Integrability in AdS/CFT

Pedro Vieira ENS, Paris and CFP, Porto

Mars 2008, Edimburg

N=4 Supersymmetric Yang-Mill Theory

(Superconformal 4d gauge theory)

Type IIB superstrings in AdS₅xS⁵

(Two dimensional conformal sigma model)

l/g

$\mathcal{L} \sim tr \left(F_{\mu\nu}^2 + (D_{\mu}\Phi_i)^2 - [\Phi_i, \Phi_j]^2 + \Psi\Gamma_{\mu}\mathcal{D}_{\mu}\Psi\right)$

$\mathcal{L} \sim tr \left(F_{\mu\nu}^2 + (D_{\mu}\Phi_i)^2 - [\Phi_i, \Phi_j]^2 + \Psi \Gamma_{\mu}\mathcal{D}_{\mu}\Psi \right)$

The conformal symmetry $SO(2,4) \simeq SU(2,2)$

$\mathcal{L} \sim \mathrm{tr} \left(\mathrm{F}_{\mu\nu}^2 + (\mathrm{D}_{\mu}\Phi_{\mathbf{i}})^2 - [\Phi_{\mathbf{i}}, \Phi_{\mathbf{j}}]^2 + \Psi \Gamma_{\mu}\mathcal{D}_{\mu}\Psi \right)$

The conformal symmetry

$$SO(2,4) \simeq SU(2,2)$$

And the R symmetry

 $SO(6) \simeq SU(4)$

$$\mathcal{L} \sim \mathrm{tr} \left(\mathrm{F}_{\mu\nu}^{2} + (\mathrm{D}_{\mu}\Phi_{\mathbf{i}})^{2} - [\Phi_{\mathbf{i}},\Phi_{\mathbf{j}}]^{2} + \Psi\Gamma_{\mu}\mathcal{D}_{\mu}\Psi \right)$$

The conformal symmetry

$$SO(2,4) \simeq SU(2,2)$$

And the R symmetry

 $SO(6) \simeq SU(4)$

Combine with the N=4 supersymmetry

 $\mathcal{L} \sim tr \left(F_{\mu\nu}^2 + (D_{\mu}\Phi_i)^2 - [\Phi_i, \Phi_j]^2 + \Psi\Gamma_{\mu}\mathcal{D}_{\mu}\Psi\right)$

The conformal symmetry

$$SO(2,4) \simeq SU(2,2)$$

And the R symmetry $SO(6) \simeq SU(4)$

Combine with the N=4 supersymmetry

To make a superconformal symmetry with symmetry group

PSU(2,2|4)

tr $(\Phi_1 \Phi_2 (D_3)^2 (\Phi_1)^5 \dots)$

tr
$$(\Phi_1 \Phi_2 (D_3)^2 (\Phi_1)^5 \dots)$$

Dilatation operator

$$\mathcal{O}_A^{ren}(x) = (e^{\hat{H}\log\Lambda})_{AB} \mathcal{O}_B(x)$$
$$\langle \mathcal{O}_A^{ren}(x) \mathcal{O}_B^{ren}(y) \rangle = \frac{\delta_{AB}}{|x-y|^{2\Delta}}$$

tr
$$(\Phi_1 \Phi_2 (D_3)^2 (\Phi_1)^5 \dots)$$

Dilatation operator

Integrable Hamiltonian of a PSU(2,2|4) spin chain

[Minahan, Zarembo; Beisert]

$$\mathcal{O}_A^{ren}(x) = (e^{H \log \Lambda})_{AB} \mathcal{O}_B(x)$$

$$\langle \mathcal{O}_A^{ren}(x)\mathcal{O}_B^{ren}(y)\rangle = \frac{\delta_{AB}}{|x-y|^{2\Delta}}$$

H is nearest neighbors to leading order in perturbation theory, next to nearest neighbors at next to leading order etc...

5

Particles transform in PSU(2|2)^2 extended

[Beisert]

2d S-matrix in N=4

$H \longrightarrow S(p,k)$

 $PSU(2,2|4) \longrightarrow PSU(2|2)^2$ extended

[Beisert; Aryutunov, Frolov, Zamaklar] S-matrix (up to a scalar factor) and magnon dispersion relation almost fixed by symmetry

$$\Delta = J + \sum_{j=1}^{M} \sqrt{1 + \lambda \sin^2 \frac{p_j}{2}} + \dots$$

[Staudacher; Beisert, Staudacher; Beisert, Eden, Staudacher; Beisert, Hernandez, Lopez; Arutyunov, Frolov, Zamaklar]

Explicitly

$$\begin{split} e^{i\eta\phi_1 - i\eta\phi_2} &= \prod_{j=1}^{K_2} \frac{u_{1,k} - u_{2,j} + \frac{i}{2}}{u_{1,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - 1/x_{1,k}x_{4,j}^+}{1 - 1/x_{1,k}x_{4,j}^-}, & \text{Staudacher; Beisert, Hernandez, Lopez] \\ e^{i\eta\phi_2 - i\eta\phi_3} &= \prod_{j\neq k}^{K_2} \frac{u_{2,k} - u_{2,j} - i}{u_{2,k} - u_{2,j} + i} \prod_{j=1}^{K_3} \frac{u_{2,k} - u_{3,j} + \frac{i}{2}}{u_{2,k} - u_{3,j} - \frac{i}{2}} \prod_{j=1}^{K_1} \frac{u_{2,k} - u_{1,j} + \frac{i}{2}}{u_{2,k} - u_{1,j} - \frac{i}{2}}, \\ e^{i\eta\phi_3 - i\eta\phi_4} &= \prod_{j=1}^{K_2} \frac{u_{3,k} - u_{2,j} + \frac{i}{2}}{u_{3,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{3,k} - x_{4,j}^+}{x_{3,k} - x_{4,j}^-}, \\ e^{i\eta\phi_4 - i\eta\phi_5} &= \left(\frac{x_{4,k}^-}{x_{4,k}^+}\right)^{\eta L} \prod_{j\neq k}^{K_4} \frac{u_{4,k} - u_{4,j} + i}{u_{4,k} - u_{4,j} - i} \prod_{j=1}^{K_4} \left(\frac{1 - 1/x_{4,k}^+ x_{4,j}^-}{1 - 1/x_{4,k}^- x_{4,j}^+}\right)^{\eta - 1} \left(\sigma^2(x_{4,k}, x_{4,j})\right)^{\eta} \\ &\qquad \times \prod_{j=1}^{K_1} \frac{1 - 1/x_{4,k}^- x_{1,j}}{1 - 1/x_{4,k}^+ x_{1,j}} \prod_{j=1}^{K_3} \frac{x_{4,k}^- - x_{3,j}}{x_{4,k}^+ - x_{3,j}} \prod_{j=1}^{K_5} \frac{x_{4,k}^- - x_{5,j}}{x_{4,k}^+ - x_{5,j}} \prod_{j=1}^{K_7} \frac{1 - 1/x_{4,k}^+ x_{7,j}}{1 - 1/x_{4,k}^+ x_{7,j}}, \\ e^{i\eta\phi_5 - i\eta\phi_6} &= \prod_{j=1}^{K_6} \frac{u_{5,k} - u_{6,j} + \frac{i}{2}}{u_{5,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{5,k} - x_{4,j}^+}{x_{5,k} - x_{4,j}^+}, \\ e^{i\eta\phi_7 - i\eta\phi_8} &= \prod_{j=1}^{K_6} \frac{u_{7,k} - u_{6,j} + \frac{i}{2}}{u_{7,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - 1/x_{7,k} x_{4,j}^+}{1 - 1/x_{7,k} x_{4,j}^+}. \\ \end{array}$$

 $\Delta_{\mathrm{tr}(\Phi_{\mathrm{i}}^{2})}(g) = ?$

Konishi as 2 magnon state:

$$\Delta_{\mathrm{tr}(\Phi_{\mathrm{i}}^2)}(g) = ?$$

Konishi as 2 magnon state:

$$\Delta_{\mathrm{tr}(\Phi_{\mathrm{i}}^2)}(g) = ?$$

Konishi as 2 magnon state:

YM, small g

Strings, large g

From ∞ to finite volume

[Beisert; Aryutunov, Frolov, Plefka, Zamaklar; Hofman, Maldacena; Vicedo]

$$\epsilon_{\infty}(p) = \sqrt{1 + \lambda \sin^2 \frac{p}{2}} = \sqrt{\lambda} \sin \frac{p}{2} + 0 + \mathcal{O}(1/\sqrt{\lambda})$$

$$\epsilon(p) = \epsilon_{\infty}(p) + \delta\epsilon(p)$$

[Aryutunov, Frolov, Zamaklar] [Janik, Lukowski] [Minahan, Sax; Hatsuda, Suzuki] [Gromov, Schafer-Nameki, PV]

From ∞ to finite volume

[Beisert; Aryutunov, Frolov, Plefka, Zamaklar; Hofman, Maldacena; Vicedo]

$$\epsilon(p) = \epsilon_{\infty}(p) + \delta\epsilon(p)$$

[Aryutunov, Frolov, Zamaklar] [Janik, Lukowski] [Minahan, Sax; Hatsuda, Suzuki] [Gromov, Schafer-Nameki, PV]

$$\begin{split} e^{i\eta\phi_1 - i\eta\phi_2} &= \prod_{j=1}^{K_2} \frac{u_{1,k} - u_{2,j} + \frac{i}{2}}{u_{1,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - 1/x_{1,k}x_{4,j}^+}{1 - 1/x_{1,k}x_{4,j}^-}, & \text{Staudacher; Beisert, Hernandez, Lopez] \\ e^{i\eta\phi_2 - i\eta\phi_3} &= \prod_{j\neq k}^{K_2} \frac{u_{2,k} - u_{2,j} - i}{u_{2,k} - u_{2,j} + i} \prod_{j=1}^{K_3} \frac{u_{2,k} - u_{3,j} + \frac{i}{2}}{u_{2,k} - u_{3,j} - \frac{i}{2}} \prod_{j=1}^{K_1} \frac{u_{2,k} - u_{1,j} + \frac{i}{2}}{u_{2,k} - u_{1,j} - \frac{i}{2}}, \\ e^{i\eta\phi_3 - i\eta\phi_4} &= \prod_{j=1}^{K_2} \frac{u_{3,k} - u_{2,j} + \frac{i}{2}}{u_{3,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{3,k} - x_{4,j}^+}{x_{3,k} - x_{4,j}^-}, \\ e^{i\eta\phi_4 - i\eta\phi_5} &= \left(\frac{x_{4,k}^-}{x_{4,k}^+}\right)^{\eta L} \prod_{j\neq k}^{K_4} \frac{u_{4,k} - u_{4,j} + i}{u_{4,k} - u_{4,j} - i} \prod_{j=1}^{K_4} \left(\frac{1 - 1/x_{4,k}^+ x_{4,j}^-}{1 - 1/x_{4,k}^- x_{4,j}^+}\right)^{\eta - 1} \left(\sigma^2(x_{4,k}, x_{4,j})\right)^{\eta} \\ &\qquad \times \prod_{j=1}^{K_1} \frac{1 - 1/x_{4,k}^- x_{1,j}}{1 - 1/x_{4,k}^+ x_{1,j}} \prod_{j=1}^{K_3} \frac{x_{4,k}^- - x_{3,j}}{x_{4,k}^+ - x_{3,j}} \prod_{j=1}^{K_5} \frac{x_{4,k}^- - x_{5,j}}{x_{4,k}^+ - x_{5,j}} \prod_{j=1}^{K_7} \frac{1 - 1/x_{4,k}^+ x_{7,j}}{1 - 1/x_{4,k}^+ x_{7,j}}, \\ e^{i\eta\phi_5 - i\eta\phi_6} &= \prod_{j=1}^{K_6} \frac{u_{5,k} - u_{6,j} + \frac{i}{2}}{u_{5,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{5,k} - x_{4,j}^+}{x_{5,k} - x_{4,j}^+}, \\ e^{i\eta\phi_7 - i\eta\phi_8} &= \prod_{j=1}^{K_6} \frac{u_{7,k} - u_{6,j} + \frac{i}{2}}{u_{7,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - 1/x_{7,k} x_{4,j}^+}{1 - 1/x_{7,k} x_{4,j}^+}. \\ \end{array}$$

Output

Scaling limit

[Beisert, Kazakov, Sakai, Zarembo]

Bethe Equations _____ (8-sheet) Riemann Surface

Time to go to the string side!

IIB Superstrings AdS in AdS₅xS⁵ $S \sim \int d\tau d\sigma \left[(\partial \vec{n})^2 + fermions \right]$ Χ

AdS

IIB Superstrings in AdS₅xS⁵

Description of the full theory in Pedro III this afternoon

Χ

Algebraic Curves

Classical motion

$g(\sigma,\tau) \in PSU(2,2|4)$

Classical Strings

Algebraic Curves

Quantization

Quantization

Discretization!

Cuts should be the condensation of the Bethe roots of some String Bethe Equations.

Quantization

After lunch in Pedro II

Cuts should be the condensation of the Bethe roots of some String Bethe Equations.

Integrability in AdS/CFT Summary of the state of the art

g

l/g

