
Hamiltonian Cycle Problem,

Markov Decision Processes

and Interior Point Methods

Jacek Gondzio

Dept. of Maths & Stats, Univ. of Edinburgh

Email: gondzio@maths.ed.ac.uk

URL: http://www.maths.ed.ac.uk/~gondzio

McMaster University, 24 May, 2002

In collaboration with:

Vladimir Ejov and Jerzy Filar

University of South Australia, Adelaide

1

• Hamiltonian Cycle Problem

• Unorthodox approach
{ Markov Decision Processes

{ inde�nite QPs

• Use IPMs to solve the problem

{ IPM for QP;

{ sparsity issues (separable QPs);

{ numerical issues (non-convex QPs);

• Test problems
{ Knight Tour Problem, k×k chessboard
{ Randomly generated problems

• What to do at a local minimum

{ Branching (implemented)

{ Decomposition (not implemented)

{ Cuts (not implemented)

• Conclusions

2

Hamiltonian Cycle Problem

Notation:

G = (V,E) is a directed graph with nodes V and

(directed) arcs E ⊂ {(i, j) : i ∈ V, j ∈ V, i 6= j}.
of nodes: m= |V |, # of arcs: n= |E|.
Let A(i) be a set of arcs emanating from node i.

The Hamiltonian Cycle Problem (HCP) consists

in �nding a cycle in a directed graph that enters

every node exactly once, or determine that no

such cycle exists.

In other words, we look for a cycle

(i1, i2), (i2, i3), . . . , (im−1, im), (im, i1)
such that (ik−1, ik) ∈ E and ik 6= il for k 6= l.

HCP is an NP-complete problem.

Suppose we additionally associate a cost cij of

traversing an arc (i, j). cij can be, for example,

a distance from node i to node j.

The Traveling Salesman Problem (TSP), known

to be very hard, consists in �nding an HCP of

the minimum cost.

3

From HCP via MDP to QP

Given an HCP,

embed the graph problem into an MDP,

perturb the MDP to make it unichain,

characterize unichain MDP via LP.

Solve a mixed integer LP:

either as an MIP,

or as a non-convex QP.

What to do in a local minimum?

Use a heuristic to reduce the graph.

4

A (�nite state) Markov chain is a system which

can be in a certain �nite number of states la-

beled V = {1,2, . . . ,m}. At time t = 1,2, . . ., it

moves from its current state i to a new state j.

The probabilities pij determine the moves:

pij = P (system moves from state i to state j),

independently of time.

We have pij ≥ 0, ∀i, j ∈ V and
∑
j pij = 1, ∀i ∈ V .

The transition probabilities are gathered in a

matrix

P =

p11 p12 . . . p1m
p21 p22 . . . p2m
...
pm1 pm2 . . . pmm

 ,
called the probability transition matrix of MC.

Lack of memory: Knowing P , the only informa-

tion we need to determine the probability of the

MC being in any given state after the next tran-

sition is its current state; history is irrelevant.

Example

P =

1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1

Sets of states C1 = {1} and C2 = {4} are closed

and irreducible. States v ∈ {2,3} are transient.
5

An MDP � is observed at discrete time points

t = 1,2, . . . Its state space is denoted by V =

{1,2, . . . ,m}. With each state i ∈ V a set of

actions A(i) is associated.
At time t the system is in state i and an action

a∈A(i) is chosen by a decision maker. This gains
reward ria and the process moves to a state j∈V
with the probability piaj≥0, where

∑m
j=1piaj=1.

A decision rule ft at time t is a function which

assigns a probability to the event that action a is
taken at time t. A policy f = (f1, f2, . . . , ft, . . .),

is a sequence of decision rules. A policy is called

stationary if all its decision rules are identical

and depend only on the current state. A policy

is called deterministic if it is stationary and has

nonrandomized decision rules.

Let γ=(γ1, . . . ,γm) be the initial distribution of

the states of �: γi = P(X1= i) and
∑m
i=1 = 1.

Given a stationary policy f , let

pij(f)=
∑

a∈A(i)
piajf(i, a).

Now the policy f de�nes a Markov chain with

the probability transition matrix

P(f) = [pij(f)]
m
i,j=1.

6

Long-run expected state-action frequency

For any stationary policy f , initial distribution γ,

j∈V and a∈A(j), de�ne

xTja(f) =
1

T

T∑
t=1

m∑
i=1

γiPf(Xt=j, Yt=a|X1= i).

We de�ne a vector xT(f) in a space of dimen-

sion
∑m
j=1 |A(j)|. Let X(f) denote the set of all

limit points of the vectors {xT(f)|T = 1,2, . . .}
as T → ∞. The limit x(f) is called the long-

run expected state-action frequency vector

induced by the policy f . Similarly, the long-run

expected frequencies of visits to any state j ∈ V
under the policy f are given by

xj(f) =
∑

a∈A(j)
xja(f).

The Markov Decision Process is called unichain

if for any deterministic policy f , the Markov

chain induced by P(f) has one ergodic set plus

a (possibly empty) set of transient states.

7

Unichain MDP and Linear Constraints

It is known that for a unichain MDP, the set

X = {x(f)|f is a stationary policy}
is fully characterized by the linear constraints∑

i∈V
∑
a∈A(i)(δij−piaj) xia=0, j ∈ V,∑

i∈V
∑
a∈A(i) xia = 1,

xia ≥ 0, i ∈ V, a ∈ A(i).
Let C(S) be the class of stationary strategies of

the unichain MDP. A map T : X 7→ C(S), where

T(x) = fx is de�ned as follows

fx(i, a) =

xia/xi if xi =

∑
a∈A(i) xia > 0,

1 if xi = 0 and a = a1,
0 if xi = 0 and a 6= a1,

where a1 is the �rst available action in a given

state according to some �xed ordering.

Another map: T̂ :C(S) 7→X, where T̂ (f)=x(f):

xia(f) = π∗i (f) f(i, a), i ∈ V, a ∈ A(i).
Here π∗i is the ith entry of the unique �xed pro-

bability vector (stationary distribution) of P(f).

Derman '70, Kallenberg '83, Filar and Krass '94:

Theorem: Let � be a unichain MDP.

If L(S) = {x(f)|f ∈ C(S)}, then X = L(S), and

the extreme points of X are those x for which

fx is a deterministic policy.

In general, for a deterministic policy f , x(f) is

not an extreme point of X.
8

A node of G is a state in MDP.

An arc of G is an action in MDP.

An HC in G is a deterministic policy in MDP.

Consider a 4-node complete graph

1 2

4 3

and a Hamiltonian cycle H={(1,2)(2,3)(3,4)(4,1)}.

The Hamiltonian cycle H induces a Markov chain

with the following transition matrix

A =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
This is an irreducible Markov chain, i.e., all its

states belong to one ergodic class.

9

Consider another Markov chain with the follow-

ing transition matrix

A =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,
that has two distinct ergodic classes.

Suppose we perturb the arc (3,4) and replace

it with two arcs (3,4) and (3,1). Similarly, we

replace the arc (4,3) with two arcs (4,3) and

(4,1). We thus allow to return from any node

to a home node 1.

We have two �ctitious arcs: (3,1) and (4,1).

The new transition matrix has the form

A=

0 1 0 0
1 0 0 0
ε 0 0 1− ε
ε 0 1− ε 0

 .
The Markov control problem changes now to a

perturbed one with the property that any Markov

chain induced by a stationary policy possesses a

single ergodic class and a (possibly empty) set

of transient states.

10

ε-perturbed Embedding

The embedding of the graph G in an MDP �

suggests the analysis to be carried out in the

space X of the long-run state-action frequen-

cies, the union of {x(f)} over all policies f .

Advantage: polyhedral characterization of X.

Note that the perturbation ensures that � is

unichain, if we assign an ε > 0 probability to

the \going home" arcs.

i

j

original

deterministic arc
i

j
1

1−εε

perturbed

stochastic arc

11

Perturbed MDP

An ε-perturbed MDP �(ε) is \close" to the orig-

inal one � (for a small ε) and it is unichain.

Filar and Krass 1994

de�ne a smaller polyhedron �X(ε) that satis�es

the following linear constraints:∑
i∈V

∑
a∈A(i)(δij−piaj(ε)) xia=0, j ∈ V,∑

i∈V
∑
a∈A(i) xia = 1,∑

a∈A(i) xia ≥ c(ε), j ∈ V,∑
j∈V x1j = c(ε),

xia ≥ 0, i ∈ V, a ∈ A(i),
where c(ε) is a given number.

Theorem: Hamiltonian cycles of a graph G are

in 1:1 correspondence with vectors x satisfying:

(i) x ∈ �X(ε)
(ii) xia/

∑
a∈A(i) xia ∈ {0,1}, i ∈ V, a ∈ A(i).

Further, if x is such a vector,

then fx is a Hamiltonian cycle of G.

12

1 2

4 3

The node-arc incidence matrix A ∈ R4×12 of this
graph has the form

A=

1 1 1 −1 0 0 −1 0 0 −1 0 0
−1 0 0 1 1 1 0 −1 0 0 −1 0
0 −1 0 0 −1 0 1 1 1 0 0 −1
0 0 −1 0 0 −1 0 0 −1 1 1 1

 .

The constraint matrix in the de�nition of the

polyhedron �X(ε) has for ε = 0.1 the form

A=

1 1 1 −1 −.1 −.1 −1 −.1 −.1 −1 −.1 −.1
−1 0 0 1 1 1 0 −.9 0 0 −.9 0
0 −1 0 0 −.9 0 1 1 1 0 0 −.9
0 0 −1 0 0 −.9 0 0 −.9 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0

.

13

De�ne s :=
∑
a∈A(i) xia and x̂ik = xik/s.

We wish x̂ik to be binary.

Find an HC in the graph, i.e., for a given node
i choose one of the outgoing arcs (i, k) ∈ A(i).

Two possibilities:

1. De�ne binary variables: x̂ik, k ∈ A(i).
x̂ik is equal to 1 i� arc (i, k) is chosen.
Choose one element from the set:∑

k∈A(i)
x̂ik = 1.

2. De�ne continuous variables: 0 ≤ x̂ik ≤ 1
for k ∈ A(i) and

min qi(x) = (
∑
k
x̂ik)

2 −∑
k
x̂2ik

s.t.
∑
k
x̂ik = 1.

Observe that

qi(x) =
∑
k 6=l

x̂ikx̂il ≥ 0

and it is equal to zero i� at most one of the

variables x̂ik is nonzero.

14

From LP to QP

QP problem

min cTx+ 1
2x

TQx

s.t. Ax= b,

x ≥ 0.

First order conditions (for barrier problem)

Ax = b,

ATy+ s−Qx = c,

XSe = µe.

Newton direction A 0 0

−Q AT I
S 0 X

 �x
�y
�s

 =
 ξpξd
ξµ

 ,
where

ξp = b−Ax,
ξd = c−ATy − s+Qx,
ξµ = µe−XSe.

Augmented system[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

Conclusion:

QP is a natural extension of LP.

15

IPMs: LP vs QP

Augmented system in LP[
−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

Eliminate �x from the �rst equation and get

normal equations

(A�AT)�y = g.

Augmented system in QP[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

Eliminate �x from the �rst equation and get

normal equations

(A(Q+�−1)−1AT)�y = g.

One can use normal equations in LP, but not

in QP. Normal equations in QP may become al-

most completely dense even for sparse matrices

A and Q. Thus, in QP, usually the inde�nite

augmented system form is used.

16

Example
1 1
1 2 1

1 2 1
1 2 1

1 2

−1

=

1
1 1

1 1
1 1

1 1

·

1 1

1 1
1 1

1 1
1

−1

=

1 −1 1 −1 1

1 −1 1 −1
1 −1 1

1 −1
1

·

1
−1 1
1 −1 1
−1 1 −1 1
1 −1 1 −1 1

=

5 −4 3 −2 1
−4 4 −3 2 −1
3 −3 3 −2 1
−2 2 −2 2 −1
1 −1 1 −1 1

 .

Conclusion:

the inverse of the sparse matrix may be dense.

IPMs for QP:

Do not explicitly invert the matrix Q+�−1

in the matrix A(Q+�−1)−1AT .
Use the augmented system instead.

17

Regarding the computations involved, a quadratic

program with diagonal matrix Q = D:

min cTx+ 1
2x

TDx

s.t. Ax= b,

x ≥ 0,

is as easy as a linear program.

Indeed, in this case, the Newton equation sys-

tem can be reduced to the following normal

equation system:

(A(D+�−1)−1AT)�y = g.

Since ~�−1 = D+�−1 is a diagonal matrix, this
system is not more di�cult to solve than a usual

system arising in LP:

(A�AT)�y = g.

Conclusion:

If you can formulate the QP as a separable

problem, then it's usually worth a try.

18

Sparsity Issues

We consider a \subproblem" for node i.

The function qi(x) can be rewritten as follows

qi(x) = (
∑
k

x̂ik)
2 −

∑
k

x̂2ik = xTQi x,

where

Qi =

1
1
...
1

 [1 1 · · · 1
]
−I =

0 1 · · · 1
1 0 · · · 1
...
1 1 · · · 0

 .
Regarding the computations, this is possibly a

very demanding form because Qi is a completely
dense matrix.

Let us introduce an additional variable

yi =
∑
k

x̂ik,

and rewrite the problem

min qi(x) = y2i −
∑
k x̂

2
ik

s.t.
∑
k x̂ik = yi,∑
k x̂ik = 1.

with a diagonal quadratic form.

It is a separable non-convex QP.

19

Quaside�nite Matrices

Symmetric matrix is called quaside�nite if

K =

[
−E AT

A F

]
,

where E ∈ Rn×n and
F ∈ Rm×m are positive de�nite, and

A ∈ Rm×n has full row rank.

Symmetric nonsingular matrix K is factorizable

if there exists a diagonal matrix D and a unit

lower triangular matrix L such that K = LDLT .

The symmetric matrix K is strongly factorizable

if for any permutation matrix P a factorization

PKPT = LDLT exists.

Vanderbei (1995) proved that

Symmetric QDFM's are strongly factorizable.

For any quaside�nite matrix

there exists a Cholesky-like factorization

�H = LDLT ,

where

D is diagonal but not positive de�nite:

n negative pivots;

m positive pivots. 20

Inde�nite matrix

H =

[
−Q−�−1 AT

A 0

]
.

Vanderbei (1995): replace Ax=b with Ax≤b

HV =

 −�−1s 0 I

0 −Q−�−1 AT

I A 0

and eliminate �−1s

K =

[
−Q−�−1 AT

A �s

]
.

Saunders (1996):

HS =

[
−Q−�−1 AT

A 0

]
+

[
−γ2In 0

0 δ2Im

]
,

where
γδ ≥

√
ε = 10−8.

A & G (1999): use dynamic regularization

�H =

[
−�−1 AT

A 0

]
+

[
−Rp 0
0 Rd

]
,

Rp ∈ Rn×n is a primal regularization

Rd ∈ Rm×m is a dual regularization. 21

Having introduced m additional variables

yi =
∑
k

x̂ik, i = 1,2, ...,m

we transform the block-diagonal quadratic form

diag(Q1, Q2, ..., Qm) to a diagonal one.

We deal with the quadratic program

min cTx+ 1
2x

TQx

s.t. Ax= b,

x ≥ 0,

in which Q is diagonal and inde�nite.

We solve it with HOPDM.

If we �nd a solution such that xTQx = 0, then

we get a Hamiltonian cycle.

In general, we cannot expect this to happen.

What can we learn from the local solution?

We have implemented a heuristic to eliminate

arcs that are not used by the ow x and a simple

branching strategy.

22

Heuristics

Suppose a local solution of the QP has been

found but xTQx 6= 0.

De�ne s =
∑
k∈A(i) xik and x̂ik = xik/s.

We would like to have only one arc outgoing the

node i, i.e., only one x̂ik > 0.

Arc Elimination

If x̂ik < δ, then remove arc (i, k).

Branching

If there is no arc that can be eliminated, then

choose a node i and branch on all outgoing arcs.

That is, consider |A(i)| new problems, each cor-

responding to a graph with only one of arcs from

A(i) left.

Depth-�rst search

If branching happens we analyse all |A(i)| chil-
dren nodes and continue with the one for which

the largest number of arcs can be eliminated.

23

Numerical Results

Knight Tour Problem

Given a k × k chessboard, �nd a tour of the

Knight to visit each square of the board exactly

once.

200 MHz Pentium III PC, Linux.

Problem Nodes Arcs time

chess6 36 160 1.25
chess8 64 336 3.35
chess10 100 576 29.77
chess12 144 880 33.58
chess14 196 1248 456.01
chess20 400 2736 1203.61
chess32 1024 7440 11 hrs

Solution for 6× 6 chessboard:

4 15 34 27 6 17

35 26 5 16 33 28

12 3 14 29 18 7

25 36 11 32 21 30

10 13 2 23 8 19

1 24 9 20 31 22

24

Randomly generated problems

200 MHz Pentium III PC, Linux.

Problem Nodes Arcs time

rand1 25 59 1.48
rand2 30 72 0.44
rand3 40 100 3.92
rand4 50 150 7.92
rand5 100 293 107.15
rand6 110 323 12.94
rand7 120 353 67.23
rand8 130 392 19.11
rand9 140 402 147.53
rand10 150 420 1267.07

The approach works well unless the tree grows

too large.

The largest trees reached 62 and 59 for chess-

board 32×32 and rand10 problems, respectively.

25

• Embedding HCP into MDP.

• Perturbed MDP → unichain MDP:

{ Polyhedral representation

{ Integer LP

{ Non-convex QP

• Heuristics needed:

{ Branching (implemented)

• Medium-scale problems solved

{ Knight Tour Problems

{ Randomly generated problems

• Further research:

{ Decomposition

{ Cuts

26

