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Two Parts:

• Decomposition with Interior Point Methods.

• Asset Liability Modeling.
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• Large strucured problems.

• Decomposition (Idea):

Replace the solution of the large problem

by the solution of the sequence of smaller

problems.

• Two- and Multi-stage SLPs.

• Benders Decomposition
(Multistage Stochastic Programs).

• Use IPMs in Decomposition:

{ feasibility reached before optimality;

{ control of the distance to optimality;

{ \central" prices;

{ reoptimization with µ-centers.

• Decomposition and Distributed Computing.

2

Stochastic LP with recourse

The two-stage stochastic program

min
x∈X

cTx + Eξ{qTy(ξ)}

s.t. T(ξ) x + Wy(ξ) = h(ξ),
x ≥ 0, y(ξ) ≥ 0, ∀ξ ∈ �.

Assume random data has a joint �nite discrete

distribution {(ξk, pk), k=1..N} with
∑
k pk = 1.

We have stochastic program with �xed recourse

min
x∈X

cTx +
N∑
k=1

pkq
T
k yk

s.t. T(ξk) x + Wyk = h(ξk), k = 1..N,

x ≥ 0, yk ≥ 0, k = 1..N.

The deterministic equivalent formulation

min
x∈X

cTx +p1q
T
1 y1 +p2q

T
2 y2 . . . +pNq

T
NyN

s.t. T1x +Wy1 =h1
T2x +Wy2 =h2
... . . . ...

TNx +WyN =hN
x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . yN ≥ 0.
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Multi-stage Stochastic Programming
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Period 1 Period 2 Period 3

Scenario 1

Scenario 2
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The structured constraint matrix


Symmetrical event tree with p realizations at

each node and T +1 periods corresponds to

pT

scenarios.
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Multistage stochastic linear program.

Reordered matrix of the multistage SLP.
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The deterministic equivalent formulation

min
x∈X

cTx +p1q
T
1 y1 +p2q

T
2 y2 . . . +pNq

T
NyN

s.t. Ax =b
T1x +Wy1 =h1
T2x +Wy2 =h2
... . . . ...
TNx +WyN =hN
x ≥ 0, y1 ≥ 0, y2 ≥ 0, . . . yN ≥ 0.

can be rewritten in the equivalent form

min{cTx+
N∑
j=1

Qj(x) | Ax= b, x ≥ 0}.

Qj(x), j = 1,2, . . . , N, is the optimal objective

function of the recourse problem

Qj(x) = min{pjqTj yj |Wyj = hj − Tjx, yj ≥ 0}.
The functionQj(x) is piecewise linear and convex.

There are two cases for a given x:

Case 1. The subproblem j is feasible. It then

has an optimal solution ŷj and Qj(x) < +∞.

Case 2. The subproblem j is infeasible. We then

set Qj(x) = +∞. 6

Subproblems in SLP answer with cuts

For a given �rst-stage decision x0, we get:

Primal Dual

min qTyj max (h−Tjx0)Tuj
s.t. Wyj = h−Tjx0, s.t. WTuj ≤ q,

yj ≥ 0; uj free.

Case 1.

The subproblem j is feasible. It then has an

optimal solution ŷj and Qj(x) <+∞.

Let ŷj be the primal optimal solution and ûj be

the dual optimal solution. Obviously

Qj(x0) = qT ŷj = (h− Tjx0)T ûj.
For any x we could write (using the dual):

Qj(x) = sup{(h− Tjx)Tuj |WTuj ≤ q}.

Thus for a given (feasible) uj = ûj we construct

the subgradient inequality for Qj(x):

Qj(x) ≥ (h− Tjx)T ûj, ∀x.
Using Qj(x0) = (h− Tjx0)T ûj we can rewrite it:

Qj(x) ≥ Qj(x0)− ûTj Tj(x− x0), ∀x.
This inequality is called the optimality cut.
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Subproblems in SLP answer with cuts

For a given �rst-stage decision x0, we get:

Primal Dual

min qTyj max (h−Tjx0)Tuj
s.t. Wyj = h−Tjx0, s.t. WTuj ≤ q,

yj ≥ 0; uj free.

Case 2.

The subproblem j is infeasible. We then set

Qj(x) = +∞.

Since the primal is infeasible the dual must be

unbounded. Let ~uj be its ray of unboundedness.

For any feasible �rst-stage variable x there exists

a feasible recourse action y such that

Wy = h− Tjx, y ≥ 0.

Scalar multiplication of this inequality with ~uj
(note that WT~uj ≤ 0) yields

~uTj (h− Tjx) = ~uTj Wy ≤ 0, ∀x,
or in an equivalent form:

~uTj Tjx ≥ ~uTj h, ∀x.
This inequality is called the feasibility cut.

8



Let us observe, that

�θ(x) = cTx+
N∑
j=1

Qj(x)

is an upper bound for the optimal solution of the

original problem. Note that it may take the +∞
value if at least one subproblem is infeasible.

The original problem can be replaced with the

so-called restricted master program:

min cTx + θ,

s.t. Ax = b, x ≥ 0,

θ ≥
N∑
j=1

zj,

zj≥Qj(xk)−(ûkj )TTj(x−xk), ∀j≤N, ∀k :Qj(xk)<∞,
0≥(~ukj )Thj−(~ukj )TTjx, ∀j≤N, ∀k :Qj(xk)=∞.

The optimal solution x̂ of this problem is a can-

didate for the next query point. The optimal

objective of this problem is a lower bound θ for

the optimal solution of the original problem.
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Subproblems are solved for several query points

{xk}k=1,2,...,κ. They produce cuts (either the

optimality or the feasibility ones).

These cuts are then appended to the master.

The master is solved producing x̂ and the opti-

mal objective θ. Its optimal solution x̂ becomes

a new query point xk+1 sent to subproblems.

The algorithm continues until

�θ(x)− θ ≤ ε.

Note that in every outer iteration of the de-

composition method, N subproblems have to be

solved. These subproblems are completely inde-

pendent (straightforward parallelization).

Subproblem j = 1,2, . . . , N depends on the �rst

stage variables x. The modi�cation of x changes

only its right-hand side

RHSj = hj − Tjxk,
so the re-optimization technique is useful.
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IPMs in Decomposition

Important features of IPMs:

• feasibility reached before optimality;

• easy control of the distance to optimality.

Where can we use them?

• Early termination in the master problem:

{ \central" prices;

{ degeneracy avoided.

• Early termination in the subproblems:

{ ε-subgradients.

What do we need?

• reoptimization (warm starting).

J. Gondzio,

Warm start of the primal-dual method applied

in the cutting plane scheme, Math Prog, 83

(1998), pp. 125{143.

J. Gondzio and J.-P. Vial,

Warm start and ε-subgradients in cutting plane

scheme for block-angular linear programs, Comp

Opt and Appl, 14 (1999), pp. 17{36.
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First Order Optimality Conditions

The �rst order optimality conditions (FOC)

Ax = b,

ATy+ z = c,

XZen = µen,

where X = diag{xj}, Z = diag{zj}
and en = (1, · · · ,1) ∈ Rn.

Analytic center (µ-center): a (unique) point

(x(µ), y(µ), z(µ)), x(µ) > 0, z(µ) > 0

that satis�es FOC.

Parameter µ in the analytic center controls the

distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTz = nµ.

Primal-dual algorithm terminates when the du-

ality gap drops below a predetermined relative

optimality tolerance ε, i.e. when

|cTx− bTy| ≤ ε(|cTx|+1).
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For a given �rst-stage decision x0, we get:

Primal Dual

min qTyj max (h−Tjx0)Tuj
s.t. Wyj = h−Tjx0, s.t. WTuj ≤ q,

yj ≥ 0; uj free.

Suppose the subproblem j is feasible. It then

has an optimal solution ŷj and Qj(x) < +∞.
Let ŷj be the primal feasible and ûj be the dual
feasible solution such that

|qT ŷj − (h− Tjx0)T ûj| ≤ ε,
hence

(h− Tjx0)T ûj ≤ Qj(x0) ≤ (h− Tjx0)T ûj + ε.

For any x we could write (using the dual):

Qj(x) = sup{(h− Tjx)Tuj |WTuj ≤ q}.

Thus for a given (feasible) uj = ûj we construct
the subgradient inequality for Qj(x):

Qj(x) ≥ (h− Tjx)T ûj, ∀x.
Using Qj(x0) ≤ (h− Tjx0)T ûj + ε we get:

Qj(x) ≥ Qj(x0)− ûTj Tj(x− x0)− ε, ∀x.
This inequality is called the ε-optimality cut.
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µ-centers

Let (x̂; ŷ, ẑ) be the exact µ-center

Ellipsoid in the dual space,

with the primal-dual scaling D̂2 = X̂Ẑ−1

Ê = {y ∈ Rm : ‖D̂AT(y − ŷ)‖ ≤ µ1/2}.
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Ellipsoid from approximate µ-center

Let (�x; �y, �z) be an approximation of µ-center

‖( �X�z/µ)− e‖ ≤ p ≤ 1.

The corresponding ellipsoid

�E = {y ∈ Rm : ‖ �DAT(y − �y)‖ ≤ µ1/2(1− p)1/2}.
�E approaches Ê as p goes to zero.

Let (~x; ~y, ~z) be another approx. of µ-center

βµ ≤ ~xj~sj ≤ (1/β)µ, β ∈ (0,1].

The corresponding ellipsoid

~E = {y ∈ Rm : ‖ ~DAT (y − ~y)‖ ≤ µ1/2β1/2}.
~E approaches Ê as β goes to 1.

Observation:

Ê, �E, ~E ⊂ D = {y ∈ Rm : ATy ≤ c}.
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Close to Optimality Analytic Center

• nearly-optimal
{ to optimize fast

• far from the boundary

{ to absorb larger perturbations

A point in the neighborhood of the central path:

‖Ax− b‖ ≤ εp(µ)(||b||+1),

‖ATy+ s− c‖ ≤ εd(µ)(||c||+1),

βµ ≤ xjsj ≤ 1
βµ, ∀i.
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Split solution method:

• �nd 1- (2- or 3-) digit optimal µ-center
and save it for future warm start;

• continue to get required 6- (8-) digit optimal
solution.

For a new (perturbed) problem:

• update µ-center for the new problem

(start from the earlier saved µ-center);

• get required 6- (8-) digit optimal solution.

Step 1: restore µ-center

• use multiple centrality correctors

Step 2: get optimal solution

• use standard primal-dual method
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• Asset liability modeling
{ risk management

{ multiple decision stages

{ curse of dimensionality

{ very large-scale optimization

• Numerical results
{ problem generation

{ storage management

{ distributed computing

• Conclusions
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Asset Liability Management

Assume we are given an initial capital W0, the

planning horizon T , and the goal wealth at the

end of the planning horizon WT .

At every period t = 0,1, . . . , T − 1, we:

• contribute Ct to the portfolio;

• pay liabilities Lt;

• rebalance the portfolio (buy/sell assets).

Financial Planning Problem:

Decide which assets to buy/sell at time t.

Cash balance at time t:

cash inow (t) = cash outow (t),

where:

inow: borrowing, assets sold and contributions;

outow: lending, assets bought, liabilities.
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Financial Planning Problem

Consider a multi-period �nancial planning prob-

lem. At every stage t = 0, ..., T−1 we can buy or

sell di�erent assets from the set J = {1, ..., J}
(e.g. bonds, stock, real estate), we can lend

the money to other parties or borrow it from

the bank.

The return of asset j at stage t is uncertain.

We have an initial sum S0 to invest and we want

to maximize the expected �nal wealth ST
(or to maximize its expected utility U(ST )).

Asset Liability Modeling

Suppose that at every stage t, we contribute a

certain amount of cash Ct to the portfolio and

we pay a certain liability Lt.

Such a �nancial planning problem is called the

asset liability management problem.

This problem is of crucial importance to

pension funds and insurance companies.

Note a dynamic aspect of decisions to be taken:

the portfolio is to be re-balanced at every stage.

Note a stochastic aspect of the problem:

the returns of assets are uncertain.
20



We model this problem using an event tree

2

1ξ

ξ (t,n)

(t-1,a(n))

(t,n-1)

and decision variables associated with its nodes

(t, n). We assume that applications a(t, n) and
s(t, n) which de�ne ancestor and son of node

(t, n), respectively are known.

With asset j ∈ J at node (t, n) we associate:

xj,t,n the position in asset j in node (t, n);

xbj,t,n the amount of asset j bought in (t, n);

xsj,t,n the amount of asset j sold in (t, n).

For any t : 1 ≤ t ≤ T , we write the inventory

equation for asset j at node (t, n)

xj,t,n=(1+rj,t,n) · xj,t−1,a(t,n)+ xbj,t,n − xsj,t,n,

where rj,t,n is a return of asset j corresponding
to moving from node (t−1, a(t, n)) to node (t, n)
in the event tree.

Initial inventory equation for asset j:

xj,0,1= xinitialj + xbj,0,1 − xsj,0,1.
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Let Pj be the initial price of asset j. We assume

that the transaction costs are proportional to

the value of asset bought or sold. To buy xbj,t,n
of asset j at stage t we have to pay

(1 + γb) · Pj · xbj,t,n.
Analogously, for selling xsj,t,n of asset j at stage

t we get
(1− γs) · Pj · xsj,t,n.

Let mt,n, m
b
t,n and ml

t,n be the cash hold, bor-

rowed and lent at time t at node n, respectively.

The borrowing and lending have return rates

rbt,n and rlt,n, respectively. For example, for the

money ml
t−1,a(t,n) lent at stage t− 1, we receive

back (1+rlt,n) ·ml
t−1,a(t,n) at stage t.

The cash balance equation states that the

cash inow is equal to the cash outow

Ct,n+m
b
t,n+(1+rlt,n)m

l
t−1,a(t,n)+

J∑
j=1

(1−γs)Pjxsj,t,n

=Lt,n+m
l
t,n+(1+rbt,n)m

b
t−1,a(t,n)+

J∑
j=1

(1+γb)Pjx
b
j,t,n

at any node (t, n), t = 1, ..., T , n = 1, ..., N(t).
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Special Cash Balance Equations

Initial cash balance

S0+C0,1+m
b
0,1+

J∑
j=1

(1−γs)Pjxsj,0,1

=L0,1+m
l
0,1+

J∑
j=1

(1+γb)Pjx
b
j,0,1

i.e., we assume that there was an initial portfolio

of assets, so we can also sell at stage t = 0.

Final cash balance

CT,n+mb
T,n+(1+rlT,n)m

l
T−1,a(T,n)+

J∑
j=1

(1−γs)Pjxsj,T,n

=ST+LT,n+ml
T,n+(1+rbT,n)m

b
T−1,a(T,n)+

J∑
j=1

(1+γb)Pjx
b
j,T,n

i.e., we assume that the �nal portfolio can in-

clude assets, so we can also buy at stage T .

These two constraints may be used for example

in asset liability management problem for a pen-

sion fund or an insurance company.

(Indeed, life does not end at time T .)
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Additional Constraints

Di�erent companies may de�ne particular policy

restrictions for asset mix. For example, the

weights of asset mix can be bounded:

wloj ·
J∑

j=1

xj,t,n ≤ xj,t,n ≤ wupj ·
J∑

j=1

xj,t,n, ∀j, t, n.

Also the contributions are bounded:

Clot,n ≤ Ct,n ≤ C
up
t,n, ∀t, n.

Total asset value at the end of period t,

At,n=
J∑

j=1

(1+rj,t,n)Pjxj,t−1,a(t,n)

+(1+rlt,n)m
l
t−1,a(t,n)−(1+r

b
t,n)m

b
t−1,a(t,n)

should not decrease below the minimum level of

funding ratio Fmin for liabilities at this period.

To get more exibility in modeling (to ensure

complete recourse), we allow a de�cit Zt,n:

At,n ≥ Fmin · Lt,n − Zt,n, ∀t, n,
for which we shall penalize in the objective.

The �nal value of assets at the end of the plan-

ning horizon should cover the �nal liabilities and

ensure the �nal wealth of at least ST , hence

AT,n ≥ Fend · LT,n+ ST,n, ∀n.
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In a simple �nancial planning problem we usually

maximize the expected value of the �nal port-

folio converted into cash.

In asset liability management problem we may

be more exible:

• we accept (small) de�cits, Zt,n;

• we can increase the contributions, Ct,n;

• we can borrow cash, mb
t,n, etc.

Suppose we:

• penalize for de�cits; and

• minimize contributions.

Hence we get the following objective

min
T−1∑
t=0

N(t)∑
n=1

πt,nCt,n+ λ
T∑
t=1

N(t)∑
n=1

πt,n
Zt,n

Lt,n
.
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Future is uncertain.

Multiple stage decision problem.

One way of modeling the dynamic asset liability

management problems is to apply the stochastic

programming approach.

Bradley and Crane (1972)

Kusy and Ziemba (1986)

Carino et al. (1994)

Mulvey and Vladimirou (1992)

Zenios (1995)

Consigli and Dempster (1998).

Uncertain asset returns

discrete approx. of conditional distributions

p realizations for the one-period asset returns.

Multiple stage decisions

T is the number of portfolio rebalancing dates.

Number of scenarios:

pT
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How to Decompose

Multi-stage stochastic programs are di�cult.

Nested structure requires nested decomposition.

But there are no convincing results that nested

Benders decomposition can solve large problems.

Our approach:

• assemble stages;

• use Benders decomposition
(for two-stage problems);

• use IPMs to solve (large) LPs.

From multi-stage to two-stage LP:

(a) (b) (c)
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ALM: Academic Example

Joint work with:

E. Fragni�ere, R. Sarkissian and J.-P. Vial

Logilab, University of Geneva, Switzerland.

Financial planning model inspired by

J. Birge and G. Infanger.

Toy model: The portfolio management prob-

lem with �ve decision variables per period (we

can invest in 4 securities and cash) and a single

budget constraint.

Prices of securities computed by a multivari-

ate log-normal random generator implemented

in MATLAB.

The model does not include transaction costs

so myopic policies would be su�cient to achieve

optimality, Hakansson (1971,1974).

There are up to 7 stages and up to 10 random

outcomes per period: one million scenarios.

Public domain model (added to GAMS library):

http://ecolu-info.unige.ch/~logilab/SetWeb/fragnier.gms
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Joint work with:

R. Kouwenberg

Erasmus Univ., Rotterdam, The Netherlands.

JG & RK:

High Performance Computing in Asset Liability

Management, Operations Research 49 (2001),

pp. 879{891.

Dutch pension fund

Boender (1997), Kouwenberg (1998).

Goal: provide the participants with a bene�t

payment equal to 70% of their �nal salary.

Participants and employers pay contributions to

the pension fund each year prior to retirement.

The pension fund decides how to invest these

payments; it has to ful�ll long term obligations

and to meet short term solvency requirements.

The model recommends an investment policy

and a contribution policy, given the economic

expectations and the preferences of pension fund.
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7-stage stochastic program generated with GAMS
modeling language. Up to 106 scenarios.

Problem Events Scen. Rows Columns

P6R9 3 36 1094 3279

P6R16 4 46 5462 15018

P6R25 5 56 19532 50781

P6R36 6 66 55988 139968

P6R49 7 76 137258 338339

P6R64 8 86 299594 711534

P6R81 9 96 597872 1395033

P6R100 10 106 1111112 2555556

Parallel decomposition. 10 Pentium Pro PCs,
200 MHz each, 64 MB RAM + 384 MB swap.

Problem Events SubProbs Procs Time [s]

P6R9 3 9 3 8
P6R16 4 16 4 20
P6R25 5 25 5 49
P6R36 6 36 6 100
P6R49 7 49 7 512
P6R64 8 64 8 1851
P6R81 9 81 9 6656
P6R100 10 100 10 10325
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Warm Start with HOPDM

Between subsequent outer iterations subprob-

lems di�er uniquely in the right-hand sides

RHSj = hj − Tjxk.

Use re-optimization technique.

Subproblem Sizes IPM Iters

Problem Rows Cols Nonz. Avr. Last

P6R16 346 2000 4884 7 5
P6R25 786 4418 11115 6 4
P6R36 1560 8602 22054 9 5
P6R49 2806 15260 39639 13 7
P6R64 4686 25220 66144 12 8
P6R81 7386 39430 104179 15 8
P6R100 11116 58958 156690 17 10

Violent changes of RHS occur if xk and xk+1

di�er signi�cantly (in early iterations of decom-

position).

When xk converges to optimum, changes of RHS

are smaller and re-optimization is easier.
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E�ciency of LEQGEN

p pT Rows Columns Non-zeros

4 46 17,741 35,484 92,800
5 56 58,586 117,174 304,648
6 66 158,623 317,248 821,108
7 76 372,548 745,098 1,921,564
8 86 786,425 1,572,852 4,044,472
9 96 1,527,886 3,055,774 7,838,720
10 106 2,777,771 5,555,544 14,222,188
11 116 4,783,208 9,566,418 24,447,508
12 126 7,872,133 15,744,268 40,175,024
13 136 12,469,250 24,938,502 63,552,952

p pT Det. Equiv. SubProb. SubProb.
at time 2 at time 3

4 46 20.30 Mb 1.28 Mb 0.33 Mb
5 56 66.93 Mb 2.69 Mb 0.55 Mb
6 66 180.96 Mb 5.04 Mb 0.85 Mb
7 76 424.55 Mb 8.67 Mb 1.25 Mb
8 86 895.42 Mb 14.00 Mb 1.77 Mb
9 96 1738.39 Mb 21.47 Mb 2.40 Mb
10 106 3158.56 Mb 31.59 Mb 3.18 Mb
11 116 5436.10 Mb 44.94 Mb 4.10 Mb
12 126 8942.67 Mb 62.11 Mb 5.19 Mb
13 136 14159.45 Mb 83.79 Mb 6.46 Mb
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p SubPr Par. Outer Decomp. LEQGEN
jobs iters CPU time CPU time

SubPbs stored, split between 2 and 3.

4 16 4 11 62 3
5 25 5 9 203 4
6 36 6 9 393 7
7 49 7 10 1194 13
≥8 64 8 NA NA NA

SubPbs regenerated, split between 2 and 3.

4 16 4 11 68 32
5 25 5 9 219 37
6 36 6 9 422 64
7 49 7 10 1166 128
8 64 8 10 2329 221
9 81 9 9 4261 339
10 100 10 10 9644 572
11 121 11 10 16102 1213
≥12 144 12 NA NA NA

SubPbs regenerated, split between 3 and 4.

4 64 4 11 78 56
5 125 5 11 235 114
6 216 6 10 380 182
7 343 7 10 767 277
8 512 8 10 1438 408
9 729 9 10 2612 614
10 1000 10 11 4876 988
11 1331 11 9 6296 1311
12 1728 12 9 10256 2071
13 2197 13 8 14138 2294

Parsytec CC16 Parallel Machine.

Problem with 6 trading dates and 6 realizations

at each node of the event tree.

66 = 46,656 scenarios:

m = 158,623, n = 317,248, nonz = 821,108.

Procs CPU time Speed-ups w.r.t.
1 Proc 4 Procs

1 2810 1 -
2 1384 2.03 -
3 880 3.19 -
4 570 4.93 4
5 497 5.65 4.59
6 396 7.10 5.76
7 370 7.59 6.16
8 320 8.78 7.13
9 264 10.64 8.64
10 260 10.81 8.77
11 257 10.93 8.87
12 205 13.71 11.12

Imperfect speed-ups on 5,7,8,10 or 11 procs.
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Conclusions

• Dynamic asset liability management:
uncertainty of the asset returns;

dynamic structure of portfolio rebalancing

dates.

• Very large stochastic LPs need:
reliable optimization;

fast model generation;

high-performance computing.

• Very large LP:
12,5× 106 rows and 25× 106 columns

solved in about 5 hours.
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