
x∈X

L(x, y).

This is called the strong duality.
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Duality and Convexity
The weak duality holds regardless of the form of functions f , g and set X :

min
x∈X

max
y≥0

L(x, y) ≥ max
y≥0

min
x∈X

L(x, y).

What do we need for the inequality in the weak duality to become an equation?
If

• X ⊆ Rn is convex;
• f and g are convex;
• optimal solution is finite;
• some mysterious regularity conditions hold,

then strong duality holds. That is

min
x∈X

max
y≥0

L(x, y) = max
y≥0

min
x∈X

L(x, y).

An example of regularity conditions:
∃x ∈ int(X) such that g(x) < 0.
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Gondzio Stochastic Nonlinear Programming

Lagrange duality does not need differentiability.
Suppose f and g are convex and differentiable. Suppose X is convex.
The dual function

LD(y) = min
x∈X

L(x, y).

requires minimization with respect to x.
Instead of minimization with respect to x,
we ask for a stationarity with respect to x:

∇xL(x, y) = 0.

Lagrange dual problem:

max
y≥0

LD(y)

(

i.e., max
y≥0

min
x∈X

L(x, y)

)

.

Wolfe dual problem:

max L(x, y)

s.t. ∇xL(x, y) = 0

y ≥ 0.
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Dual Linear Program

Consider a linear program

min cTx

s.t. Ax = b,

x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n.
We associate Lagrange multipliers y ∈ Rm and s ∈ Rn (s≥0) with the constraints
Ax = b and x ≥ 0, and write the Lagrangian

L(x, y, s) = cTx − yT (Ax − b) − sTx.

To determine the Lagrangian dual

LD(y, s) = min
x∈X

L(x, y, s)

we need stationarity with respect to x:

∇xL(x, y, s) = c − ATy − s = 0.
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Hence

LD(y, s) = cTx − yT (Ax − b) − sTx

= bTy + xT (c − ATy − s) = bTy.

and the dual LP has a form:

max bTy

s.t. ATy + s = c,

y free, s ≥ 0,

where y ∈ Rm and s ∈ Rn.

Primal Problem Dual Problem

min cTx max bTy

s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.
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Dual Quadratic Program

Consider a quadratic program

min cTx + 1

2
xTQ x

s.t. Ax = b,

x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q ∈ Rn×n.
We associate Lagrange multipliers y ∈ Rm and s ∈ Rn (s≥0) with the constraints
Ax = b and x ≥ 0, and write the Lagrangian

L(x, y, s) = cTx +
1

2
xTQx − yT (Ax−b) − sTx.

To determine the Lagrangian dual

LD(y, s) = min
x∈X

L(x, y, s)

we need stationarity with respect to x:

∇xL(x, y, s) = c + Qx − ATy − s = 0.
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Hence
LD(y, s) = cTx + 1

2
xTQ x − yT (Ax − b) − sTx

= bTy + xT (c + Qx − ATy − s) − 1

2
xTQx

= bTy − 1

2
xTQ x,

and the dual QP has the form:
max bTy − 1

2
xTQx

s.t. ATy + s − Qx = c,

x, s ≥ 0,

where y ∈ Rm and x, s ∈ Rn.

Primal Problem Dual Problem

min cTx + 1

2
xTQx max bTy − 1

2
xTQx

s.t. Ax = b, s.t. ATy + s − Qx = c,

x ≥ 0; s ≥ 0.
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General Stochastic Program with Recourse

Reading:

Kall P. and S.W. Wallace., Stochastic Programming,
John Wiley & Sons, Chichester 1994, UK.
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General Stochastic Program with Recourse

Consider a deterministic problem

minimize f(x)

subject to g(x) ≤ 0, x ∈ X,

where f : Rn 7→ R is an objective function, and
gi : Rn → R, i = 1...m are constraints.

Consider its stochastic analogue

“minimize” f(x, ξ)

subject to g(x, ξ) ≤ 0, x ∈ X,

where ξ is a random vector varying over a set Ξ ⊂ Rk,
f : Rn × Ξ 7→ R is an objective function,
and gi : Rn × Ξ → R, i = 1...m are constraints.
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Gondzio Stochastic Nonlinear Programming

Define

g+

i (x, ξ) =

{

0 if gi(x, ξ) ≤ 0,
gi(x, ξ) otherwise.

and a nonlinear recourse function

Q(x, ξ) = min{q(y)|ui(y) ≥ g+

i (x, ξ), i = 1..m, y ∈ Y ⊂ Rn̄},
where q : Rn̄ 7→ R and ui : Rn̄ 7→ R are given.

Replace original stochastic program by stochastic program with recourse

min
x∈X

Eξ̃{f(x, ξ̃) + Q(x, ξ̃)}.

Convexity of Recourse Problems
Lemma. If the functions q(.) and gi(., ξ), i = 1..m are convex and the functions
ui(.), i = 1..m are concave, then the nonlinear recourse function

Q(x, ξ) = min{q(y)|ui(y) ≥ g+

i (x, ξ), i = 1..m, y ∈ Y ⊂ Rn̄} (2)

is convex with respect to its first argument.
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Proof.

Let y1 and y2 be the optimal solutions of the recourse problems for x1 and x2,
respectively.
By the convexity of gi(., ξ) and the concavity of ui(.) we have for any λ ∈ [0, 1]:

gi(λx1 + (1 − λ)x2, ξ) ≤ λgi(x1, ξ) + (1 − λ)gi(x2, ξ)

≤ λui(y1) + (1 − λ)ui(y2)

≤ ui(λy1 + (1 − λ)y2).

Hence ȳ = λy1 + (1 − λ)y2 is feasible in (2) for x̄ = λx1 + (1 − λ)x2 and by
convexity of q(.)

Q(x̄, ξ) ≤ q(ȳ)

≤ λq(y1) + (1 − λ)q(y2)

≤ λQ(x1, ξ) + (1 − λ)Q(x2, ξ),

which completes the proof.
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Lemma. If f(., ξ) and Q(., ξ) are convex in x ∀ξ ∈ Ξ, and if X is a convex set,
then

min
x∈X

Eξ̃{f(x, ξ̃) + Q(x, ξ̃)}.
is a convex program.
Proof.

Take x, y ∈ X,λ ∈ [0, 1] and z = λx+(1−λ)y. From convexity of f(., ξ) and
Q(., ξ) with respect to their first argument, ∀ξ ∈ Ξ, we have:

f(z, ξ) ≤ λf(x, ξ) + (1 − λ)f(y, ξ)

and
Q(z, ξ) ≤ λQ(x, ξ) + (1 − λ)Q(y, ξ),

respectively.
Adding these inequalities, we obtain ∀ξ ∈ Ξ

f(z, ξ) + Q(z, ξ) ≤ λ[f(x, ξ) + Q(x, ξ)] + (1 − λ)[f(y, ξ) + Q(y, ξ)],

implying

Eξ̃ {f(z, ξ̃)+Q(z, ξ̃)}≤λEξ̃ {f(x, ξ̃)+Q(x, ξ̃)}+(1−λ)Eξ̃ {f(y, ξ̃)+Q(y, ξ̃)}.
Hence the objective in stochastic program with recourse is convex.
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Interior Point Methods

→ from LP via QP to NLP

Reading:

Wright S., Primal-Dual Interior-Point Methods, SIAM, 1997.
Nocedal J. & S. Wright, Numerical Optimization, Springer-Verlag, 1999.
Conn A., N. Gould & Ph. Toint, Trust-Region Methods, SIAM, 2000.
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Logarithmic barrier − lnxj

“replaces” the inequality xj ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n

j=1
ln xj ⇐⇒ max

n
∏

j=1

xj

The minimization of −∑n
j=1

ln xj is equivalent to the maximization of the product
of distances from all hyperplanes defining the positive orthant: it prevents all xj

from approaching zero.
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Use Logarithmic Barrier

Primal Problem Dual Problem

min cTx max bTy

s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Primal Barrier Problem Dual Barrier Problem

min cTx −
n
∑

j=1

ln xj max bTy +
n
∑

j=1

ln sj

s.t. Ax = b, s.t. ATy + s = c,
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Primal Barrier Problem: min cTx − µ
n
∑

j=1

ln xj

s.t. Ax = b.

Lagrangian: L(x, y, µ) = cTx − yT (Ax − b) − µ

n
∑

j=1

ln xj,

Stationarity: ∇xL(x, y, µ) = c − ATy − µX−1e = 0

Denote: s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,

ATy + s = c,

XSe = µe

(x, s) > 0.
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First Order Optimality Conditions

Simplex Method: Interior Point Method:

Ax = b

ATy + s = c

XSe = 0
x, s ≥ 0.

Ax = b

ATy + s = c

XSe = µe

x, s ≥ 0.

Basic: x > 0, s = 0 Nonbasic: x = 0, s > 0

x x

s s

"Basic": x > 0, s = 0 "Nonbasic": x = 0, s > 0

x x

s s

Theory: IPMs converge in O(
√

n) or O(n) iterations
Practice: IPMs converge in O(log n) iterations
... but one iteration may be expensive!
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Newton Method
We use Newton Method to find a stationary point of the barrier problem.

x

f(x)

xk xk+1 xk+2

f(x     )k+2

f(x     )k+1

f(x  )k

k

z

k kz-f(x  ) =    f(x  )(x-x  )

Find a root of a nonlinear equation

f(x) = 0.

A tangent line

z − f(xk) = ∇f(xk) · (x − xk)

is a local approximation of the graph
of the function f(x).
Substite z = 0 to get a new point

xk+1 = xk − (∇f(xk))−1f(xk).
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Newton Method
The first order optimality conditions for the barrier problem form a large system
of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =





Ax − b

ATy + s − c

XSe − µe



 .

Actually, the first two terms of it are linear; only the last one, corresponding to
the complementarity condition, is nonlinear.

For a given point (x, y, s) we find the Newton direction (∆x, ∆y, ∆s) by solving
the system of linear equations:





A 0 0
0 AT I

S 0 X



 ·





∆x

∆y

∆s



 =





b − Ax

c − ATy − s

µe − XSe



 .
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IPM for LP min cTx → min cTx − µ
∑n

j=1
ln xj

s.t. Ax = b, s.t. Ax = b,

x ≥ 0.

The first order conditions (for the barrier problem)

Ax = b,

ATy + s = c,

XSe = µe.

Newton direction




A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





ξp

ξd

ξµ



 =





b − Ax

c − ATy − s

µe − XSe



 .

Augmented system
[

−Θ−1 AT

A 0

] [

∆x

∆y

]

=

[

ξd − X−1ξµ

ξp

]

.
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IPM for QP
min cTx + 1

2
xTQ x → min cTx + 1

2
xTQ x − µ

∑n
j=1

ln xj

s.t. Ax = b, s.t. Ax = b,

x ≥ 0.

The first order conditions (for the barrier problem)

Ax = b,

ATy + s−Qx = c,

XSe = µe.

Newton direction




A 0 0
−Q AT I

S 0 X









∆x

∆y

∆s



 =





ξp

ξd

ξµ



 =





b − Ax

c − ATy − s+Qx

µe − XSe



 .

Augmented system
[

−Q − Θ−1 AT

A 0

] [

∆x

∆y

]

=

[

ξd − X−1ξµ

ξp

]

.
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IPM for NLP min f(x) → min f(x) − µ
m
∑

i=1

ln zi

s.t. g(x) + z = 0 s.t. g(x) + z = 0,
z ≥ 0.

Lagrangian: L(x, y, z, µ) = f(x) + yT (g(x) + z) − µ
m
∑

i=1

ln zi.

The first order conditions (for the barrier problem)

∇f(x) + ∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.

Newton direction




Q(x, y) A(x)T 0
A(x) 0 I

0 Z Y









∆x

∆y

∆z



 =





−∇f(x) − A(x)Ty
−g(x) − z

µe − Y Ze



 .

Augmented system
[

Q(x, y) A(x)T

A(x) −ZY −1

] [

∆x

∆y

]

=

[

−∇f(x)−A(x)Ty
−g(x)−µY −1e

]

where
A(x) = ∇g

Q(x, y) = ∇2
xxL
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Generic Interior-Point NLP Algorithm

Initialize
k = 0
(x0, y0, z0) such that y0 > 0 and z0 > 0, µ0 = 1

m
· (y0)Tz0

Repeat until optimality
k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
Compute A(x) and Q(x, y)
∆ = Newton direction towards µ-center

Ratio test:
α1 := max {α > 0 : y + α∆y ≥ 0}, α2 := max {α > 0 : z + α∆z ≥ 0}.
Choose the step: α ≤ min {α1, α2} (use trust region or line search)

Make step:
xk+1 = xk + α∆x,
yk+1 = yk + α∆y,
zk+1 = zk + α∆z.
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