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• What's wrong with the simplex method?

• Stay in the interior: use logarithmic barriers.

• Proceed against the common sense:

use nonlinear methodology to solve linear

problems.

• Polynomial complexity:

O(√n) iterations to reach the optimality.

• Uni�ed view of convex optimization:

from LP via QP to NLP.
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The Simplex Method

Consider an LP

min cTx

subject to Ax= b,

x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n.
Matrix A has full row rank, m (m ≤ n).

Partition the LP constraint matrix as A= [B,N],

where B ∈ Rm×m is a nonsingular matrix and

N ∈ Rm×(n−m).

A vertex in Rn is de�ned by a set of n equations:[
B N
0 In−m

] [
xB
xN

]
=

[
b
0

]
.

Non-basic variables �xed on zero xN = 0.

Basic variables, xB allowed to be non-zero.

There are (
n
m

)
=

n!

m!(n−m)!
bases.

This is a huge number!
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What's wrong with the Simplex Method?

The simplex method can make a non-polynomial

number of iterations to reach the optimality:

V. Klee and G. Minty gave an example LP the

solution of which needs 2n iterations:

How good is the simplex algorithm, in Inequalities-

III, O. Shisha, ed., Acad. Press, 1972, 159{175.

Narendra Karmarkar from AT&T Bell Labs:

\the simplex [method] is complex"

N. Karmarkar:

A New Polynomial{time Algorithm for Linear

Programming, Combinatorica 4 (1984) 373{395.

What do we need

to derive the Interior Point Method?

• logarithmic barriers.

• duality theory:
Lagrangian function;

�rst order optimality conditions.

• Newton method.
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Consider the primal linear program

min cTx
s.t. Ax = b,

x ≥ 0,

(1)

and the dual linear program

max bTy

s.t. ATy + s = c,
y free, s ≥ 0,

(2)

where b, y ∈ Rm, c, x, s ∈ Rn and A ∈ Rm×n.

Let P, D be the feasible sets of (1) and (2)

P = {x ∈ Rn |Ax = b, x ≥ 0},
D = {y ∈ Rm, s ∈ Rn |ATy+ s = c, s ≥ 0}.
Let us introduce the convention that
inf
x∈P

cTx =+∞, if P = ∅; supy∈D b
Ty = −∞, if D = ∅.

Weak Duality Theorem

inf
x∈P

cTx ≥ sup
y∈D

bTy.

Strong Duality Theorem

If either P 6= ∅ or D 6= ∅ then
inf
x∈P

cTx = sup
y∈D

bTy.

If one of problems (1) and (2) is solvable then

min
x∈P

cTx = max
y∈D

bTy.
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Consider the primal-dual pair:

Primal Dual

min cTx max bTy

s.t. Ax = b, s.t. ATy+ s = c,
x≥0; s≥0.

Lagrangian

L(x, y) = cTx− yT(Ax− b).
Optimality Conditions in LP

Ax = b,

ATy+ s = c,

XSe = 0,

x, s ≥ 0,

where X = diag{x1, · · · , xn}, S = diag{s1, · · · , sn}
and e= (1,1, · · · ,1) ∈ Rn.
Notation:

X = diag{x1, x2, · · · , xn}=


x1

x2
. . .

xn

 .
X−1 = diag{x−11 , x−12 , · · · , x−1n }.
An equation XSe = µe,

is equivalent to xjsj = µ, ∀j = 1,2, · · · , n.
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Log barriers keep the point in the interior

The following logarithmic barrier

− lnxj
added to the objective in the optimization prob-

lem prevents variable xj from approaching zero.

1
x

-ln x

In other words, the logarithmic barrier can be

used to \replace" the inequality

xj ≥ 0.

Observe that

min e−
∑n
j=1 ln xj ⇐⇒ max

n∏
j=1

xj

The minimization of −∑n
j=1 ln xj is equivalent

to the maximization of the product of distances

from all hyperplanes de�ning the positive or-

thant: it prevents all xj from approaching zero.
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First Order Optimality Conditions: LP

Replace the primal LP

min cTx

s.t. Ax = b,

x ≥ 0,

with the primal barrier program

min cTx−
n∑

j=1
lnxj

s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.

Write out the Lagrangian

L(x, y, µ) = cTx− yT (Ax− b)− µ
n∑

j=1

ln xj,

and the conditions for a stationary point

∇xL(x, y, µ) = c−ATy − µX−1e = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−11 , x−12 , · · · , x−1n }.
Let us denote

s = µX−1e, i.e. XSe= µe.

The First Order Optimality Conditions are:

Ax = b,

ATy+ s = c,
XSe = µe.
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Note that the �rst order optimality conditions

for the barrier problem

Ax = b,

ATy+ s = c,
XSe = µe,

approximate the �rst order optimality conditions

for the linear program

Ax = b,

ATy+ s = c,
XSe = 0,

more and more closely as µ approaches zero.

Parameter µ controls the distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTs = nµ.

Analytic center (µ-center): a (unique) point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satis�es FOC.

The path

{(x(µ), y(µ), s(µ)) : µ > 0}
is called the primal-dual central trajectory.
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We use Newton Method to �nd a stationary

point of the barrier problem.

Recall how to use Newton Method to �nd a root

of a nonlinear equation

f(x) = 0.

A tangent line

z − f(xk) = ∇f(xk) · (x− xk)

is a local approximation of the graph of the func-

tion f(x). Substituting z = 0 gives a new point

xk+1 = xk − (∇f(xk))−1f(xk).

x

f(x)

xk xk+1 xk+2

f(x     )k+2

f(x     )k+1

f(x  )k

k

z

k kz-f(x  ) =    f(x  )(x-x  )
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Apply Newton Method to the FOC

The �rst order optimality conditions for the bar-

rier problem form a large system of nonlinear

equations

F(x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application

de�ned as follows:

F(x, y, s) =

 Ax − b

ATy+ s − c
XSe − µe

 .
Actually, the �rst two terms of it are linear; only

the last one, corresponding to the complemen-

tarity condition, is nonlinear.

Note that

∇F(x, y, s) =

 A 0 0

0 AT I
S 0 X

 .
Thus, for a given point (x, y, s) we �nd the New-

ton direction (�x,�y,�s) by solving the system

of linear equations: A 0 0

0 AT I
S 0 X

 ·
 �x
�y
�s

=
 b−Axc−ATy − s
µe−XSe

 .
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Interior-Point Framework

We have already gathered all the necessary

elements to derive an interior point method.

The logarithmic barrier

− lnxj
added to the objective in the optimization prob-

lem prevents variable xj from approaching zero

and \replaces" the inequality

xj ≥ 0.

We derive the �rst order optimality conditions

for the primal barrier problem:

Ax = b,

ATy+ s = c,
XSe = µe,

and apply Newton method to solve this system

of nonlinear equations.

Actually, we �x the barrier parameter µ and make

only one (dumped) Newton step towards the

solution of FOC. We do not solve the current

FOC exactly. Instead, we immediately reduce

the barrier parameter µ (to ensure progress to-

wards optimality) and repeat the process.
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Assume a primal-dual strictly feasible solution

(x, y, s) ∈ F0 lying in a neighbourhood of the

central path is given; namely (x, y, s) satis�es:

Ax = b,

ATy+ s = c,
XSe ≈ µe.

We de�ne a θ-neighbourhood of the central

path N2(θ), a set of primal-dual strictly feasible

solutions (x, y, s) ∈ F0 that satisfy:

‖XSe− µe‖ ≤ θµ,
where θ ∈ (0,1) and the barrier µ satis�es:

xTs = nµ.

Hence N2(θ) = {(x, y, s) ∈ F0 | ‖XSe−µe‖ ≤ θµ}.

θN  (   ) neighbourhood
2

of the central path
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Assume a primal-dual strictly feasible solution
(x, y, s) ∈ N2(θ) for some θ ∈ (0,1) is given.

The interior point algorithm tries to move from
this point to another one that also belongs to a
θ-neighbourhood of the central path but corre-
sponds to a smaller µ. The required reduction
of µ is small:

µk+1 = σµk,

where

σ = 1− β/
√
n,

for some β ∈ (0,1).

Given a new µ-center, the interior point algo-
rithm computes the Newton direction: A 0 0

0 AT I
S 0 X

 ·
 �x
�y
�s

=
 0

0
σµe−XSe

 ,
and makes a step in this direction.

The magic numbers (will be explained later)
are:

θ = 0.1 and β = 0.1.

14

How to prove O(√n) complexity result?

We can prove the following:

• a full step in Newton direction is feasible;

• the new iterate

(xk+1,yk+1,sk+1)=(xk,yk,sk)+(�xk,�yk,�sk)

belongs to a θ-neighbourhood of the new

µ-center (with µk+1 = σµk);

• the duality gap is reduced 1− β/√n times.

Note that since at one iteration the duality gap

is reduced 1 − β/√n times, after
√
n iterations

the reduction achieves:

(1− β/
√
n)
√
n ≈ e−β.

After C · √n iterations, the reduction is e−Cβ.
For a su�ciently large constant C the reduction

can thus be arbitrarily large (i.e. the duality gap

can become arbitrarily small).

Hence this algorithm has complexity O(√n).
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Linear Algebra of IPM for LP

First order optimality conditions:

Ax = b,

ATy+ s = c,

XSe = µe.

Newton direction: A 0 0

0 AT I
S 0 X


 �x
�y
�s

=
 ξpξd
ξµ

 ,
where  ξpξd

ξµ

=
 b−Ax
c−ATy − s
µe−XSe

 .
Use the third equation to eliminate

�s = X−1(ξµ − S�x)

= −X−1S�x+X−1ξµ,

from the second equation and get[
−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

where � = XS−1 is a diagonal scaling matrix.
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Consider the convex quadratic programming

problem

min cTx+ 1
2x

TQx

s.t. Ax= b,

x ≥ 0,

where Q ∈ Rn×n is positive semide�nite matrix.

Apply the usual procedure:

• replace inequalities with log barriers;

• form the Lagrangian;

• write the �rst order optimality conditions;

• apply Newton method to them.

Replace the primal QP

min cTx+ 1
2x

TQx

s.t. Ax = b,

x ≥ 0,

with the primal barrier QP

min cTx+ 1
2x

TQx−
n∑

j=1
lnxj

s.t. Ax = b.
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The QP problem:

min cTx+ 1
2x

TQx

s.t. Ax= b,

x ≥ 0.

First order conditions (for barrier problem):

Ax = b,

ATy+ s−Qx = c,

XSe = µe.

Newton direction: A 0 0

−Q AT I
S 0 X


 �x
�y
�s

 =
 ξpξd
ξµ

 ,
where

ξp = b−Ax,
ξd = c−ATy − s+Qx,
ξµ = µe−XSe.

Augmented system[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

Conclusion:

QP is a natural extension of LP. 18

Convex Nonlinear Optimization

Consider the nonlinear optimization problem

min f(x)

s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm
are convex, twice di�erentiable.

The vector-valued function g : Rn 7→ Rm has a

derivative A(x) ∈ Rm×n

A(x) = ∇g(x) =
[
δgi
δxj

]
i=1..m, j=1..n

which is called the Jacobian of g.

The Lagrangian associated with the NLP is:

L(x, y) = f(x) + yTg(x),

where y ∈ Rm, y ≥ 0 are Lagrange multipliers

(dual variables).

The �rst derivatives of the Lagrangian:

∇xL(x, y) = ∇f(x) +∇g(x)Ty
∇yL(x, y) = g(x).

The Hessian of the Lagrangian, Q(x,y)∈Rn×n:

Q(x, y) = ∇2xxL(x, y) = ∇2f(x) +
m∑
i=1

yi∇2gi(x).
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IPM for NLP

Add slack variables to nonlinear inequalities:

min f(x)

s.t. g(x) + z = 0

z ≥ 0,

where z ∈ Rm. Replace inequality z ≥ 0 with the

logarithmic barrier:

min f(x)− µ
m∑
i=1

ln zi

s.t. g(x) + z = 0.

Write out the Lagrangian

L(x, y, z, µ) = f(x) + yT (g(x) + z)− µ
m∑
i=1

ln zi,

and the conditions for a stationary point

∇xL(x, y, z, µ) = ∇f(x) +∇g(x)Ty = 0
∇yL(x, y, z, µ) = g(x) + z = 0

∇zL(x, y, z, µ) = y − µZ−1e = 0,

where Z−1 = diag{z−11 , z−12 , · · · , z−1m }.

The First Order Optimality Conditions are:

∇f(x) +∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.

20



The �rst order optimality conditions for the bar-

rier problem form a large system of nonlinear

equations

F(x, y, z) = 0,

where F : Rn+2m 7→ Rn+2m is an application

de�ned as follows:

F(x, y, z) =

 ∇f(x) + ∇g(x)Ty
g(x) + z
Y Ze − µe

 .
Note that all three terms of it are nonlinear.

(In LP and QP the �rst two terms were linear.)

Note that

∇F(x, y, z)=

 Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y

 ,
where A(x) is the Jacobian of g

and Q(x, y) is the Hessian of L.
They are de�ned as follows:

A(x) = ∇g(x) ∈ Rm×n

Q(x, y) = ∇2f(x)+
m∑
i=1

yi∇2gi(x) ∈ Rn×n
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Newton's direction for NLPQ(x, y) A(x)T 0
A(x) 0 I
0 Z Y


�x
�y
�z

 =
−∇f(x)−A(x)Ty−g(x)−z

µe−Y Ze

 .
The corresponding augmented system[
Q(x, y) A(x)T

A(x) −ZY −1

][
�x
�y

]
=

[
−∇f(x)−A(x)Ty
−g(x)−µY −1e

]
.

where A(x) ∈ Rm×n is the Jacobian of g

and Q(x, y) ∈ Rn×n is the Hessian of L
A(x) = ∇g(x)

Q(x, y) = ∇2f(x)+
m∑
i=1

yi∇2gi(x)

Automatic di�erentiation is very useful:

get Q(x, y) and A(x) from the Algebraic

Modeling Language.

Output

AML SOLVER

Num. Anal.
Package

Model
Solution
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From QP to NLP

Newton's direction for QP −Q AT I
A 0 0
S 0 X


 �x
�y
�s

=
 ξdξp
ξµ

 .
Augmented system for QP[
−Q−SX−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

Newton's direction for NLPQ(x, y) A(x)T 0
A(x) 0 I
0 Z Y


�x
�y
�z

 =
−∇f(x)−A(x)Ty−g(x)−z

µe−Y Ze

 .

Augmented system for NLP[
Q(x, y) A(x)T

A(x) −ZY −1

] [
�x
�y

]
=

[
−∇f(x)−A(x)Ty
−g(x)−µY −1e

]
.

Conclusion:

NLP is a natural extension of QP.
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Interior Point Methods

Conclusions:

• Uni�ed framework for convex optimization.

• Polynomial algorithms for LP, QP and NLP.

• Similar linear algebra in LP, QP and NLP.

• Suitable to solve very large problems.

What is supposed to come soon:

• Extension for nonconvex optimization.

Are IPMs really new?

• Lagrange (1788)

handling equality constraints - multipliers;

minimization with equality constraints

replaced with unconstrained minimization

• Fiacco & McCormick (1968)

handling inequality constraints - log barrier;

minimization with inequality constraints

replaced with a sequence of unconstrained

minimizations

• Newton (1687)

solving unconstrained minimization problems.
24



• Linear Algebra in IPMs.

• Symmetric Systems:

{ Positive De�nite vs Inde�nite Systems.

{ Quasi-de�nite Systems.

{ Regularizations.

• Sparsity Issues in Cholesky Decomposition.

• Unavoidable Ill-conditioning.

• Why Ill-conditioning is Benign ?

• Direct vs Iterative Methods.

25

First order optimality conditions

Ax = b,

ATy+ s = c,

XSe = µe.

Newton's direction A 0 0

0 AT I
S 0 X


 �x
�y
�s

=
 ξpξd
ξµ

 ,
where  ξpξd

ξµ

=
 b−Ax
c−ATy − s
µe−XSe

 .
Use the third equation to eliminate

�s = X−1(ξµ − S�x)

= −X−1S�x+X−1ξµ,

from the second equation and get[
−�−1 AT

A 0

] [
�x
�y

]
=

[
ξd −X−1ξµ

ξp

]
.

where � = XS−1 is a diagonal scaling matrix.
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Weighted Least Squares

Augmented system (symmetric but inde�nite)[
−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
,

where [
r
h

]
=

[
ξd −X−1ξµ

ξp

]
.

Eliminate

�x = �AT�y −�r,

to get normal equations (symmetric, positive

de�nite system)

(A�AT)�y = g = A�r+ h.

Matrix A�AT has always the same sparsity struc-

ture (only � changes in subsequent iterations).

Two step solution method:

• factorization to LDLT form,

• backsolve to compute direction �y.
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IPMs: LP, QP & NLP

Augmented system in LP[
−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(A�AT)�y = g.

Augmented system in QP[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(A(Q+�−1)−1AT)�y = g.

Augmented system in NLP[
Q(x, y) A(x)T

A(x) −ZY −1

] [
�x
�y

]
=

[
r
h

]
.

Eliminate �x from the �rst equation and get

normal equations

(AQ−1AT +�−1)�y = g.
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The inverse of the sparse matrix can be dense.

Example: Consider a symmetric 4× 4 matrix

H=


x x
x x x

x x x
x x

 and H−1=


x x x x
x x x x
x x x x
x x x x

 .
Hence the computation of (Q + �−1)−1 could

produce a dense matrix and lead to a loss of

e�ciency in the linear system:

(A(Q+�−1)−1AT)�y = g.

One can use normal equations in LP, but not

in QP or NLP. Normal equations produce some-

times excessively dense factors even in LP.

Problem Dense Nonzeros Flops in 103

col NE AS NE AS
aircraft 751 1437398 19759 361174 53
�t1p 627 206097 10118 42920 115
�t2p 3000 4500000 50583 4× 109 481
storm8 18 114619 139396 11871 13671
storm27 37 1075443 350139 601859 19845
storm125 135 7000000 1441133 1010 52866
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Lemma: The decomposition H = LDLT with

dii > 0, ∀i exists i� H is positive de�nite (PD).

Proof:

Part 1 ( ⇒ )

Let H = LDLT with dii > 0. Take any x 6= 0 and

let u = LTx. Since L is a unit lower triangular

matrix it is nonsingular so u 6= 0 and

xTHx = xTLDLTx = uTDu =
m∑
i=1

diiu
2
i > 0.

Part 2 ( ⇐ )

Proof by induction on dimension of H.
For m = 1. H = h11 = d11 > 0 i� H is PD.

Assume the result is true for m= k − 1 ≥ 1.

Let H =

[
W a

aT q

]
∈ Rk×k be given k×k positive

de�nite matrix withW ∈ R(k−1)×(k−1), a ∈ Rk−1
and q ∈ R. Note �rst that since H is PD, W is

also PD. Indeed for any (x,0) ∈ Rk we have

[x,0]

[
W a

aT q

][
x
0

]
=xTWx>0 ∀x∈Rk−1, x 6= 0.
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Existence of LDLT factorization (cont'd)

From inductive hypothesis we know that

W=LDLT with dii>0. Let[
W a

aT q

]
=

[
L 0

lT 1

] [
D 0
0 d

] [
LT l
0 1

]
,

where l is the solution of equation (LD)l = a (it

is well de�ned since L and D are nonsingular)

and d is given by d= q − lTDl.

Hence matrix H =

[
W a

aT q

]
has an �L �D�LT de-

composition. It remains to prove that d > 0.

Consider the vector

x =

[
−L−T l
1

]
.

Since H is positive de�nite, we get

0 < xTHx

= [−lTL−1,1]
[
L 0

lT 1

][
D 0
0 d

][
LT l
0 1

][
−L−T l

1

]

= [0,1]

[
D 0
0 d

] [
0
1

]
= d,

which completes the proof.
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De�nite and Inde�nite Systems

Cholesky factorization fails for inde�nite matrix.

Example 1: Negative pivot d22 < 0.[
3 2
2 1

]
=

[
1 0
2/3 1

] [
3 0
0 −1/3

] [
1 2/3
0 1

]
.

Example 2: d11 = 0. Can't start elimination.[
0 2
2 5

]
=???

IPMs:

For positive de�nite normal equations

(A�AT)�y = g.

one can compute the Cholesky factorization.

For inde�nite augmented system[
−�−1 AT

A 0

] [
�x
�y

]
=

[
r
h

]
.

one needs to use some special tricks.
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Two options are possible:

1. Replace diagonal matrix D with a block-

diagonal one and allow 2× 2 (inde�nite) pivots[
0 a
a 0

]
and

[
0 a
a d

]
.

Hence obtain a decomposition H = LDLT with

block-diagonal D.

2. Regularize inde�nite matrix to produce a

quaside�nite matrix

K =

[
−E AT

A F

]
,

where

E ∈ Rn×n is positive de�nite,

F ∈ Rm×m is positive de�nite, and

A ∈ Rm×n has full row rank.
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Symmetric matrix is called quaside�nite if

K =

[
−E AT

A F

]
,

where E ∈ Rn×n and

F ∈ Rm×m are positive de�nite, and

A ∈ Rm×n has full row rank.

Symmetric nonsingular matrix K is factorizable

if there exists a diagonal matrix D and unit lower

triangular matrix L such that K = LDLT .

The symmetric matrix K is strongly factorizable

if for any permutation matrix P a factorization

PKPT = LDLT exists.

Vanderbei (1995) proved that

Symmetric QDFM's are strongly factorizable.

For any quaside�nite matrix

there exists a Cholesky-like factorization

�H = LDLT ,

where

D is diagonal but not positive de�nite:

n negative pivots;

m positive pivots. 34

From Inde�nite to Quaside�nite Matrix

Inde�nite matrix

H =

[
−Q−�−1 AT

A 0

]
.

Vanderbei (1995): replace Ax=b with Ax≤b

HV =

 −�−1s 0 I

0 −Q−�−1 AT

I A 0


and eliminate �−1s

K =

[
−Q−�−1 AT

A �s

]
.

Saunders (1996):

HS =

[
−Q−�−1 AT

A 0

]
+

[
−γ2In 0

0 δ2Im

]
,

where
γδ ≥

√
ε = 10−8.

A & G (1999): use dynamic regularization

�H =

[
−�−1 AT

A 0

]
+

[
−Rp 0
0 Rd

]
,

Rp ∈ Rn×n is a primal regularization

Rd ∈ Rm×m is a dual regularization. 35

Primal Regularization

Primal barrier problem

min zP = cTx+1
2x

TQx−µ∑n
j=1(ln xj+ln sj)

s. to Ax= b,
x+ s = u,
x, s > 0

[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
f
h

]
.

Primal regularized barrier problem

min zP +
1

2
(x− x0)TRp(x− x0)

s. to Ax= b,

x+ s = u,

x, s > 0[
−Q−�−1 −Rp AT

A 0

] [
�x
�y

]
=

[
f ′

h

]
,

where

f ′ = f −Rp(x− x0).
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Dual barrier problem

max zD = bTy−uTw−1
2x

TQx+µ
n∑

j=1
(ln zj+lnwj)

s. to ATy+ z − w −Qx= c,
x ≥ 0, z, w > 0

[
−Q−�−1 AT

A 0

] [
�x
�y

]
=

[
f
h

]
.

Dual regularized barrier problem

max zD −
1

2
(y − y0)TRd(y − y0)

s. to ATy+ z − w −Qx = c,

x ≥ 0, z, w > 0[
−Q−�−1 AT

A Rd

] [
�x
�y

]
=

[
f
h′

]
,

where

h′ = h−Rd(y − y0).
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Example: Consider a symmetric 4× 4 matrix

H =

 x x x x
x x
x x
x x

 ,
where x denotes a nonzero and empty spaces

denote zeros. Direct application of Cholesky

factorization would produce a completely dense

lower triangular factor

L=

 x
x x
x x x
x x x x

 .

However, it su�ces to reorder (symmetrically)

the rows and columns of H

�H = PHPT =

 x x
x x

x x
x x x x

 ,
to obtain sparse Cholesky factor

�L=

 x
x

x
x x x x

 .
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Minimum Degree Ordering

How to permute rows and columns of H to get

the sparsest possible Cholesky factorization?

Di�cult problem but heuristics can help.

Example: Consider a symmetric matrix

H =


x x x x

x x
x x x
x x x
x x x

x x x

 .
Suppose h11 is the �rst pivot

H =


x x x x

x x
x x f f x
x f x f x
x x f f x

x x x

 .
Suppose h22 is the �rst pivot. Replace rows 1

and 2 and columns 1 and 2. The elimination of

the �rst pivot does not create any �ll-in.

�H =


x x

x x x x
x x x
x x x

x x x
x x x

 .
Minimum degree ordering: choose an element

with the minimum number of nonzeros in a row.
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Nested Dissection

Remove few nodes to disconnect the graph.

Consider a matrix

H =

1 2 3 4 5 6 7 8 9 10 11
1 x x x x
2 x x x x x
3 x x x x
4 x x x x x x
5 x x x x x
6 x x x x x
7 x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x

and its graph

3

5

10
4

11

86

9

2 7
1

Remove (permute) nodes 4 and 7.

PHPT =

1 2 3 5 6 8 9 10 11 4 7
1 x x x x
2 x x x x x
3 x x x x
5 x x x x x
6 x x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x
4 x x x x x x
7 x x x x

40



Lemma:

If f : Rn 7→ R and g : Rn 7→ Rm are convex,

twice di�erentiable, then the Hessian of the La-

grangian

Q(x, y) = ∇2f(x) +
m∑
i=1

yi∇2gi(x)

is positive semide�nite for any x and any y ≥ 0.

If f is strictly convex, then Q(x, y) is positive

de�nite.

Lemma:

If f : Rn 7→ R is strictly convex, and g : Rn 7→ Rm
is convex, both f and g are twice di�erentiable,

and A(x) has full row rank for any x, then the

augmented system matrix

H =

[
Q(x, y) A(x)T

A(x) −ZY −1

]
is quaside�nite for any x and any z, y > 0.

What if f or g are nonconvex?
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Augmented system in NLP[
Q(x, y) A(x)T

A(x) −ZY −1

] [
�x
�y

]
=

[
r
h

]
.

If f or g are convex, then a lot of exibility is

available in the pivot choice (QDF Matrix).

In particular, one can eliminate �x from the �rst

equation and get

(AQ−1AT +�−1)�y = g.

If f and/or g are nonconvex, then AQ−1AT can

be inde�nite so do not compute (AQ−1AT+�−1).

Matrix A�AT is certainly positive de�nite so

eliminate �y from the second equation and get

reduced system

(Q+A�AT)�x = r
′
.

The \degree" of inde�niteness can be reduced.
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\Easy" Nonconvex NLP

Example:

Consider a nonconvex problem

min 2x21−x22
s. to x1+ x2 = 2,

x1, x2 > 0.

Eliminate x2 = 2− x1 to get

min x21+4x1 − 4
s. to 0 ≤ x1 ≤ 2.

Remark:

By restricting �x to be in the null space of A,

we can reduce the \degree" of inde�niteness in

the NLP problem:

Matrix

Q+A�AT

may have fewer negative eigenvalues than Q.
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Ill-conditioning

Assume Normal Equations are used in LP and

the feasible IPM is used (ξb = 0 and ξc = 0)

(A�AT)�y = A�r,

where � = XS−1 and r = −X−1ξµ.

Optimal Partition:
Basic variables xB → x∗B > 0 sB → s∗B = 0

Non-basic variables xN → x∗N = 0 sN → s∗N > 0

For basic variables: �j = xj/sj →∞;
For non-basic variables: �j = xj/sj → 0.

Hence

A�AT =
∑
j∈B

θja.ja
T
.j +

∑
j∈N

θja.ja
T
.j →

∑
j∈B

θja.ja
T
.j.

The matrix H = A�AT has usually a huge condi-

tion number κ(H). Although κ(H)� 1/ε, where

ε is the relative precision of the computer (e.g.

ε = 10−16), IPMs nicely converge.
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Theorem: (Dikin, 1967)

Let A ∈ Rm×n be a full row rank matrix;

g be a vector of dimension n; and

D+ be the set of n× n diagonal positive de�nite

matrices.

Then

sup
D∈D+

‖(ADAT)−1ADg‖ = max
J∈J (A)

‖A−TJ gJ ‖

sup
D∈D+

‖(ADAT)−1AD‖ = max
J∈J (A)

‖A−TJ ‖

where J (A) is the set of column indices associ-

ated with nonsingular m×m submatrices of A.

Corollary:

The linear system arising in IPMs for LP

(A�AT)�y = A�r,

produces more accurate solutions than those one

could have expected from a \classical" worst-

case analysis.
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Dikin's result applies to diagonal positive de�-

nite weight matrices D.

Forsgren (1996) generalized it to diagonally dom-

inant weight matrices W .

Lemma:

Let A ∈ Rm×n be a full row rank matrix;

g be a vector of dimension n; and

W+ be the set of n× n diagonally dominant

weight matrices.

Then

sup
W∈W+

‖(AWAT)−1AWg‖

sup
W∈W+

‖(AWAT)−1AW‖

are bounded.

This Lemma extends Dikin's result to quadratic

and nonlinear optimization.
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Iterative Methods

Optimal Partition:

For basic variables: �j = xj/sj →∞;
For non-basic variables: �j = xj/sj → 0.

The spread of elements in � causes that A�AT

is very ill-conditioned. Consequently, any itera-

tive method su�ers from slow convergence. Yet,

with the right preconditioners iterative methods

have some promise.

There have been successful implementations of

PCG for structured problems.

Idea: Split A into basic and non-basic parts and

adjust preconditioner accordingly

H =

 −�
−1
B 0 BT

0 −�−1N NT

B N 0



Block-projection Methods are another promise.
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Interior Point Methods

This lecture treated:

• IPMs for LP;

• extension from LP to convex QP;

• extension from convex QP to convex NLP.

Conclusions:

• Interior Point Methods provide the uni�ed

framework for convex optimization.

• Interior Point Methods provide polynomial

algorithms for LP, QP and NLP.

• The linear algebra in LP, QP and NLP is

very similar.

• Use IPMs to solve very large problems.

Very Active Area These Days:

• Nonconvex optimization with IPMs.

IPMs in the Internet:

• LP FAQ (Frequently Asked Questions):

http://www-unix.mcs.anl.gov/otc/Guide/faq/

• Interior Point Methods On-Line:

http://www-unix.mcs.anl.gov/otc/InteriorPoint/

• NEOS (Network Enabled Opt. Services):

http://www-neos.mcs.anl.gov/
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