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Two Parts:

e Interior Point Methods (IPMs) for

Linear, Quadratic and Nonlinear Programs.

e Numerical Techniques in IPMs.

The Simplex Method

Consider an LP

min Iy
subject to Ax =0,
x>0,

where ¢,z € R", b€ R™, A € R™M*"™,
Matrix A has full row rank, m (m < n).

Partition the LP constraint matrix as A = [B, N],
where B € R™*™ is a nonsingular matrix and
N € Rmx(n—m)

A vertex in R"™ is defined by a set of n equations:
B N rpB _ b
0 In—m TN - 0

Non-basic variables fixed on zero xj = 0.
Basic variables, g allowed to be non-zero.

There are

(m) :m!(n—m)!
bases.

This is a huge number!

e What's wrong with the simplex method?
e Stay in the interior: use logarithmic barriers.

e Proceed against the common sense:
use nonlinear methodology to solve linear
problems.

e Polynomial complexity:
O(4/n) iterations to reach the optimality.

e Unified view of convex optimization:
from LP via QP to NLP.

What’s wrong with the Simplex Method?

The simplex method can make a non-polynomial
number of iterations to reach the optimality:

V. Klee and G. Minty gave an example LP the
solution of which needs 2" iterations:

How good is the simplex algorithm, in Inequalities-
III, O. Shisha, ed., Acad. Press, 1972, 159-175.

Narendra Karmarkar from AT&T Bell Labs:

“the simplex [method] is complex”

N. Karmarkar:
A New Polynomial—time Algorithm for Linear
Programming, Combinatorica 4 (1984) 373—395.

What do we need
to derive the Interior Point Method?
e logarithmic barriers.

e duality theory:
Lagrangian function;
first order optimality conditions.

e Newton method.



Consider the primal linear program

min L'z
s.t. Az = b, (1)
x>0,
and the dual linear program
max bly
s.t. ATy + 5 = ¢ (2)

y free, s >0,
where b,y € R™, c,z,s € R" and A €¢ R™M*™,

Let P, D be the feasible sets of (1) and (2)
P={xecR"| Az =b, x > 0},
D={yeR™scR"|Aly+s=rc, s> 0}.

Let us introduce the convention that

lQ;CTx = +o0, If P =0; SUPyep by = —oo, if D=10.

Weak Duality Theorem

inf ¢’z > sup bTy.

Strong Duality Theorem
If either P = 0 or D # () then

inf Loz = sup bTy.

If one of problems (1) and (2) is solvable then
min ¢’z = max bTy.
rEP yeD 5

Log barriers keep the point in the interior

The following logarithmic barrier

—1In :L‘j
added to the objective in the optimization prob-
lem prevents variable z; from approaching zero.

-Inx

X
1\
In other words, the logarithmic barrier can be

used to ‘“replace” the inequality
:L'j Z 0.

Observe that
n n
min e~ 2=1""% .  max II =
j=1
The minimization of —Z?lenxj is equivalent
to the maximization of the product of distances
from all hyperplanes defining the positive or-

thant: it prevents all zj from approaching zero.
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Consider the primal-dual pair:

Primal Dual
min  l'z max bly
s.t. Ax = b, s.t. ATy+s = ¢,
x>0; s>0.
Lagrangian
L(z,y) = clo—yl(Az —b).
Optimality Conditions in LP
Ax = b,
ATy+s = e
XSe = 0,
z,s > 0,

where X = diag{z1,---,zn}, S = diag{s1, -, sn}
and e = (1,1,---,1) € R™.

Notation:

1

. xro
X = dZ(Lg{.Tl, Ty ;mn} =
Tn

X1= diag{xfl,xgl, g 3
An equation X Se = pue,
is equivalent to zjsj=p, Vj=1,2,---,n.

First Order Optimality Conditions: LP

Replace the primal LP

min Iy
s.t. Ax = b,
x>0,

with the primal barrier program
n
min Lz — 3 In xj
Jj=1
s.t. Ax =b,
where p > 0 is a barrier parameter.

Write out the Lagrangian
n
L(z,y,p) =cla —yT(Az —b) —p 3 Inz;,
Jj=1

and the conditions for a stationary point

Vel(z,y,p) = c—Aly—pux—le = 0
VyL(xyy,H) = Az —b = oa
where X1 = diag{acfl,xgl, g
Let us denote
s = ,uX_le, i.e. X Se = pe.
The First Order Optimality Conditions are:
Ax = b,
Aly+s = ¢
XSe = pe. s



Note that the first order optimality conditions
for the barrier problem

Ax = b,
Aly+s = ¢
XSe = pe,

approximate the first order optimality conditions
for the linear program

Ax = b,
Aly+s = ¢,
XSe = 0,

more and more closely as p approaches zero.

Parameter p controls the distance to optimality.

Tr—bTy=clo—aTATy = 2T (c— ATy) = 27s = np.

Analytic center (u-center): a (unique) point

(z(p),y(n), s(n)), () >0, s(u) >0
that satisfies FOC.

The path
{C@(u),y(u), s(u)) - p > 0}

is called the primal-dual central trajectory.
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Apply Newton Method to the FOC

The first order optimality conditions for the bar-
rier problem form a large system of nonlinear
equations

F(z,y,s) =0,
where F : R2ntm , R2ntm s an application
defined as follows:

Ax — b
F(xayas): ATy+s — C
XSe — pe

Actually, the first two terms of it are linear; only
the last one, corresponding to the complemen-
tarity condition, is nonlinear.

Note that
A 0 O
VF(z,y,s) = | 0 AT T
S 0 X

Thus, for a given point (z,y, s) we find the New-
ton direction (Az, Ay, As) by solving the system
of linear equations:

A O O Az b— Ax
0 AT 1 | Ay |=|c—ATy—s
S 0 X As ue — X Se
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We use Newton Method to find a stationary
point of the barrier problem.

Recall how to use Newton Method to find a root
of a nonlinear equation

f(z)=0.
A tangent line
z— f(a*) = VfEF) - (2 - 2)

is a local approximation of the graph of the func-
tion f(x). Substituting z = 0 gives a new point

ahtl = ok — (VfR) L (h).

g (x)
z—f(xk) = Vf(xk)(x-xk)
f(x*)
f(xX") \
f(x*?) N «
Xk Xk+l )}<+2
10

Interior-Point Framework

We have already gathered all the necessary
elements to derive an interior point method.

The logarithmic barrier

—1In a:J
added to the objective in the optimization prob-
lem prevents variable z; from approaching zero
and “replaces” the inequality

SL’j Z 0.

We derive the first order optimality conditions
for the primal barrier problem:

Ax = b,
Aly+s = ¢
XSe = pe,

and apply Newton method to solve this system
of nonlinear equations.

Actually, we fix the barrier parameter u and make
only one (dumped) Newton step towards the
solution of FOC. We do not solve the current
FOC exactly. Instead, we immediately reduce
the barrier parameter p (to ensure progress to-
wards optimality) and repeat the process.

12



Assume a primal-dual strictly feasible solution
(z,y,8) € FO lying in a neighbourhood of the
central path is given; namely (z,y, s) satisfies:

Ax = b,
ATy4+s = ¢
XSe =~ pue.

We define a 6-neighbourhood of the central
path No(6), a set of primal-dual strictly feasible
solutions (z,y,s) € FO that satisfy:
IXSe — pe|| < Op,
where 6 € (0,1) and the barrier p satisfies:
2l's = nuy.

Hence Na(8) = {(z,y, ) € FO| | X Se— pe|| < Ou}.

13
N 2(e ) neighbourhood of the central path

How to prove O(4/n) complexity result?

We can prove the following:

e a full step in Newton direction is feasible;

e the new iterate
(aPTL ML ML) = (aF yk M)Ak, AyF, AsP)
belongs to a 8-neighbourhood of the new
p-center (with pbtl = opk);

e the duality gap is reduced 1 — 3/y/n times.

Note that since at one iteration the duality gap
is reduced 1 — 3/4/n times, after /n iterations
the reduction achieves:

(1 - /v~ e,

After C - \/n iterations, the reduction is e~ ¢P.
For a sufficiently large constant C the reduction
can thus be arbitrarily large (i.e. the duality gap
can become arbitrarily small).

Hence this algorithm has complexity O(y/n).
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Assume a primal-dual strictly feasible solution
(z,v,s8) € No(8) for some 6 € (0,1) is given.

The interior point algorithm tries to move from
this point to another one that also belongs to a
0-neighbourhood of the central path but corre-
sponds to a smaller u. The required reduction
of w is small:

pFtt = opF,

where
c=1- /8/\/57
for some 3 € (0,1).

Given a new p-center, the interior point algo-
rithm computes the Newton direction:

A O O Az 0
0 AT 1 || Ay | = 0 )
S 0 X As ope — X Se

and makes a step in this direction.

The magic numbers (will be explained later)
are:

6 =0.1 and [g=0.1.
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Linear Algebra of IPM for LP

First order optimality conditions:

Ax = b,
ATy+s = ¢
XSe = pe.
Newton direction:
A 0 O Az &p
0o AT Ay | =1 & |,
S 0 X As Eu
where
&p b— Ax
§g | =|c—Aly—s
&u pne — X Se

Use the third equation to eliminate
As = XN, - SAx)
= —X"1saz+ x"1¢,
from the second equation and get

—ol AT || Az | _ | & — X",
A 0 Ay | &p ’

where © = XS~ 1 is a diagonal scaling matrix.
16




Consider the convex quadratic programming
problem
min clz + %xTQx
s.t. Ax = b,
x>0,

where Q € R™*" is positive semidefinite matrix.

Apply the usual procedure:
e replace inequalities with log barriers;
e form the Lagrangian;
e write the first order optimality conditions;

e apply Newton method to them.

Replace the primal QP
min 'z + %:L‘TQJB
s.t. Ax = b,
xz > 0,
with the primal barrier QP
min Iz + %ZL‘TQJE — 'il Inz;
=

s.t. Az =b.
17

Convex Nonlinear Optimization

Consider the nonlinear optimization problem
min  f(x)
s.t. g(z) <0,
where x € R™, and f: R"— R and g: R" — R™
are convex, twice differentiable.

The vector-valued function g : R™ — R™ has a
derivative A(x) € R™*"

dg;

Al) = Vg(a) = |2
J

:|i=1“m,j=1..n

which is called the Jacobian of g.

The Lagrangian associated with the NLP is:
L(z,y) = f(z) +y g(z),

where y € R™,y > 0 are Lagrange multipliers

(dual variables).

The first derivatives of the Lagrangian:

Vel(z,y) = Vf(z)+ Vg(x)ly
VyLl(z,y) = g(z).

The Hessian of the Lagrangian, Q(z,y) € R™*"™:
m
Qz,y) = V2,L(z,y) = V2f(2) + Y 4iV?gi(2).

i=1 19

The QP problem:

min  l'z + %TIQT

s.t. Ax = b,
xz > 0.
First order conditions (for barrier problem):
Ax = b,
ATy +s—Qu = o
X Se = pue.
Newton direction:
A 0 0][az &p
-Q AT I Ay | =& |
S 0 X As &
where
& = b— Az,

€ = c— ATy — s+Qu,
& = pe— XSe.

Augmented system

Q-0 1 AT [ Az ] _ [ - X",
A 0 Ay | &p )
Conclusion:
QP is a natural extension of LP. 18

IPM for NLP

Add slack variables to nonlinear inequalities:

min f(z)
st. glz)+z =0
z >0,

where z € R™. Replace inequality z > 0 with the
logarithmic barrier:

m
min  f(x) —p > Inz;
=1
s.t. g(z) + 2 =0.
Write out the Lagrangian

=1

and the conditions for a stationary point

Vel(w,y,2,p) = Vf(z)+Vgx)y = 0
VyL(z,y,z,p) = g(z)+2 = 0
sz(Jl,y,Z,,u) = y_:uzile = Oa
where Z—1 = diag{zfl,zgl, oo,z 1)

The First Order Optimality Conditions are:

Vf(z)+Vg(x)y = o,
g(z)+2z = 0O,
YZe = pe.

20



The first order optimality conditions for the bar-
rier problem form a large system of nonlinear
equations

F(z,y,2) =0,

where F : Rnt2m , gnt2m s an application
defined as follows:
Vi) + Vg(x)Ty
F(z,y,2) = g(z) + =z
YZe — pe
Note that all three terms of it are nonlinear.
(In LP and QP the first two terms were linear.)

Note that

Qz,y) A()" 0
VF(z,y,2)=| A(x) o I,
0 Z Y

where A(z) is the Jacobian of g
and Q(z,y) is the Hessian of L.
They are defined as follows:

A(z) = Vg(x) e Rmxn
Qey) = V2f(@)+ L uV2gi(a) € R

21

From QP to NLP

Newton's direction for QP

—Q AT 11[ Az £,
A 0 O ||lAy|=]|¢&
S 0 X As &u
Augmented system for QP
—Q-Sx1 AT

A 0]

Aw} _ {sd—xlsu}
Ay &p .

Newton's direction for NLP

Qz,y) A(x)T 0 |[Az —Vf (z) - A(x)Ty
A(x) o I Ay | = —g(x)—=2
0 Z Y Az ne—Y Ze

Augmented system for NLP

Qz,y) A(x)T Az | _ [ -Vi(@)-A(=)ly
Al(z) —zy~1 || Ay —g(z)—pYyle

Conclusion:
NLP is a natural extension of QP.
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Newton’s direction for NLP

(Q(z,y) A@)T 0 [[Aaz] [-Vf(2)-A(=)Ty
A(x) o I Ay | = —g(x)—=

. O Z Y Az | | pne—YZe

The corresponding augmented system

[Qz,y) AT ][ Az _ [-Vi@)-A@)Ty
A(z) —zy-1 Ay | I —g(z)—pYle

where A(z) € R™*" is the Jacobian of g
and Q(z,y) € R™ "™ is the Hessian of L

A(z) = Vg(z) .
Qlz,y) = v2f(x)+zlyiv2gi(x>
1=
Automatic differentiation is very useful:

get Q(z,y) and A(z) from the Algebraic
Modeling Language.

Model
Solution
Num. Anal
Package
AML SOLVER
Output 22

Interior Point Methods

Conclusions:

Unified framework for convex optimization.

Polynomial algorithms for LP, QP and NLP.

Similar linear algebra in LP, QP and NLP.

e Suitable to solve very large problems.

What is supposed to come soon:

e Extension for nonconvex optimization.

Are IPMs really new?

e Lagrange (1788)
handling equality constraints - multipliers;
minimization with equality constraints
replaced with unconstrained minimization

e Fiacco & McCormick (1968)
handling inequality constraints - log barrier;
minimization with inequality constraints
replaced with a sequence of unconstrained
minimizations

e Newton (1687)
solving unconstrained minimization prot32I4ems.



Linear Algebra in IPMs.

e Symmetric Systems:

— Positive Definite vs Indefinite Systems.
— Quasi-definite Systems.
— Regularizations.

Sparsity Issues in Cholesky Decomposition.

Unavoidable Ill-conditioning.

e Why Ill-conditioning is Benign 7

Direct vs Iterative Methods.

25

Weighted Least Squares

Augmented system (symmetric but indefinite)

—o 1 AT az] [~
A 0 Ay |~ | h|’
where
1]-[«]
h &p
Eliminate

Az = 0ATAy —or,

to get normal equations (symmetric, positive
definite system)

(AGATY Ay = g= AOr+h.

Matrix A©AT has always the same sparsity struc-
ture (only © changes in subsequent iterations).

Two step solution method:
e factorization to LDLT form,

e backsolve to compute direction Ay.
27

First order optimality conditions

Ax = b,
ATy—l—s = ¢,
XSe = pe.
Newton’s direction
A 0 O Az &p
0 AT Ay | =1 ¢ |,
S 0 X As &
where
&p b— Ax
& | =|c—aTy—s
&u ne — X Se

Use the third equation to eliminate
As = XY, - SAx)
= —Xxlsaz+ x"1¢,,

from the second equation and get

—o 1 AT | Az | _ [ ¢ —X"1¢,
A 0 Ay | &p '

where ® = XS~ 1 is a diagonal scaling matrix.
26

IPMs: LP, QP & NLP

Augmented system in LP
—e~ 1 AT Az | | r
A 0 Ay | | AT

Eliminate Ax from the first equation and get
normal equations

(AeANH Ay = g.

Augmented system in QP
—Q-o1 AT || Az ]| _|r
A 0 Ay | | k|

Eliminate Ax from the first equation and get
normal equations

(AQ+oe HtaAay = g.

Augmented system in NLP
Qz,y) A(=)T Az | _ |7
A(z) —zy Y || Ay |~ | h|”

Eliminate Ax from the first equation and get
normal equations

AQ AT+ o Hay =g

28



The inverse of the sparse matrix can be dense.
Example: Consider a symmetric 4 x 4 matrix

r X r Tr T X
r T X _ r r T X
H= and H 1=
xr I X r r T X
r X r r T X

Hence the computation of (Q + ©~1)~1 could
produce a dense matrix and lead to a loss of
efficiency in the linear system:

AQ+oeo Htahay = 4.

One can use normal equations in LP, but not
in QP or NLP. Normal equations produce some-
times excessively dense factors even in LP.

Problem Dense Nonzeros Flops in 103
col NE AS NE AS
aircraft 751 | 1437398 19759 | 361174 53
fitlp 627 206097 10118 42920 115
fit2p 3000 | 4500000 50583 | 4 x 10° 481
storm3 18 114619 139396 11871 13671
storm27 37 | 1075443 350139 | 601859 19845
storm125 135 | 7000000 1441133 1010 52866
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Existence of LDLT factorization (cont’d)

From inductive hypothesis we know that
W =LDLT with d;>0. Let

W a L 0O {D ol LT 1
T

)

al ¢ K] 0 d 0 1

where [ is the solution of equation (LD)l = a (it
is well defined since L and D are nonsingular)
and d is given by d = ¢ — T DL.

W a

Hence matrix H = | 7 has an LDL” de-

composition. It remains to prove that d > O.
Consider the vector

. —L Ty
- 1
Since H is positive definite, we get
0 < zl He
o Tr-1 Lol|lpol|LT 1 ||-L7T1
_[ZL’l]lTl{Od 01 1
. D 0 o __

which completes the proof.
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Lemma: The decomposition H = LDLT with
d;; > 0,Vi exists iff H is positive definite (PD).

Proof:

Part1 ( =)

Let H = LDLT with d;; > 0. Take any = # 0 and
let w = LTz. Since L is a unit lower triangular
matrix it is nonsingular so u # 0 and

m
2THx =2 LDL" 2 = v Du = Z d”ul2 > 0.
=1

Part 2 ( <)
Proof by induction on dimension of H.
Form=1. H= hy1 =dy1 >0 iff H is PD.

Assume the result is true form=k—1> 1.
Let H = { Z‘; @ | € RF¥k pe given k x k positive

definite matrix with W € R(k=1)x(k=1) 4 ¢ Rk-1

and g € R. Note first that since H is PD, W is

also PD. Indeed for any (z,0) € R* we have

W a T
0

o g =2z"Wz>0 vzeRF 1 z#0.

[, 0]

30

Definite and Indefinite Systems

Cholesky factorization fails for indefinite matrix.

Example 1: Negative pivot dpo < 0.

32| 1 0 3 O 1 2/3

2 1| |2/31 0 —-1/3 o 1 |
Example 2: dy; = 0. Can’t start elimination.

0 2 =777
> 5

IPMs:

For positive definite normal equations
(A0AH Ay = g.

one can compute the Cholesky factorization.

For indefinite augmented system
—o L AT | paz]| |~
A 0 Ay | | h|°
one needs to use some special tricks.

32



Two options are possible:

1. Replace diagonal matrix D with a block-
diagonal one and allow 2 x 2 (indefinite) pivots

0 a and 0 a

a O a d |’
Hence obtain a decomposition H = LDLT with
block-diagonal D.

2. Regularize indefinite matrix to produce a
quasidefinite matrix

—E AT
A F

)

|

where

E € R™ ™ is positive definite,

F ¢ R™*™ is positive definite, and
A € R™*™ has full row rank.

33

From Indefinite to Quasidefinite Matrix

Indefinite matrix
_[-e-et AT

H A 0

Vanderbei (1995): replace Axz=0b with Az <b

—o;1 0 I
Hy = 0 -—-Q-e1 4T
I A 0

and eliminate ©;1

. _Q_@fl AT
|
Saunders (1996):

He— | Q@-©71 AT —v%I, 0
S A 0 0 826y |’
where

8 > /e =1078.

A & G (1999): use dynamic regularization
~_ | —e 1 AT ~Rp, O
A= Y+ R

Rp € R™*"™ is a primal regularization
Ry € R™ ™ is a dual regularization. 35

Symmetric matrix is called quasidefinite if

| = AT
k=

9

where E € R"*" and
F € R™M*™ are positive definite, and
A € R™X" has full row rank.

Symmetric nonsingular matrix K is factorizable
if there exists a diagonal matrix D and unit lower
triangular matrix L such that K = LDLT.

The symmetric matrix K is strongly factorizable
if for any permutation matrix P a factorization
PKPT = LDLY exists.

Vanderbei (1995) proved that
Symmetric QDFM'’s are strongly factorizable.

For any quasidefinite matrix

there exists a Cholesky-like factorization
H=1LDLT,

where

D is diagonal but not positive definite:

n negative pivots;
m positive pivots. 34

Primal Regdularization

Primal barrier problem

min ZP:CTZL‘+%£BTQ:L‘—/,LZ?:1(|n:L‘j+|nSj)
s. to Az =b,

r+s=u,

z,s >0

Q-0 AT | Az | _|f
A 0 Ay |~ | h|”

Primal regularized barrier problem

min ZP+%(x—CL'0)TRp(QJ—.’£0)
s. to Ax = b,

T+ s=u,

z,s >0

-Q-©71-R, AT
A 0

=1

f'=f = Rp(z — 20).

where

36



Dual barrier problem
3
max zp = bTy—uTw—%a:TQac-}-u Y (nzj+Inw;)
j=1

s.to Aly4z—w—Qz=c,

z>0,z,w>0
—Q-oe1 AT || Az | _
Ay |

A 0

>
—_

Dual regularized barrier problem

1
max  zp—(y - v0)" Ra(y — v0)
s. to ATy—}—z—w—Qx:c,
z>0,z,w>0

=10

h =h— Ry(y — yo)-

—Q _ @—1 AT
A Ry

where
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Minimum Degree Ordering

How to permute rows and columns of H to get
the sparsest possible Cholesky factorization?
Difficult problem but heuristics can help.

Example: Consider a symmetric matrix
x T T T 1

€T T x

€T x T

r T x
r X x

Suppose hip is the first pivot
[z r T T
xr

xT
xT
r T

T
€T

8 w8

SR
8 %8 %

xT

Suppose hop is the first pivot. Replace rows 1
and 2 and columns 1 and 2. The elimination of

the first pivot does not create any fill-in.

€T T
r T X

H=

8 8 8 8
8
8

Minimum degree ordering: choose an element
with the minimum number of nonzeros in a3gow.

Example: Consider a symmetric 4 x 4 matrix
xr T X
X

H =
x

8 8 8 8

xT

where = denotes a nonzero and empty spaces
denote zeros. Direct application of Cholesky
factorization would produce a completely dense
lower triangular factor

L =

8 8 8 8
888
8 8

However, it suffices to reorder (symmetrically)
the rows and columns of H

xT
T
x
r T X

H=PHPT =

8 8 8 8

to obtain sparse Cholesky factor

38

Nested Dissection

Remove few nodes to disconnect the graph.
Consider a matrix

1 2 3 45 6 7 8 91011
1 =z = =z T
2 z x r T T
3 =z T T T
4 r T T T T T
H = g r r T T X
z T x T T
7 T T T T
8 T T T x x
9 T T x x
10 T T T T T x
11 T T T x T
and its graph
Remove (permute) nodes 4 and 7.
1 2 3 5 6 8 91011 4 7
1 z =2 =z «x
2 x x T T T
3 T T T
5 z =z = =z T
PHPT — g xr T x r T
r x T T =
9 T T T T
10 r xr x xT T
11 T T T T T
4 r T T T T T
7 x x x T 40



Lemma:
If f:R"+— R and g : R™ — R™ are convex,
twice differentiable, then the Hessian of the La-
grangian

m
Qz,y) = V2f(x) + 3 viV2gi(x)
i=1
is positive semidefinite for any x and any y > 0.
If f is strictly convex, then Q(z,y) is positive
definite.

Lemma:

If f:R"™— R isstrictly convex, and g : R" — R™
is convex, both f and g are twice differentiable,
and A(zx) has full row rank for any z, then the
augmented system matrix

_ | Q@y) AT
H= A(z) —zy—1

is quasidefinite for any x and any z,y > 0.

What if f or g are nonconvex?

41

“Easy” Nonconvex NLP

Example:
Consider a nonconvex problem
min 233%—&:%
S. to x1 4z =2,
x1,x2 > 0.

Eliminate xp = 2 — 1 to get

min a:%+4x1—4
s.to 0Lz <2,

Remark:

By restricting Az to be in the null space of A,
we can reduce the “degree” of indefiniteness in
the NLP problem:

Matrix

Q + AeA”

may have fewer negative eigenvalues than Q.

43

Augmented system in NLP

Qz,y) A()T Am}:[r}
Ay h |’

A(z) —zy-1
If f or g are convex, then a lot of flexibility is
available in the pivot choice (QDF Matrix).
In particular, one can eliminate Ax from the first
equation and get

(AQ AT+ o hHay = 4.

If f and/or g are nonconvex, then AQ AT can
be indefinite so do not compute (AQ1AT+o1).

Matrix A©AT is certainly positive definite so
eliminate Ay from the second equation and get
reduced system

(Q+ A0ATY) Az = 7.

The “degree” of indefiniteness can be reduced.
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Ill-conditioning

Assume Normal Equations are used in LP and

the feasible IPM is used (§, =0 and & = 0)
(A0ATY Ay = Aor,

where © = XS~1 and r = —X~1¢,.

Optimal Partition:
Basic variables zp — 25 >0 sp—s5=0
Non-basic variables zy — 23, =0 sy — sy >0

For basic variables: ©; =xj/s; — oo;
For non-basic variables: ©; =z;/s; — 0.

Hence

T _ T T T
A@A = Z Hjalja_j + Z Qja‘ja_j — z Gja,jalj.
jeB JEN jEB

The matrix H = A® AT has usually a huge condi-
tion number x(H). Although x(H) > 1/¢, where
e is the relative precision of the computer (e.g.
e = 10716), IPMs nicely converge.
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Theorem: (Dikin, 1967)

Let A € R™*" be a full row rank matrix;

g be a vector of dimension n; and

D_|_ be the set of n x n diagonal positive definite
matrices.

Then
sup ||[(ADATY 1ADg| = max ||A77g
e | | = max 1457
sup [[(ADATY1AD| = max [|A5T
DeD+H | jej(A)H 7|

where J(A) is the set of column indices associ-
ated with nonsingular m x m submatrices of A.

Corollary:
The linear system arising in IPMs for LP
(A0ATY Ay = Aor,

produces more accurate solutions than those one
could have expected from a ‘“classical” worst-
case analysis.
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Iterative Methods

Optimal Partition:

For basic variables: Q= ;pj/sj — 00;
For non-basic variables: ©,; =z;/s; — O.

The spread of elements in © causes that A©AT
is very ill-conditioned. Consequently, any itera-
tive method suffers from slow convergence. Yet,
with the right preconditioners iterative methods
have some promise.

There have been successful implementations of
PCG for structured problems.

Idea: Split A into basic and non-basic parts and
adjust preconditioner accordingly
-ezt o BT
H = 0 _@]—Vl NT
B N 0

Block-projection Methods are another promise.
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Dikin's result applies to diagonal positive defi-
nite weight matrices D.

Forsgren (1996) generalized it to diagonally dom-
inant weight matrices W.

Lemma:

Let A € R™X™ be a full row rank matrix;

g be a vector of dimension n; and

W, be the set of nxn diagonally dominant
weight matrices.

Then

sup [|[(AWAT)"Lawyg||
W€W+
sup [[(AWAT)"taw ||
W€W+
are bounded.

This Lemma extends Dikin's result to quadratic
and nonlinear optimization.

46

Interior Point Methods

This lecture treated:
e IPMs for LP;
e extension from LP to convex QP;
e extension from convex QP to convex NLP.

Conclusions:

e Interior Point Methods provide the unified
framework for convex optimization.

e Interior Point Methods provide polynomial
algorithms for LP, QP and NLP.

e The linear algebra in LP, QP and NLP is
very similar.

e Use IPMs to solve very large problems.

Very Active Area These Days:
e Nonconvex optimization with IPMs.

IPMs in the Internet:

e LP FAQ (Frequently Asked Questions):
http://www-unix.mcs.anl.gov/otc/Guide/faq/

e Interior Point Methods On-Line:

http://www-unix.mcs.anl.gov/otc/InteriorPoint/

e NEOS (Network Enabled Opt. Services):

http://www-neos.mcs.anl.gov/
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