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Outline

Interior Point Methods:

• have been around for over 20 years...

• are competitive for small problems (≤ 1,000,000 variables)

• are the only real approach for large problems (≥ 1,000,000 variables)

Why are IPMs so efficient?

What can we do to improve them further?
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Interior Point Methods

• Fiacco & McCormick (1968)
handling inequality constraints - logarithmic barrier;
minimization with inequality constraints
replaced by a sequence of unconstrained minimizations

• Lagrange (1788)
handling equality constraints - multipliers;
minimization with equality constraints
replaced by unconstrained minimization

• Newton (1687)
solving unconstrained minimization problems;

Marsten, Subramanian, Saltzman, Lustig and Shanno:
“Interior point methods for linear programming:
Just call Newton, Lagrange, and Fiacco and McCormick!”,
Interfaces 20 (1990) No 4, pp. 105–116.
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First Order Optimality Conditions

Simplex Method: Interior Point Method:

Ax = b
ATy + s = c

XSe = 0
x, s ≥ 0.

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.

Basic: x > 0, s = 0 Nonbasic: x = 0, s > 0

x x

s s

"Basic": x > 0, s = 0 "Nonbasic": x = 0, s > 0

x x

s s

Theory: IPMs converge in O(
√

n) or O(n) iterations
Practice: IPMs converge in O(log n) iterations
... but one iteration may be expensive!
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Optimality Conditions: Newton Direction:

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.


 A 0 0

0 AT I
S 0 X





 ∆x

∆y
∆s


 =


 ξp

ξd

ξµ


 .

Linear Algebra involves an (ill-conditioned) scaling matrix Θ = XS−1.

Augmented System vs Normal Equations

LP QP NLP

[
Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q+Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q(x, y) A(x)T

A(x) −ZY−1

][
∆x
∆y

]
=

[
f
d

]

(AΘAT )∆y=g (A(Q+Θ−1)−1AT )∆y=g (AQ−1AT +ZY −1)∆y=g
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Theory of Interior Point Methods:

• very well understood for LP/QP problems
Wright, “Primal-Dual Interior-Point Methods”, SIAM, 1997.

• ongoing research on IPMs for NLP problems
Nocedal & Wright, “Numerical Optimization”, Springer, 1999.
Conn, Gould & Toint, “Trust-Region Methods”, SIAM, 2000.

Newton Liberation Front (Ph. Toint, 2004)

“Let the Newton method do the optimization”

in: Hager et al. (eds) Multiscale Optimization Methods and Applications.

The rest of the talk
−→ focuses on linear algebra issues.
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Direct Methods: Symmetric LDLT Factorization

Indefinite Quasidefinite Positive Definite

H =

[
Q AT

A 0

]
H =

[
Q AT

A −R

]
H = AQ−1AT

2×2 pivots needed 1×1 pivots (any sign) 1×1 pivots (positive)[
0 a
a 0

]
and

[
0 a
a d

]
strongly factorizable easy

Vanderbei, SIOPT (1995): Symmetric QDFM’s are strongly factorizable.
For any quasidefinite matrix there exists a Cholesky-like factorization

H̄ = LDLT,

where D is diagonal but not positive definite:
D has n negative pivots and m positive pivots.
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Minimum Degree Ordering

Sparse Matrix Pivot h11 Pivot h22

H =




x x x x
x x

x x x
x x x
x x x

x x x







p x x x
x x

x x f f x
x f x f x
x x f f x

x x x







x x x x
p x

x x x
x x x
x x x

x x x




Minimum degree ordering:
choose a diagonal element corresponding to a row with the min number of nonzeros.
Permute rows and columns of H accordingly.
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Nested Dissection:
5

6

1

4

8

9

10
3

2 7

11

Original Matrix Reordered Matrix

1 2 3 4 5 6 7 8 91011
1 x x x x
2 x x x x x
3 x x x x
4 x x x x x x
5 x x x x x
6 x x x x x
7 x x x x
8 x x x x x
9 x x x x

10 x x x x x x
11 x x x x x

1 2 3 5 6 8 9 10 11 4 7
1 x x x x
2 x x x x x
3 x x x x
5 x x x x x
6 x x x x x
8 x x x x x
9 x x x x

10 x x x x x x
11 x x x x x
4 x x x x x x
7 x x x x
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Matrix Cholesky Factor Elimination Tre


x x x
x x x

x x x x
x x x

x x x
x x x

x x x x x
x x x x x x x x







x
x

x x x
x

x
x

x x x x
x x x x x x x x




3 7

1 2 4 5

8

Supernodes

• small dense windows

• high level BLAS




x
x x
x x x

. . .

x x x x
x x x x
x x x x




or




x
x

x x
. . .

x x x x
x x x x
x x x x




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From Sparsity to Block-Sparsity:

Sparse Matrix Block-Sparse Matrix

H =




x x x x
x x
x x
x x


⇒L=




x
x x
x x x
x x x x








⇒L=







PHPT =




x x
x x

x x
x x x x


⇒L=




x
x

x
x x x x








⇒L=







Object-Oriented Parallel Solver ⇒ problems of size 106, 107, 108,109, ...
G. & Sarkissian, MP 96 (2003) 561-584.
G. & Grothey, SIOPT 13 (2003) 842-864.
G. & Grothey, AOR (to appear).

Talk of Andreas Grothey later today 4.00-4.25.
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Inefficient Direct Approach

Cholesky factors get sometimes hopelessly dense.
QAP (Quadratic Assignment Problems).

Problem Dimensions
rows columns nonzeros

qap12 3192 8856 38304
qap15 6330 22275 94950

Problem Normal Equations Augmented System
nz(AAt) nz(LLt) Flops nz(A) nz(LLt) Flops

qap12 74592 2135388 2.378e+9 38304 1969957 2.046e+9
qap15 186075 8191638 1.792e+10 94950 7374972 1.522e+10
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Iterative Methods
Normal Equations or Augmented System:

• NE is positive definite: can use conjugate gradients;

• AS is indefinite: can use BiCGSTAB, GMRES, QMR;

Oliveira PhD, Rice U., 1997; Oliveira & Sorensen LAA 394 (2005) 1-24.
→ It is better to precondition AS.
O, OS show that all preconditioners for the NE have an equivalent for the A
while the opposite is not true.
After all, NE is equivalent to a restricted order of pivoting in AS.[

Q AT

A 0

] [
∆x
∆y

]
=

[
f
d

]
.

• Optimization: KKT System

• PDE: Saddle Point Problem

Benzi, Golub & Liesen, “Numerical Solution of Saddle Point Problems”,
Acta Numerica 2005 (to appear).
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CG with Indefinite Preconditioner
Consider the indefinite matrix

H =

[
Q AT

A 0

]
,

where Q ∈ Rn×n is positive definite, and A ∈ Rm×n has full row rank.
The CG method may fail when applied to an indefinite system.

Rozlozńık & Simoncini, SIMAX 24 (2002) 368-391.
RS consider the preconditioner P which guarantees that all eigenvalues of th
preconditioned matrix P−1H are positive and bounded away from zero.

Although P−1H is indefinite

• the CG can be applied to this problem,

• the asymptotic rate of convergence of CG is approximately the same a
that obtained for a positive definite matrix with the same eigenvalues as th
original system.
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The Preconditioner P = EET should:
• be easy to compute

(significantly less expensive than Cholesky factor)

• be easy to invert

• produce good spectral properties of E−1HE−T (that is P−1H):
either have few distinct eigenvalues;
or have all eigenvalues in a small cluster: λmin ≤ λ ≤ λmax.

Examples:

• Gill, Murray, Ponceleon & Saunders, SIMAX 13 (1992) 292-311.

• Murphy, Golub & Wathen, SISC 21 (2000) 1969-1972.

• Keller, Gould & Wathen, SIMAX 21 (2000) 1300-1317.
Gould, Hribal & Nocedal, SISC 23 (2001) 1376-1395.

• Bergamaschi, G. & Zilli, COAP 28 (2004) 149-171.

• Golub & Grief, SISC 24 (2003) 2076-2092;
Grief, Golub & Varah, SIMAX (to appear).

• Bai, Golub & Ng, SIMAX 24 (2003) 603-626.
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Gill, Murray, Ponceleón, Saunders, SIMAX 13 (1992) 292-311.
Compute Bunch-Parlett-Kaufmann factorization

LDLT =

[
Q AT

A 0

]
,

where D is block-diagonal with 1× 1 and 2× 2 blocks.
Define the preconditioner P = LD̄LT , where D̄ is a pdf approximation of D:

For 1× 1 pivot:
replace dii by d̄ii = |dii|.
For 2× 2 pivot:

replace Di,i+1 =

[
α β
β γ

]
=

[
c s
s −c

] [
λ1

λ2

] [
c s
s −c

]

by D̄i,i+1 =

[
ᾱ β̄
β̄ γ̄

]
=

[
c s
s −c

] [
|λ1|

|λ2|

] [
c s
s −c

]
.

The preconditioned matrix has at most two distinct eigenvalues +1 and −1.
→ Use SYMMLQ (Paige and Saunders).
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Low Degree Minimum Polynomial
Murphy, Golub & Wathen, SISC 21 (2000) 1969-1972.
Consider the matrix

H =

[
Q AT

A 0

]
,

where Q ∈ Rn×n is positive definite, and A ∈ Rm×n has full row rank.

Consider the preconditioner which incorporates an exact Schur complement AQ−1

For example:

P1 =

[
Q 0
0 AQ−1AT

]
or P2 =

[
Q AT

0 AQ−1AT

]
.

The preconditioned matrices P−1H have only two or three distinct eigenvalues.

MGW conclude:
“The approximations of the Schur complement lead to preconditioners which ca
be very effective even though they are in no sense approximate inverses”.
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Indefinite Block Preconditioner
Consider again the matrix

H =

[
Q AT

A 0

]
,

where Q ∈ Rn×n is positive definite, and A ∈ Rm×n has full row rank.

Consider a preconditioner of the form:

P =

[
G AT

A 0

]
,

where G ∈ Rn×n is positive definite.

Keller, Gould & Wathen, SIMAX 21 (2000) 1300-1317.

Theorem. Assume that A has rank m (m < n).
Then, P−1H has at least 2m unit eigenvalues, and the other eigenvalues a
positive and satisfy

λmin(G−1Q) ≤ λ ≤ λmax(G
−1Q).
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How to choose G?

Bergamaschi, G. & Zilli, COAP 28 (2004) 149-171.
Augmented system in QP, NLP

H =

[
Q + Θ−1 AT

A 0

]
.

Drop off-diagonal elements from Q:

Replace Q + Θ−1 by D = diag(Q) + Θ−1.

• With diagonal matrix D we have a choice between

[
D AT

A 0

]
and AD−1AT .

• It is important to keep Θ−1 in the preconditioner. Θ is ill-conditioned:

For “basic” variables: Θj = xj/sj →∞ Θ−1
j → 0;

For “non-basic” variables: Θj = xj/sj → 0 Θ−1
j →∞.
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Motivation: Sparsity issues: irreducible blocks in QP.
Consider the matrices

Q =




x x
x x

x
x

x


 and A =




x x
x x

x x x
x x


 .

H =




x x x x
x x x x

x x x
x x

x x x
x x
x x

x x x
x x




→ H(2) =




x x x x f f
x x f f x x

x x x
x x

x x x
x f x f f f f
x f x f f f f
f x x x f f f f
f x x f f f f




.
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Spectral Analysis:
Eigenvalues of P−1H satisfy:

Qx +ATy = λDx +λATy
Ax = λAx.

If λ = 1, we are done. If λ 6= 1 the second equation yields Ax = 0.
After multiplying the first equation with xT , we get:

xTQx = λxTDx ⇒ λ =
xTQx

xTDx
= q(D−1Q).

The Rayleigh quotient of the generalized eigenproblem: Dv = µQv.
Since both D and Q are positive definite we have for every x ∈ Rn

0 < λmin(D
−1Q) ≤ xTQx

xTDx
≤ λmax(D

−1Q)

and finally
λmin(D

−1Q) ≤ λ ≤ λmax(D
−1Q).

Conclusion:
The preconditioner satisfies the requirements of Rozlozńık & Simoncini.
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Primal-Dual Regularization

Altman & G., OMS 11-12 (1999) 275-302.
Interpretation: proximal terms added to primal/dual objectives;
Dynamic regularization: correct only suspicious pivots.

Replace H =

[
Q AT

A 0

]
by HR =

[
Q AT

A 0

]
+

[
Rp 0
0 −Rd

]
.

Replace P =

[
D AT

A 0

]
by PR =

[
D AT

A 0

]
+

[
Rp 0
0 −Rd

]
.

Eigenvalues of the preconditioned matrix change:

λ(P−1H) =
xTQx

xTDx
is replaced by λ(P−1

R HR) =
xTQx + δ

xTDx + δ
,

where δ = xTRp x + yTRd y > 0.

The use of regularization improves the clustering of eigenvalues.
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Primal and Dual Regularization

Primal Problem Primal Regularized Problem

min zP = cTx+ 1
2x

TQx−µ
∑n

j=1 ln xj

s.t. Ax = b, x ≥ 0
min zP+1

2(x− x0)
TRp(x− x0)

s.t. Ax = b, x ≥ 0[
Q+Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
f
h

] [
Q+Θ−1+Rp AT

A 0

] [
∆x
∆y

]
=

[
f ′

h

]
.

Dual Problem Dual Regularized Problem

max zD = bTy− 1
2x

TQx+µ
∑n

j=1 ln sj

s.t. ATy + s−Qx = c,
s ≥ 0

max zD+1
2(y − y0)

TRd(y − y0)
s.t. ATy + s−Qx = c,

s ≥ 0[
Q+Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
f
h

] [
Q+Θ−1 AT

A −Rd

] [
∆x
∆y

]
=

[
f ′

h

]
.
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Augmented Lagrangian Regularization

Golub & Grief, SISC 24 (2003) 2076-2092;
Grief, Golub & Varah, SIMAX (to appear)
see also Fletcher (1975).

Replace H =

[
Q AT

A 0

]
by HW =

[
Q+ATWA AT

A 0

]

Replace

[
Q AT

A 0

] [
x
y

]
=

[
f
d

]
by

[
Q+ATWA AT

A 0

] [
x
y

]
=

[
f +ATWd

d

]
,

where W is a weight matrix, say, W = γI .

Dostál & Schöberl, COAP 30 (2005) 23-43.

→ Use Q + ATWA only in matrix-vector multiplications.
Application to numerical solution of elliptic variational inequalities.
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Skew-Hermitian Preconditioning

Bai, Golub & Ng, SIMAX 24 (2003) 603-626.

Replace

[
Q AT

A −Rd

]
by H =

[
Q AT

−A Rd

]
.

Define: H= 1
2(H+HT )=

[
Q

Rd

]
and K= 1

2(H−HT )=

[
AT

−A

]
.

Two splittings:
H = H +K = (H + αI)− (αI −K),

H = H +K = (K + αI)− (αI −H).

Stationary iteration alternating between these two splittings:

(H + αI)v = (αI −K)uk + b

(K + αI)uk+1 = (αI −H)v + b.

SIAM, Stockholm, May 2005 2
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After eliminating the intermediate variable v we get

uk+1 = Tαuk + g,

where
Tα = (K + αI)−1(αI −H)(H + αI)−1(αI −K).

An alternative correction form:

uk+1 = uk + P−1
α rk (rk = b−Huk),

with the preconditioner

Pα =
1

2α
(H + αI)(K + αI).

Inversions of the regularized matrices are needed:

H + αI =

[
Q

Rd

]
+ αI and K + αI =

[
AT

−A

]
+ αI.

Worry: it may be difficult to satisfy constraints with this preconditioner.
→ Thorough computational study needed.
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Keller, Gould & Wathen, SIMAX 21 (2000) 1300-1317.
Gould, Hribar & Nocedal, SISC 23 (2001) 1376-1395.

Null space representation of A: given a basic/nonbasic partition A = [B|N ] with

nonsingular B the columns of Z =

[
−B−1N

I

]
span null space of A.

Constraint Preconditioner

Replace H =


QBB + Θ−1

B QBN BT

QNB QNN + Θ−1
N NT

B N 0


 by P =


GBB GBN BT

GNB GNN NT

B N 0




Many options:

• drop QNB, QBN (that is, set GNB = 0 and GBN = 0);

• replace QBB + Θ−1
B by GBB = diag(QBB + Θ−1

B ) ;

• replace QNN + Θ−1
N by GNN = diag(QNN + Θ−1

N ) .
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Dollar, Gould & Wathen, RAL-TR-2004-036 (2004).

Two Options:

Option 1: V =

[
V1 V2

A

]
, Σ =

[
Σ1 ΣT

2

Σ2 Σ3

]

P = V ΣV T =

[
V1Σ1V

T
1 +V2Σ2V

T
1 +V1Σ

T
2 V T

2 +V2Σ3V
T
2 V1Σ1A

T +V2Σ2A
T

AΣ1V
T
1 +AΣT

2 V T
2 AΣ1A

T

]

Option 2: U =

[
U1 AT

U2

]
, Λ =

[
Λ1 ΛT

2

Λ2 Λ3

]

P = UΛUT =

[
U1Λ1U

T
1 +ATΛ2U

T
1 +U1Λ

T
2 A+ATΛ3A U1Λ1U

T
2 +ATΛ2U

T
2

U2Λ1U
T
1 +U2Λ

T
2 A U2Λ1U

T
2

]

Option 2 offers more flexibility in reproducing:

• (2,1) block equal to A; and

• (2,2) block equal to 0.
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Conclusions:

Direct Methods are reliable and well-suited to structure exploitation
but occasionally get excessively expensive.

Iterative Methods are promising
but need tuning and depend upon preconditioners.

What do we need?

• new inverse representation

• new preconditioners

Ultimate Objective

Find an inverse of

[
Q AT

A 0

]
with O(nzQ) +O(nzA) nonzeros.
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