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DEL PEZZO SURFACES WITH INFINITE AUTOMORPHISM GROUPS

IVAN CHELTSOV AND YURI PROKHOROV

Abstract. We classify del Pezzo surfaces with Du Val singularities that have infinite automor-
phism groups, and describe the connected components of their automorphisms groups.

Throughout this paper, we always assume that all varieties are projective and defined over
an algebraically closed field k of characteristic 0.

1. Introduction

Automorphism groups of smooth del Pezzo surfaces are well-studied (see, for example, [11, 12]).
In particular, if X is a smooth del Pezzo surface, then Aut(X) is infinite if and only if X is toric.
Moreover, if X is a smooth toric del Pezzo surface, then Aut0(X) can be described as follows:

K2
X Aut0(X) equation & total space

6 G2
m u0v0w0 = u1v1w1 P1 × P1 × P1

7 B2 × B2

8 G2
a ⋊GL2(k) u0v0 = u1v1 P2 × P1

8 PGL2(k)× PGL2(k) — P1 × P1

9 PGL3(k) — P2

where Ga is a one-dimensional unipotent additive group, Gm is a one-dimensional algebraic torus,
and B2 is the Borel subgroup of PGL2(k). In this paper, we prove similar result for del Pezzo
surfaces with at worst Du Val singularities. For short, we call such surfaces Du Val del Pezzo

surfaces. Our main result is the following.

Main Theorem. Let X be a Du Val del Pezzo surface. Then the group Aut(X) is infinite if and

only if X is described in Big Table in Section 8.

Everywhere below the number n0 refers to the corresponding surface in Big Table in Section 8.
As a consequence of our classification we have the following

Corollary 1.1. Let X be a Du Val del Pezzo surface. Then the group Aut(X) is not reductive if

and only if X is one of the 23 surfaces 7o, 14o, 15o, 18o, 24o, 25o, 26o, 27o, 28o, 31o, 36o, 37o, 38o,
39o, 42o, 43o, 44o, 45o, 46o, 48o, 49o, 50o, 51o.

Thus, the surfaces listed in this corollary are not K-polystable [1, 21], which is known (see [24]).

Corollary 1.2. Let X be a Du Val del Pezzo surface.

(i) If K2
X = 1 and Aut(X) is infinite, then ρ(X) = 1.

(ii) If K2
X > 1 and ρ(X) = 1, then Aut(X) is infinite.

(iii) If K2
X > 6 or K2

X = 5 and X is singular, then Aut(X) is infinite.

Many particular parts of our classification have been previously studied from different perspec-
tives. For examples, the Du Val del Pezzo surfaces admitting an effective action of the group G2

a

and Ga ⋊ Gm have been classified in [9, 10]. The classification of toric Du Val del Pezzo surfaces
is well-known for specialists (see e.g. [25]). Du Val del Pezzo surfaces that admit a faithful action
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of the group Gm have been studied in [2, 15, 16] in terms of their Cox rings. Moreover, when
we were finishing the final version of this paper, we were informed that Main Theorem has been
independently proven in [20] using completely different approach, which also works in positive
characteristic.

Note that the complete classification of all Du Val del Pezzo surfaces have been known for a
long time [13, 11]. The basic problem is that its is very huge and to choose surfaces with infinite
automorphism group typically takes a lot of efforts.

Remark 1.3. Almost all surfaces in Big Table are explicitly given by their defining equations,
since they are not always uniquely determined by their degree and singularities. For example,
the cubic surface in P3 given by

x3x
2
0 + x31 + x32 + x0x1x2 = 0

has one singular point of type D4, its automorphism group is finite, and it is not isomorphic to
the cubic surface 22o, which has the same singularity. Similarly, the quartic surface in the weighted
projective space P(1, 1, 1, 2) that is given by the equation

y22 = y31y
′′

1 + y′41 + y′21 y
2
1

is a del Pezzo surface of degree 2 that has one singular point of type E6. It is not isomorphic to
the del Pezzo surface 11o, which has the same degree and the same singularity. There are more
examples like this: the surface 1o and the sextic surface in P(1, 1, 2, 3) given by

y23 = y32 + y′1y
5
1 + y22y

2
1

are the only del Pezzo surfaces of degree 1 with singular point of type E8. They are not isomorphic.
In fact, the latter surface is the only Du Val del Pezzo surface whose class group is Z that does
not appear in our Big Table (see Remark B.5).

Let us briefly describe the structure of this paper. In Section 2, we present several basic facts
about Du Val del Pezzo surfaces which are used in the proof of Main Theorem. In Section 3, we
prove Theorem 3.8, which together with Main Theorem imply

Corollary 1.4. Let X be a Du Val del Pezzo surface with K2
X > 3, and let τ(X) be its Fano–Weil

index. Suppose that τ(X) > 1. Then Aut(X) is infinite.

In Section 4, we prove Main Theorem for del Pezzo surfaces of degree > 4. Then, in Sections 5,
6, 7, we prove Main Theorem for del Pezzo surfaces of degree 1, 2, 3, respectively. In Section 8,
we present Big Table. In Appendix A, we describe lines on del Pezzo surfaces that appear in
Big Table together with the dual graphs of the curves with negative self-intersection numbers on
their minimal resolutions. Finally, in Appendix B, we will recall classification of Du Val del Pezzo
surfaces whose Weil divisor class group is cyclic, and present an alternative proof of Main Theorem
for them.

Notations. Throughout this paper, we will use the following notation:

• µn is a cyclic subgroup of order n.
• Ga is a one-dimensional unipotent additive group.
• Gm is a one-dimensional algebraic torus.
• Bn is a Borel subgroup of PGLn(k).
• Un is a maximal unipotent subgroup of PGLn(k).
• Ga ⋊(n) Gm is a semidirect product Ga and Gm such that Gm acts on Ga as x 7→ tnx.
This group is isomorphic to the following group:{(

tr 0
a ts

)
∈ GL2(k)

∣∣∣∣ t ∈ k∗ and a ∈ k

}
,
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where n = s− r. Indeed, the required isomorphism follows from
(
tr 0
0 ts

)(
1 0
a 1

)(
tr 0
0 ts

)
−1

=

(
1 0

ats−r 1

)
.

Observe that Ga ⋊(0) Gm = Ga ×Gm, Ga ⋊(1) Gm = B2 and

Ga ⋊(n) Gm
∼= Ga ⋊(−n) Gm.

Therefore, we will always assume that n > 0. If n > 0, the center of Ga ⋊(n) Gm is µn.
This implies that Ga ⋊(n1) Gm

∼= Ga ⋊(n2) Gm ⇐⇒ n1 = ±n2.
• Fn is the Hirzebruch surface.
• P(a1, . . . , an) is the weighted projective space.
• For a weighted projective space P(a0, a1, . . . , an), we denote by ya0 , ya1, . . . , yan the coor-
dinates on it of weights a0, a1, . . . , an, respectively.

• For a variety X , we denote by Sing(X) the set of its singular points.
• For a variety X , we denote by ρ(X) the rank of the Weil divisor class group Cl(X).
• For a variety X and its (possibly reducible) reduced subvariety Y ⊆ X , Aut(X, Y ) denotes
the group consisting of all automorphisms in Aut(X) that maps Y into itself.

• For a surface X with Du Val singularities, Type(X) denotes the type of its singularities.
If Type(X) = D42A1, then Sing(X) consists of a point of type D4, and 2 points of type A1.

• For a Du Val del Pezzo surface X , τ(X) denotes its Fano–Weil index, which is defined as
follows:

τ(X) = max
{
t ∈ Z

∣∣ −KX ∼ tA, where A is a Weil divisor on X
}
.

Acknowledgments. This work was supported by the Royal Society grant No. IES\R1\180205
and by the Russian Academic Excellence Project 5-100.

The authors would like to thank the anonymous referee for many valuable advices that helped
to improve this paper.

2. Del Pezzo surfaces with Du Val singularities

Let X be a Du Val del Pezzo surface with d := K2
X . Then d is known as the degree of the sur-

face X . Let µ : X̃ → X be the minimal resolution of singularities. Then

K
X̃
∼ µ∗KX ,

so that X̃ is a weak del Pezzo surface, that is, the anticanonical divisor −K
X̃

is nef and big.

By the Noether formula d = 10−ρ(X) 6 9 and by the genus formula every irreducible curve on X̃
with negative self-intersection number is either (−1) or (−2)-curve. Moreover, one of the following
holds (see [4, 17]):

(i) K2
X = 9 and X̃ ∼= X ∼= P2;

(ii) K2
X = 8 and X̃ ∼= X ∼= F1;

(iii) K2
X = 8 and X̃ ∼= X ∼= P1 × P1;

(iv) K2
X = 8, X̃ ∼= F2 and X is a quadric cone in P3;

(v) K2
X 6 7 and there exists a Aut0(X)-equivariant diagram

(2.1)
X̃

µ

%%❑
❑❑

❑❑
❑ϕ

yyss
ss
ss

P2 X.

where ϕ is a suitable contraction of (−1)-curves.
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Moreover, it follows from the Kawamata–Viehweg vanishing and the exponential exact sequence
that the group Pic(X) is torsion free.

Corollary 2.2. Let G be a connected algebraic subgroup in Aut(X). Suppose that d = K2
X 6 7.

Then G is isomorphic to a subgroup of the following group:






a11 0 0
a21 a22 0
a31 a32 1


 ∈ GL3(k)

∣∣∣∣∣∣
aij ∈ k, a11 6= 0, a22 6= 0





∼= U3 ⋊G2
m.

In particular, the group G is solvable. If G is reductive and non-trivial, then G ∼= Gm or G ∼= G2
m.

Similarly, if G is unipotent, then G ∼= Ga or G ∼= G2
a or G ∼= U3.

Proof. This follows from the fact that the diagram (2.1) is G-equivariant. �

Example 2.3 ([7, Proposition 8.1]). Suppose that d = 7 andX is singular. The surfaceX is unique.

The morphism ϕ is the blow up of two points, X̃ contains unique (−2)-curve, and Type(X) = A1.
The surface X contains two (−1)-curves. The dual graph of curves with negative self-intersection
numbers has the form

◦ • •

where • denotes a (−1)-curve, and ◦ denotes the (−2)-curve. Using (2.1), we see that

Aut0(X) ∼= Aut(P2, ℓ, P ) ∼= B3,

where ℓ is a line on P2, and P is a point in ℓ. Note that X is the surface 48o.

The type Type(X) does not always determine the dual graph of curves with negative self-

intersection numbers in X̃. However, this graph is always determined by the type Type(X) and

the number of (−1)-curves in X̃. In the following, we denote by #(X) the number of (−1)-curves

in the surface X̃.

Example 2.4. If d = 6 and Type(X) = A1, then X is one of the surfaces 45o or 46o in Big Table.
If X is the surface 45o, then #(X) = 3. On the other hand, if X is the surface 46o, then #(X) = 4.

The dual graph of curves with negative self-intersection numbers in X̃ is given in Appendix A.

Using the Riemann–Roch formula and Kawamata–Viehweg vanishing, we get dim | −KX | = d.
Let Φ: X 99K Pd be the rational map given by | −KX |. The linear system | −KX | does not have
fixed components, and it contains a smooth elliptic curve (see [8]). Using this fact, one can prove

Theorem 2.5 ([8, 17]). The following assertions hold:

(i) if d > 2, then | −KX | is base point free, so that Φ is a morphism;

(ii) if d > 3, then −KX is very ample, so that Φ is an embedding;

(iii) if d = 3, then Φ(X) is a cubic surface in P3;

(iv) if d > 4, then Φ(X) is an intersection of quadrics in Pd;

(v) if d = 2, then Φ is a double cover that is branched over a possibly reducible quartic curve,

so that X is a hypersurface in P(1, 1, 1, 2) of degree 4;
(vi) if d = 1, then |−KX | is an elliptic pencil, its base locus consists of one point O /∈ Sing(X),

and every curve in | −KX | is irreducible and smooth at O;
(vii) if d = 1, then |−2KX | defines a double cover X → P(1, 1, 2) branched over a sextic curve,

so that X is a hypersurface in P(1, 1, 2, 3) of degree 6.

The number of (−1)-curves in X̃ is finite.

Definition 2.6. An irreducible curve L ⊂ X is a line if L = µ(L̃) for a (−1)-curve L̃ ⊂ X̃ .
4



If d > 3, then lines in X are usual (projective) lines in Φ(X) ⊂ Pd. Conversely, if d > 3, then
lines in Φ(X) are lines in the sense of Definition 2.6. Moreover, if d = 2, then lines in X are
smooth rational curve. Furthermore, if d = 1 and L is a line in X , then

• either L is singular curve in | −KX | such that Sing(L) ⊂ Sing(X),
• or L is a smooth rational curve that does not contain the base point of the pencil | −KX |.

Note that #(X) is the number of lines in X . Then #(X) > 0 unless X is P2, P1 ×P1 or P(1, 1, 2).

Lemma 2.7. Assume that d > 3. Let P be a point in X, and let #(X,P ) be the number of lines

in X passing through P .

(i) If P ∈ X is smooth, then

#(X,P ) 6

{
3 if d = 3,

2 if d > 4.

(ii) If P ∈ X is singular, then

#(X,P ) 6





6 if d = 3,

4 if d = 4,

3 if d > 5.

Proof. Let L1, . . . , Lr be all the lines on X passing through P , and let TP,X ⊂ Pd be the embedded
tangents space to X at the point P . Then

r⋃

i=1

Li ⊆ X ∩ TP,X .

If P ∈ X is a smooth point, then dimTP,X = 2, so that r 6 d. Moreover, if d > 4, then r 6 2,
because X is an intersection of quadrics in this case. Thus, we may assume that P is a singular
point of the surface X . Then dimTP,X = 3, since P is a Du Val singular point of the surface X .
Hence, if d > 4, then r 6 4, because X is an intersection of quadrics in this case.

Suppose that d = 3. We may assume that P = (0 : 0 : 0 : 1). Then X is given in P3 by

x3q2(x0, x1, x2) + q3(x0, x1, x2) = 0,

where q2 and q3 are homogeneous forms of degree 2 and 3, respectively. Then the (set-theoretic)
union of the lines L1, . . . , Lr is given by the system of equations q2 = q3 = 0, so that r 6 6.

To complete the proof, we may assume that d > 5. We only consider the case d = 5, since
the proof is similar in the remaining cases. Let us show that r 6 3. To do this, suppose that r > 4.
Let us seek for a contradiction.

Let Q be a point in X that is not contained in any line in X (it exists since #(X) is finite).
Keeping in mind that the Zariski tangent space of the surfaceX at the point P is three-dimensional,
we conclude that there exists a hyperplane H in P5 that contains the lines L1, L2, L3, L4 and
the point Q. Then

H
∣∣
X
= C +

4∑

i=1

Li,

where C is a curve in X that passes through Q. Counting degrees, we see that deg(C) 6 1, so
that C is a line, which contradicts the choice of the point Q. �

Lemma 2.8. Suppose that d 6 7. For any singular point of X there is a line passing through it.

Proof. The required assertion follows from the existence of the diagram (2.1). �
5



Since the Du Val singularities are Q-factorial, ρ(X) is equal to the rank of the Weil divisor class
group Cl(X).

Lemma 2.9. Suppose that d 6 7. Then the following assertions hold.

(i) The group Cl(X) is generated by the classes of lines in X.

(ii) Let Cl(X)tors ⊂ Cl(X) be the torsion subgroup and let n be the order of the group Cl(X)tors.
There is a Galois abelian cover π : Y → X of degree n which is étale outside of Sing(X),
where Y is a Du Val del Pezzo surface such that

K2
Y = d n,

so that n 6 9
d
.

(iii) If ρ(X) = 1 and X contains two distinct lines L and L′, then L 6∼ L′ and L ∼Q L
′.

(iv) Every extremal ray of the Mori cone NE(X) is generated by the class of a line.

(v) For every effective divisor D ∈ Cl(X), there are a0, a1, . . . , ar ∈ Z>0 such that

D ∼ a0(−KX) +

r∑

i=1

aiLi

where L1, . . . , Lr are lines in X, r = #(X), and a0 = 0 if d 6= 1.

Proof. The assertion (ii) follows from a well-known construction, see e.g. [27, § 3.6].
To prove the assertion (iii), observe that

L ∼Q L
′,

because the numerical and Q-linear equivalences on the surface X coincide. But L 6∼ L′, because
otherwise X would contain a pencil of lines, which contradicts #(X) <∞.

The assertion (iv) follows from Lemma 2.12 below.

Let us prove the assertion (v). Let D̃ be the proper transform on X̃ of the divisorD. To prove (v),

it is sufficient to show that the divisor D̃ is rationally equivalent to a convex integral linear
combination of (−1) and (−2)-curves (and −KX̃ if d = 1).

We may assume that D̃ is an irreducible curve.

Let us use induction on dim |D̃|. If dim |D̃| = 0, then D̃ is either a (−1) or (−2)-curve by
the Riemann-Roch formula and Kawamata-Viehweg vanishing. This is the base of induction.

Suppose that dim |D̃| > 1 and the required assertion holds for any effective divisor D̃′ on X̃

such that dim |D̃′| < dim |D̃|. Observe that D̃ is nef. Thus, if D̃2 = 0, then |D̃| is base point free

and gives a conic bundle X̃ → P1, which must have at least one reducible fiber, because ρ(X̃) > 3.

Hence, if D̃2 = 0, then we can proceed by induction. Thus, we may assume that D̃2 > 1.

If D̃ is not ample, then X̃ contains an irreducible curve C̃ such that D̃ · C̃ = 0, which implies

that C̃2 < 0 by the Hodge index theorem, so that C̃2 = −1 or C̃2 = −2, which gives

dim |D̃ − C̃| > dim |D̃| − 1 > 0.

Hence, if D̃ is not ample, then there a exists an effective divisor D̃′ such that D̃ ∼ D̃′ + C̃, so that
we can proceed by induction. Therefore, we may assume that D̃ is ample.

Suppose that D̃ ∼ −K
X̃

and K2
X̃
> 2. Then for any (−1)-curve C̃ on X̃ we have

dim |D̃ − C̃| > dim |D̃| − 2 > 0,

so that there is an effective divisor D̃′ such that D̃ ∼ D̃′ + C̃, and we can proceed by induction.

Finally, we assume that D̃ is ample and D̃ 6∼ −KX̃ . There is a ∈ N such that D̃+aKX̃ is nef but

not ample, because the Mori cone of the surface X̃ is generated by (−1)-curves and (−2)-curves.
6



Now using the Riemann-Roch formula and Kawamata–Viehweg vanishing, we see that the linear

system |D̃ + aK
X̃
| contains a divisor D̃′, so that

D̃ ∼ D̃′ − aKX̃ ,

where D̃′ and −K
X̃

are both decomposable in the required form. �

Corollary 2.10. One has #(X) > ρ(X). Moreover, if #(X) = ρ(X), then Cl(X) is torsion free,

and every line in X generates an extremal ray of the Mori cone NE(X).

Corollary 2.11. Suppose that d 6 7, and X admits a faithful G2
a-action. Then #(X) = ρ(X).

Moreover, the complement to the open orbit coincides with the union of lines.

Proof. Let U be the open G2
a-orbit, let Ũ = µ−1(U), let U = ϕ(Ũ), let B = X \ U , let B̃ = X̃ \ Ũ ,

and let B = P2 \ U . Then

U ∼= Ũ ∼= U ∼= A2,

so that the curve B must be a line. Then B̃ has ρ(X̃) components, and B has ρ(X) components.

Since all (−1)-curves on X̃ are contained in B̃, we see that all the lines in X are contained in B.
This gives #(X) 6 ρ(X). But #(X) > ρ(X) by Corollary 2.10. �

Observe that a line L on the surface X generates an extremal ray of NE(X) ⇐⇒ L2 6 0.

Lemma 2.12 ([23, Proposition 1.2],[26, § 7.1]). Let V be a surface that has Du Val singularities,

and let ψ : V → Y be an extremal Mori contraction. Then one of the following holds:

(i) either ψ is a weighted blow up of a smooth point in Y with weights (1, n), the exceptional

curve E is smooth and rational, one has E2 = − 1
n
, and E ∩ Sing(V ) consists of one point

which is of type An−1 on V ;

(ii) or ψ is a conic bundle, one has −KV · F = 2 and Fred
∼= P1 for any its scheme fiber F ,

and if F is not reduced, then one of the following three cases holds:

• F ∩ Sing(V ) consists of two singular points of type A1;

• F ∩ Sing(V ) consists of one singular point of type A3;

• F ∩ Sing(V ) consists of one singular point of type Dn, where n > 4.

In the case (i), we say that ψ is a (1, n)-contraction.

Applying this lemma to our Du Val del Pezzo surface X , we get

Corollary 2.13. Let E be an irreducible curve on X such that E2 < 0. Then E is a line on X,

and E is an exceptional divisor of a (1, n)-contraction for some n > 1.

Corollary 2.14. Suppose there exists a birational morphism ψ : X → Y that is a (1, n)-contraction,
and let E be the exceptional curve of the morphism ψ. Then

• the point ψ(E) is a smooth point of the surface Y ;
• Y is a Du Val del Pezzo surface, K2

Y = d+ n and ρ(Y ) = ρ(X)− 1;
• the point ψ(E) is not contained in a line in Y .

Corollary 2.15. Let ψ : X → Y be a contraction of a proper face of the cone NE(X). Then

• either the morphism ψ is birational, Y is a Du Val del Pezzo surface, and ψ contracts

a disjoint union of lines on the surface X,

• or the morphism ψ is a conic bundle and Y ∼= P1.

If a del Pezzo surface X is smooth and ρ(X) > 2, then X always admits a conic bundle
contraction. However, this is not always the case if X has Du Val singularities.

Lemma 2.16. Let X be a Du Val del Pezzo surface of degree d with ρ(X) > 2.
7



(i) Assume that d = 3. Then there exists a conic bundle structure ψ : X → P1 if and only if

X contains a line L that is contained in X \ Sing(X).
(ii) Assume that d = 4. Then there exists a conic bundle structure ψ : X → P1 if and only if

there is a double cover π : X → P1 × P1 branched over a curve of degree (2, 2).

Proof. If d = 3, then X is a cubic surface in P3, so that every conic bundle ψ : X → P1 is given by
the linear projection from some line in X that does not contain singular points of the surface X ,
so that X admits a conic bundle contraction if and only if such a line exists.

Assume that d = 4. If there is a double cover X → P1×P1 branched over a curve of degree (2, 2),
then composing it with a projection to one of the factors, we obtain the required conic bundle.
Thus, we may assume that there exists a conic bundle ψ : X → P1. Let C be its general fiber.
Then | −KX −C| is base point free and gives another conic bundle ψ′ : X → P1. Let π = ψ × ψ′.
Then π : X → P1 × P1 is the required double cover. �

3. The Fano–Weil index of Du Val del Pezzo surfaces

Recall from Section 1 that τ(X) is the Fano–Weil index of a del Pezzo surface X .

Lemma 3.1. Let X be a Du Val del Pezzo surface with ρ(X) = 1 and K2
X > 3. Then τ(X) = K2

X .

Proof. Let d := K2
X and D := KX + dL, where L is a line on X . If D ∼ 0, then we are done.

Thus, we may assume that D 6∼ 0. Since D ∼Q 0, the divisor D is a non-trivial torsion in Cl(X).
Let n be its order. Then

2 6 n 6
9

d
by Lemma 2.9, so that either d = 3 or d = 4.

Suppose that d = 4. Then either Type(X) = A32A1 or Type(X) = D5 by [7, Proposition 6.1].
In the former case, we see that 4L is a Cartier divisor, so that D ∼ 0, since Pic(X) is torsion free.
In the latter case, L is the unique line in X by [7, Proposition 6.1], so that D ∼ 0 by Lemma 2.9.
Thus, in both cases we obtain a contradiction with our assumption that D 6∼ 0.

Thus, we see that d = 3. Then either n = 2 or n = 3. If n = 2, we have

KX + 3(L+D) ∼ 4KX + 12L ∼ 4(KX + 3D) ∼ 0,

so that τ(X) = 3. If n = 3, then X ∼= P2/µ3 by Lemma 2.9, which implies that Type(X) = 3A2.
In this case, the divisor 3L is Cartier, which gives D ∼ 0, because Pic(X) is torsion free. �

The number τ(X) divides the degree d of the del Pezzo surface X , so that τ(X) = 1 if d = 1.
If d > 2, then the Fano–Weil index τ(X) is closely related to the following notion:

Definition 3.2. A del Pezzo surface X is said to be weakly minimal if X does not contain lines
that are contained in the smooth locus of the surface X .

Remark 3.3. If X is a weakly minimal Du Val del Pezzo surface, and ψ : X → Y is a birational
contraction, then Y is also a weakly minimal Du Val del Pezzo surface by Corollary 2.14.

Now, we prove the following result.

Proposition 3.4. Let X be a Du Val del Pezzo surface and let d := K2
X .

(i) If τ(X) = d, then d 6 6 and X is a hypersurface in P(1, 2, 3, d) of degree 6 given by

y23 + y32 + λ1y
4
1y2 + λ2y

6
1 + ydφ(y1, y2, yd) = 0,

where φ is a polynomial of degree 6− d, and λ1 and λ2 ∈ k such that 4λ31 + 27λ22 6= 0,
8



(ii) If τ(X) = d
2
, then X is a hypersurface in P(1, 1, 2, d

2
) of degree 4 given by

y22 + y1y
′

1(y1 − y′1)(y1 − λy′1) + x3φ(y1, y
′

1, x3) = 0,

where φ is a polynomial of degree 4− d
2
, and λ ∈ k such that λ 6= 0 and λ 6= 1.

(iii) If d = 6 and τ(X) = 2, then X is a hypersurface in P(1, 1, 1, 2) of degree 3 given by

ψ(y1, y
′

1, y
′′

1) + y2φ(y1, y
′

1, y
′′

1) = 0,

where ψ and φ are polynomials of degree 3 and 1, respectively.

Proof. Let us only prove the assertion (i), since the assertions (ii) and (iii) can be proved similarly.
Let C be a general curve in | − KX |. Then C is a smooth elliptic curve (see, for example, [8]).
Suppose that τ(X) = d. Then −KX ∼ dA, where A is a Weil divisor on X . Consider the natural
homomorphism of graded algebras

Φ : R(X,A) :=
⊕

n>0

H0
(
X,OX

(
nA

))
−→

⊕

n>0

H0
(
C,OC

(
nA

))
=: R(C,A)

By the Kawamata–Viehweg vanishing it is surjective. Note that OC(A) is a line bundle of degree 1.
It is well-known that R(C,A) is generated by 3 elements ȳ1, ȳ2, ȳ3 with deg ȳi = i such that

ȳ23 + ȳ32 + λ1ȳ
4
1ȳ2 + λ2ȳ

6
1 = 0

for some λ1 and λ2 in k such that 4λ31+27λ22 6= 0. The kernel of Φ is generated by a homogeneous
element yd of degree d. Take arbitrary elements y1, y2 and y3 in R(X,A) such that Φ(yi) = ȳi.
Then R(X,A) is generated by y1, y2, y3 and yd. This gives us an embedding

X ∼= Proj
(
R
(
X,A

))
→֒ Proj

(
k
[
y1, y2, y3, yd

])
∼= P(1, 2, 3, d)

whose image is given by an equation of the required form. �

Remark 3.5. The embedding of the surface X described in Proposition 3.4 is almost canonical.
It only depends on the choice of the divisor class A ∈ Cl(X) such that −KX ∼ τ(X)A, which is
uniquely defined modulo τ(X)-torsion. Thus, this embedding is Aut0(X)-equivariant.

Using Proposition 3.4, we can describe many del Pezzo surfaces:

Example 3.6. Suppose that d = 3, τ(X) = 3, and Type(X) = 2A2. Using Proposition 3.4, we
see that X is a hypersurface in P(1, 2, 3, 3) of degree 3 that is given by

y3y
′

3 = y2(y2 − y21)(y2 − λy21),

where λ ∈ k \ {0, 1}.

Example 3.7. Suppose that d = 4, τ(X) = 2, and Type(X) = 2A1. Using Proposition 3.4, we
see that X is a hypersurface in P(1, 1, 2, 2) of degree 4 that is given by

y2y
′

2 = y1y
′

1(y
′

1 − y1)(y
′

1 − λy1),

where λ ∈ k \ {0, 1}. This surface is known as the Iskovskikh surface (see [19]).

Similarly, we can use Proposition 3.4 to prove the following result:

Theorem 3.8. Let X be a Du Val del Pezzo surface, let d := K2
X . Suppose that d > 3, τ(X) > 1,

and the surface X is singular. Then X is a hypersurface in a weighted projective space P such that

one of the following possibilities holds:

№ d ρ Type τ P equation of X

9



23o

3

3 2A2

3 P(1, 2, 3, 3)

see Example 3.6

21o 2 2A2A1 y3y
′

3 = y22(y2 + y21)

16o 1 3A2 y3y
′

3 = y32

18o 2 A5 y23 = y32 + y61 + y1y2y
′

3

15o 1 A5A1 y23 = y32 + y′3y1y2

14o 1 E6 y23 = y32 + y′3y
3
1

28o

4

2 A3A1

4 P(1, 2, 3, 4)

y23 = y61 + y2y4

25o 1 A32A1 y23 = y2y4

24o 1 D5 y23 = y32 + y21y4

35o

4

4 2A1

2

P(1, 1, 2, 2)

see Example 3.7

34o 3 3A1 y2y
′

2 = y21y
′

1(y
′

1 + y1)

30o 2 4A1 y2y
′

2 = y21y
′2
1

29o 2 A22A1 y2y
′

2 = y31y
′

1

31o 3 A3 y22 = y′2y1y
′

1 + y41 + y′41

26o 2 D4 y22 = y′2y
2
1 + y′41

36o 5 1 A4 5 P(1, 2, 3, 5) y23 + y32 + y1y5 = 0

42o

6

1 A2A1 6 P(1, 2, 3) —

45o 3 A1
2 P(1, 1, 1, 2)

y′′1y2 = y1y
′

1(y1 − y′1)

44o 2 2A1 y′′1y2 = y21y
′

1

43o 2 A2 3 P(1, 1, 2, 3) y1y3 = y22 − y′41

50o 8 1 A1 4 P(1, 1, 2) —

Proof. The required assertion follows from Proposition 3.4. Let us show this in the case d = 3.
Suppose that d = 3 and τ(X) > 1. Observe that τ(X) must divide d. Thus, we have τ(X) = 3.
By Proposition 3.4, X is a surface in P(1, 2, 3, 3) given by

y23 + y32 + λ1y
4
1y2 + λ2y

6
1 + λ3x

2
3 + λ4x3y1y2 + λ5x3y

3
1 = 0

for some λ1, λ2, λ3, λ4 and λ5 in k. If λ3 6= 0, then completing the square we reduce this equation
to the defining equation of one the surfaces 16o, 21o or 23o,. Thus, we may assume that λ3 = 0.

If λ4 6= 0, then we can use a coordinate change x3 7→ αx3 + βy31 and y2 7→ γy2 + δy21 for
appropriate α, β, γ and δ in k to reduce our equation to

y23 + y32 + λ2y
6
1 + x3y1y2 = 0.

If λ2 = 0, this equation defines the surface 15o. On the other hand, if λ2 6= 0, we can scale
the coordinates to get λ2 = 1, so that we obtain the defining equation of the surface 18o.

We may assume that λ3 = λ4 = 0. If λ5 = 0, thenX has a non-Du Val singularity at (0 : 0 : 0 : 1),
so that λ5 6= 0. Then we reduce our equation to the defining equation of the surface 14o. �

Remark 3.9. Using Theorem 3.8, we can easily obtain the anticanonical embedding of the sur-
face X →֒ Pd. For instance, if d = 3 and τ(X) = 3, the map P(1, 2, 3, 3) 99K P3 given by

(
y1 : y2 : y3 : y

′

3

)
7−→

(
y31 : y1y2 : y3 : y

′

3

)
10



defines an embedding X →֒ P3, so that X is a cubic in P3 given by

23o: x0x2x3 = x1(x1 − x0)(x1 − λx0), where λ ∈ k \ {0, 1};
21o: x0x2x3 = x31 + x0x

2
1;

16o: x0x2x3 = x31;
18o: x0x

2
2 = x31 + x30 + x0x3x1;

15o: x0x
2
2 = x31 + x0x3x1;

14o: x0x
2
2 = x31 + x3x

2
0.

If X is not weakly minimal, then τ(X) = 1. In particular, if the del Pezzo surface X is smooth,
then τ(X) = 1 unless X ∼= P2 or X ∼= P1 × P1. However, if X is weakly minimal and d > 2,
we cannot immediately conclude that τ(X) > 1. Let us present two examples.

Example 3.10. Let X be a quintic del Pezzo surface with ρ(X) = 2 admitting a conic bundle
contraction ψ1 : X → P1. It is easy to see from Lemma 2.12 that Type(X) = A3 and the second
extremal contraction is a birational (1, 4)-contraction ψ2 : X → P2. Then X is weakly-minimal.
We have an Aut(X)-equivariant morphism ψ = (ψ1, ψ2) : X → P1×P2 that is finite and birational
onto its image, which is given by

φ
(
v0, v1, u0, u1, u2) = 0,

where φ is a bihomogeneous polynomial such that its degree with respect to v0, v1 equals 1, and
its degree with respect to u0, u1, u2 equals 2, since ψ2 is birational, ψ1 is a conic bundle, ρ(X) = 2.
Let P be the singular point of the surface X , and let F be the fiber of ψ1 that passes through P .
We may assume that ψ(P ) = (1 : 0; 0 : 1 : 0). Since F is a multiple fiber of the conic bundle ψ1,
we may assume that F is given by u22 = 0. Then

φ = u22v0 + q(u0, u1, u2)v1,

where q is a quadratic form of rank 3. Changing coordinates, we may assume that q = u20 + u1u2,
so that X is the surface 37o. Let τ = τ(X), and let A be a Weil divisor on X such that −KX ∼ τA.
Then 5 = K2

X = −τKX · A and 2 = −KX · C = τA · C, where C is a general fiber of the conic
bundle ψ1. Since KX · A and A · C are integers, we have τ = 1.

Example 3.11. Let X be a Du Val cubic surface in P3 with Type(X) = A4A1. Then ρ(X) = 2,
and it follows from [6] that X is unique up to isomorphism and can be given by the equation

x0x2x3 + x20x1 + x21x3 = 0,

so that X is the surfaces 19o. Observe that X contains exactly four lines:

L1 = {x0 = x1 = 0}, L2 = {x1 = x3 = 0}, L3 = {x1 = x2 = 0}, L4 = {x0 = x3 = 0}

and −KX ∼ L1 + L2 + L3 ∼ 2L1 + L4 ∼ 4L1 − L2. Then Cl(X) = Z[L1]⊕ Z[L2] and τ(X) = 1.

Thus, the surfaces 19o or 37o are weakly minimal and their Fano–Weil index is 1. On the other
hand, we have the following result:

Theorem 3.12. Let X be a Du Val del Pezzo surface and let d := K2
X . Suppose X is weakly

minimal, d > 3, and τ(X) = 1. Then X is one of the surfaces 19o or 37o.

Proof. Observe that ρ(X) > 2 by Lemma 3.1. First, let us consider the case where ρ(X) = 2.
In this case, the Mori cone NE(X) is generated by two lines L1 and L2 such that L1 ∩ L2 6= ∅.
Without loss of generality, we may assume that L2

1 > L2
2. Then

−KX ∼Q α1L1 + α2L2

11



for some α1 ∈ Q>0 and α2 ∈ Q>0. Since −KX · L1 = −KX · L2 = 1 and K2
X = d, we get

(3.13)





α1 + α2 = d,

α1L
2
1 + α2L1 · L2 = 1,

α1L1 · L2 + α2L
2
2 = 1.

Let ψ1 : X → Y1 and ψ2 : X → Y2 be the contractions of the extremal rays that are generated by
the lines L1 and L2, respectively.

Assume that ψ1 is a conic bundle. Since X is weakly minimal, by Lemma 2.16(i) we have d > 4.
In particular, we see that the anticanonical model of the surface X is an intersection of quadrics.
Let C1 be a general fiber of ψ1. Then C1 · L2 = 1 and C1 ∼ 2L1. Hence, L1 · L2 =

1
2
and L2

1 = 0.

Then (3.13) gives α2 = 2, α1 = d − 2 and L2
2 = 1 − d

4
. To proceed, we may assume that d 6 6.

If d = 5, then L2
2 = −1

4
and ψ2 is an (1, 4)-contraction by Lemma 2.12, so that X is the surface 37o.

If d = 6, then α1 = 4, L2
2 = −1

2
and ψ2 is an (1, 2)-contraction. Then 4L1+2L2 is a Cartier divisor,

so that
−KX ∼ 4L1 + 2L2 = 2(2L1 + L2),

which is impossible, since τ(X) = 1. Finally, if d = 4, then L2
2 = 0 and ψ2 is also a conic bundle.

Since 2L1 + 2L2 is Cartier, we have −KX ∼ 2L1 + 2L2 and so τ(X) > 1, a contradiction.
Thus, we may assume that both ψ1 and ψ2 are birational.
Each line L1 and L2 contains exactly one singular point of the surface X by Lemma 2.12.

Let P1 be the singular point contained in L1, and let P2 be the singular point contained in L2.
By Lemma 2.12, the points P1 and P2 are singular points of types An1

and An2
for some positive

integers n1 and n2. Then

−
1

n1 + 1
= L2

1 > L2
2 = −

1

n2 + 1
by Lemma 2.12, so that n1 > n2 > 1.

Suppose that P1 6= P2. Then L1 ∩ L2 is a smooth point of the surface X , so that L1 · L2 = 1.
Then (3.13) gives 




α1 + α2 = d,

− α1 + α2(n1 + 1) = n1 + 1,

α1(n2 + 1)− α2 = n2 + 1.

Note also that d+ n1 + n2 6 8, since ρ(X̃) = 10− d. Eliminating α1 and α2, we get

d(n1n2 + n2 + n1) = 2n1n2 + 3n1 + 3n2 + 4

This give us the following solutions:

• d = 4, n1 = n2 = 1, α1 = α2 = 2, −KX ∼Q 2(L1 + L2),
• d = 3, n1 = n2 = 2, α1 = α2 = 3/2, −KX ∼Q

3
2
(L1 + L2),

• d = 3, n1 = 4, n2 = 1, Type(X) = A4A1, α1 =
5
3
, α2 =

4
3
, −KX ∼Q

1
3
(5L1 + 4L2).

If d = 4, then 2(L1 + L2) is a Cartier divisor, which gives

−KX ∼ 2(L1 + L2),

which is impossible. If d = 3 and n1 = n2 = 2, then X is a cubic surface in P3, so that X contains
a line L such that L passes through P1 and P2 and

−KX ∼ L1 + L2 + L

which gives −KX ∼Q 3L, because −KX ∼Q
3
2
(L1 + L2). In this case, the divisor 3L is Cartier,

so that −KX ∼ 3L, which contradicts τ(X) = 1. Thus, we conclude that d = 3, n1 = 4 and n2 = 1.
Then X is the surface 19o. Hence, to proceed, we may assume that P1 = P2.

12



Let n = n1 = n2. Then L2
1 = L2

2 = − 1
n+1

. Moreover, we have L1 · L2 = k
n+1

for some k ∈ Z>0.

Then (3.13) gives α1 = α2 =
d
2
and 2(n+ 1) = d(k − 1), so that

−KX ∼Q
d
2

(
L1 + L2

)
.

Note also that d+n 6 8, since ρ(X̃) = 10−d. Then d 6= 5 and d 6= 7, because 2(n+1) = d(k−1).
Likewise, if d = 6, then n = 2, so that −KX ∼Q 3(L1+L2) and Cl(X) is torsion free by Lemma 2.9,
which gives −KX ∼ 3(L1 + L2), which contradicts τ(X) = 1. Hence, either d = 3 or d = 4.

Suppose that d = 4. Then n = 3, because 2(n+ 1) = d(k − 1) and d+ n 6 8. Since ρ(X) = 2,
we see that X has a singular point of type A1. On the other hand, we have −KX ∼Q 2(L1 + L2).
Since τ(X) = 1, we have −KX 6∼ 2(L1 + L2), so that KX + 2(L1 + L2) is a non-trivial torsion
element in Cl(X). Now, applying Lemma 2.9, we obtain a double cover π : Y → X that is étale
outside of the point L1 ∩ L2. Then Y is a del Pezzo surface of degree 8 such that it contains two
singular points of type A1, which is absurd. This shows that d 6= 4.

Therefore, we see that d = 3. Since 2(n+ 1) = d(k− 1) and d+ n 6 8, we have n = 2 or n = 5.
Since X is a cubic surface in P3, it contains a line L such that

−KX ∼ L1 + L2 + L,

so that L ∼Q
1
2
(L1 +L2), because −KX ∼Q

3
2
(L1 +L2). This gives −KX ∼Q 3L. But −KX 6∼ 3L.

In particular, we have n 6= 2, because 3L is a Cartier divisor if n = 2. We conclude that n = 5.
Now, using Lemma 2.9, we conclude that there is a finite Galois cover π : Y → X of degree r > 2,
which is étale outside of the point L1 ∩ L2. Here, r be the order of the torsion divisor KX + 3L.
By construction, the surface Y is a del Pezzo surface of degree rd, so that either r = 2 or r = 3.
If r = 3, then Y ∼= P2, which is impossible, since ρ(Y ) > ρ(X) = 2. Thus, we have r = 2. Then

−KX ∼ 3L− (KX + 3L) ∼ 3L− (KX + 3L) + 4(KX + 3L) ∼ 3L+ 3(KX + 3L) ∼ 3(KX + 4L),

which is impossible, since τ(X) = 1. The obtained contradiction shows that ρ(X) 6= 2.
We see that ρ(X) > 3 and X is singular. Then d 6 6.
Let ψ : X → Y be an extremal Mori contraction. Since ρ(X) > 3, the morphism ψ is birational,

so that ψ is a (1, m)-contraction of a line L ⊂ X by Lemma 2.12. Then Y is a weakly minimal
Du Val del Pezzo surface such that K2

Y = d + m with ρ(Y ) = ρ(X) − 1 > 2 (see Remark 3.3).
In particular, we have d +m 6= 7, because a Du Val del Pezzo surface of degree 7 is not weakly
minimal (see Example 2.3). Note that m > 2, since X is weakly minimal.

Consider the case d = 6. Using the Noether formula, we see that ρ(X) = 3 and Type(X) = A1.
Then m = 2, K2

Y = 8, ρ(Y ) = 2, so that Y ∼= P1 × P1. Then KX ∼ ψ∗KY + 2L is divisible by 2,
which is a contradiction. Thus, we have d 6= 6.

Consider the case d = 5. Since d+m 6= 7, we have m > 2. Then ρ(X) = 3 and Type(X) = A2

by the Noether formula, so that X is not weakly minimal by [7, Proposition 8.5]. This contradicts
our assumption.

Consider the case d = 4. Then m 6= 3, since d +m 6= 7. If m > 3, it follows from the Noether
formula that m = 4, ρ(X) = 3 and Type(X) = A3, so that Y ∼= P1 × P1, which gives

−KX ∼ 2
(
F̃1 + F̃2

)
,

where F̃1 and F̃2 are proper transforms on X of the curves in Y of bi-degree (1, 0) and (0, 1)
that contains ψ(L), respectively. This contradicts our assumption τ(X) = 1. So, we see that all
extremal contractions on X are birational (1, 2)-contractions. Then τ(Y ) > 1, since we already
dealt with sextic del Pezzo surfaces. By Theorem 3.8, we see that Y is one of the surfaces 45o, 44o,
43o. If Y is the surface 43o, then it has a birational (1, 3)-contraction, so thatX also has a birational
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(1, 3)-contraction by Corollary 2.14, which is a contradiction. Then Y is one of the surfaces 45o or
44o. By Lemma 2.9(i), we have

−KY ∼ 2

s∑

i=1

aiMi

for some lines M1, . . . ,Ms on the surface Y and some integers a1, . . . , as. Since ψ(L) is a smooth
point of Y that does not lie on a line by Corollary 2.14, we obtain

−KX ∼ 2

s∑

i=1

aiM̃i − 2L ∼ 2
( s∑

i=1

aiM̃i − L
)
,

where M̃i is a proper transform on X of the line Mi. This contradicts our assumption τ(X) = 1.
Finally, we consider the case d = 3. Then m 6= 4, since d+m 6= 7. Moreover, since X is weakly

minimal, there exists no dominant morphisms from X to a curve by Lemma 2.16(i), and the same
holds for Y . Using this, we conclude that m 6= 5. Thus, we have the following possibilities:

• either K2
Y = 5 and m = 2,

• or K2
Y = 6 and m = 3.

Moreover, ifK2
Y = 5, then Y is not the surface 37o, because del Pezzo surface 37o admits a dominant

morphism to P1 (see Example 3.10). Therefore, we conclude that τ(Y ) > 1, because we already
dealt with weakly minimal Du Val del Pezzo surfaces of degree 5 and 6.

Now, using Theorem 3.8, we see that K2
Y 6= 5, because ρ(Y ) > 1. Therefore, we have K2

Y = 6.
Then Y is the surface 43o, 44o or 45o again by Theorem 3.8. If Y is the surface 44o, then

y1
y′′1

=
y′21
y2

on the surface Y , so that the map Y 99K P1 given by

(y1 : y
′

1 : y
′′

1 : y2) 7−→ (y1 : y
′′

1) = (y′21 : y2)

is a morphism, which is a contradiction. Similarly, we obtain a contradiction when Y is the surface
45o, because the map Y 99K P1 given by

(y1 : y
′

1 : y
′′

1 : y2) 7−→ (y1 : y
′

1) = (y′′1(y
′

1 + y′′1) : y2)

is a morphism in this case. Thus, we see that Y is the surface 43o. Then X is a cubic surface
such that Type(X) = 2A2. Now, using [6], we conclude that X is one of the surfaces 23o, so that
τ(X) = 3 by Theorem 3.8, which contradicts our assumption. �

4. The proof of Main Theorem: higher degree cases

Let X be a Du Val del Pezzo surface of degree d whose automorphism group Aut(X) is infinite.
If d > 8, then X is either P2, P1 × P1, F1 or P(1, 1, 2). In each of this case, the corresponding
automorphism group is well-known and listed in Big Table (cases 53o, 52o, 51o, 50o respectively).

If d 6 7, we have an Aut0(X)-equivariant diagram (2.1). If d = 7, then X is one of the del
Pezzzo surfaces 48o and 49o, and the morphism ϕ in (2.1) is a blow up of two (possibly infinitely
near) points. From this we obtain the following

Lemma 4.1. Let X be a Du Val del Pezzo surface of degree 7, and let U be the complement in

the surface X to the union of all lines. Then Main Theorem holds for X, the subset U is the open

orbit of the group Aut0(X), and U ∼= A2.

All del Pezzo surfaces of degree 6 have infinite automorphism groups, so that all of them appear
in our Big Table. These are the del Pezzo surfaces 42o, 43o, 44o, 45o, 46o and 47o. Going through
these six cases one by one, we obtain
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Lemma 4.2. Let X be a Du Val del Pezzo surface of degree 6, and let U be the complement in

the surface X to the union of all lines. Then Main Theorem holds for X, the subset U is the open

orbit of the group Aut0(X), and U ∼= A2 in the cases 42o, 43o, 44o, and 45o.

Proof. If X is the surface 47o, then ϕ in (2.1) is a blow up of three distinct non-collinear points,
so that X is toric and Aut0(X) ∼= G2

m.
Likewise, if X is the surface 45o, then ϕ is the blow up of three distinct collinear points in P2.

Using this, it is not hard to see that Aut0(X) ∼= G2
a ⋊Gm in this case.

For infinitely near points we use the notation of [11].
If X is the surface 42o, then the morphism ϕ is the blow up of three infinitely near collinear

points P1 ≺ P2 ≺ P3 in the plane P2 in the notations of [11], which implies that Aut0(X) ∼= B3.
Similarly, if X is the surface 43o, then ϕ is the blow up of three infinitely near non-collinear

points P1 ≺ P2 ≺ P3, which implies that Aut0(X) ∼= U3 ⋊Gm.
If X is the surface 44o, then ϕ is the blow up of three collinear points P1, P2 and P3 such that

the points P1 and P2 are distinct and P3 ≻ P1, which implies that Aut0(X) ∼= B2 × B2.
Finally, if X is the surface 46o, then ϕ is the blow up of three non-collinear points P1, P2 and P3,

so that P1 and P2 are distinct, but P3 ≻ P1. Hence, in this case, we have Aut0(X) ∼= B2 ×Gm.
The last assertions follow from Corollary 2.11 in the cases 42o, 43o, 44o, and 45o, and it follows

from Lemma 4.1 in the cases 46o and 47o. �

Similarly, all singular del Pezzo surfaces of degree 5 also have infinite automorphism groups.
These are the surfaces 36o, 37o, 38o, 39o, 40o and 41o in Big Table.

Lemma 4.3. Let X be a Du Val del Pezzo surface of degree 5, and let U be the complement in

the surface X to the union of all lines. Then Main Theorem holds for X, the subset U is the open

orbit of the group Aut0(X) in the cases 36o, 37o, 38o, 39o, 40o, and U ∼= A2 in the cases 36o, 37o.

Proof. If X is weakly minimal and τ(X) > 1, then X is the surface 36o by Theorems 3.12 and 3.8.
Then the group Aut0(X) consists of the transformations that send the point (y1 : y2 : y3 : y5) to(
y1 : t

2y2+ay
2
1 : t

3y3+by
3
1+cy1y2 : t

6y5−(a3+b2)y51−(3a2t2+2bc)y31y2−2bt3y21y3−(3at4+c2)y1y
2
2−2ct3y2y3

)
,

where t ∈ k∗ and a, b, c ∈ k. This gives Aut0(X) ∼= U3⋊Gm (cf. Corollary 2.2, see Corollary B.8).
If X is weakly minimal and τ(X) = 1, then X is the del Pezzo surface 37o by Theorem 3.12,

and its Aut0(X)-equivariant embedding X →֒ P1 × P2 is described in Example 3.10. In this case,
the group Aut(X) contains a two-dimensional unipotent subgroup

(v0 : v1; u0 : u1 : u2) 7−→
(
v0 − (a21 + a2)v1 : v1; u0 + a1u2 : u1 − 2a1u0 + a2u2 : u2

)

and a one-dimensional torus

(v0 : v1; u0 : u1 : u2) 7−→ (v0 : t
−2v1; tu0 : t

2u1 : u2),

where a1, a2 ∈ k and t ∈ k∗. This implies that Aut(X) ∼= G2
a ⋊Gm as required.

We may assume that X is not weakly minimal. Then there is a birational morphism ψ : X → Y
such that Y is one of the surfaces 42o, 43o, 44o, 45o, and ψ is a blow up of a smooth point P ∈ Y .
By Corollary 2.14 and Lemma 4.2, the point P is contained in the open orbit of the group Aut0(Y ).
Since Aut0(X) is the connected component of the stabilizer in Aut0(Y ) of the point P , this gives
the required description of the group Aut0(X) in Big Table.

The last assertions follow from Corollary 2.11 in the cases 36o, 37o, and it follows from Lemma 4.2
in the cases 38o, 39o, 40o. �

Let us conclude this section by proving Main Theorem for Du Val del Pezzo surfaces of degree 4.

Proposition 4.4. Main Theorem holds for Du Val del Pezzo surfaces of degree 4.
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Proof. Let X be Du Val del Pezzo surface of degree 4 such that the group Aut(X) is infinite.
Suppose that X is not weakly minimal. Then there exists a birational morphism ψ : X → Y such
that Y is a singular quintic Du Val del Pezzo surface, and ψ is a blow up of a smooth point P ∈ Y ,
which is not contained in a line by Corollary 2.14. Observe that the group Aut0(X) is the connected
component of the stabilizer in Aut0(Y ) of the point P . Using Lemma 4.3, we see that Y must be
one of the surfaces 36o, 37o, 38o, and P must be contained in the open orbit of the group Aut0(Y ).
This implies that X is one of the surfaces 27o, 32o, 33o, respectively. Now, it is not hard to check
that Aut0(X) ∼= Gm in the cases 32o and 33o, and Aut0(X) ∼= B2 in the case 27o.

Hence, we may assume that the surface X is weakly minimal. Then τ(X) > 1 by Theorem 3.12.
Using Theorem 3.8, we see that X is one of the surfaces 24o, 25o, 26o, 28o, 29o, 30o, 31o, 34o, 35o.
Let us show that Aut(X) is infinite, and Aut0(X) is described in Big Table.

Let X be the surface 24o. Then X is embedded into P(1, 2, 3, 4) as a hypersurface that is given
by the equation y23 = y32 + y21y4. This embedding is Aut0(X)-equivariant by Remark 3.5. Observe
that Aut0(X) contains transformations

(y1 : y2 : y3 : y4) 7−→
(
y1 : y2 + ay21 : y3 + by31 : y4 − (a3 − b2)y41 − 3a2y21y2 + 2by1y3 − 3ay22

)
,

where a ∈ k and b ∈ k. These transformations generates a subgroup in Aut0(X) isomorphic to G2
a.

Moreover, the surface X also admits an action of a one-dimensional torus which acts diagonally:

(y1 : y2 : y3 : y4) 7−→ (t2y1 : t
2y2 : t

3y3 : t
2y4),

where t ∈ Gm. The described transformations generate a subgroup that is isomorphic to G2
a⋊Gm.

Since X has a singularity of type D5, it is not toric, so that Aut
0(X) ∼= G2

a⋊Gm (cf. Corollary B.8).
Now we suppose that X is the surface 25o. Then Aut(X) contains transformations

γ(a) : (y1 : y2 : y3 : y4) 7−→
(
y1 : y2 : y2 + ay1y2 : y4 + 2ay1x2 + a2y21y2

)

for every a ∈ k. These transformations generates a proper subgroup in Aut0(X) isomorphic to Ga.
Moreover, the surface X also contains transformations

δ(t1, t2) : (y1 : y2 : y3 : y4) 7−→
(
y1 : t1t

2
2y2 : t1t2y3 : t1y4

)

for every t1 ∈ k∗ and t2 ∈ k∗. They generates a subgroup isomorphic to G2
m. Observe that

γ(a) ◦ δ(t1, t2) = δ(t1, t2) ◦ γat2 .

Therefore, all described transformations generate a subgroup in Aut0(X) isomorphic to B2 ×Gm.
Then Aut0(X) ∼= B2 ×Gm, because X does not admit an effective G2

a-action by Corollary 2.11.
Now we suppose that 28o. Then the group Aut(X) contains transformations

(y1 : y2 : y3 : y4) 7−→
(
ty1 : t

3y2 : t
3y3 + at3y1y2 : t

3y4 + 2at3y1y3 + a2t3y21y2
)

for any a ∈ k and t ∈ k∗. These transformations generate a subgroup in Aut0(X) isomorphic to B2.
Since all three lines on X pass through one point, X is not toric. Hence, rkAut0(X) = 1.
The surface X does not admit an effective G2

a-action by Corollary 2.11, so that dimAut0(X) = 2,
which implies Aut0(X) ∼= B2.

Let X be one of the surfaces 29o or 30o. Then #(X) = 4. Let L1, L2, L3, L4 be the lines in X .
Recall that X is an intersection of two quadrics in P4. We have

L1 + L2 + L3 + L4 ∼ −KX ,

so that L1 +L2 +L3 +L4 is cut out by a hyperplane H ⊂ P4. On the other hand, this curve form
a combinatorial cycle. Thus, if X admits an effective Ga-action, then this action is trivial on each
line among L1, L2, L3 and L4, so that it is trivial on H , which implies that the closure of any
one-dimensional Ga-orbit is a line. The latter is impossible, since X contains finitely many lines.
Therefore, we conclude that the surface X does not admit an effective action of the group Ga. On
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the other hand, the equations of X are binomial. This implies that X admits a diagonal action of
two-dimensional torus. Hence, Aut0(X) ∼= G2

m.
Let X be one of the surfaces 34o or 35o. Then X contains two lines L1 and L2 such that

the intersection L1 ∩ L2 is a smooth point of X , and there exist an Aut0(X)-equivariant diagram

X̂
β

%%❏
❏❏

❏❏
❏

α

yyss
ss
ss

X Y

where α is a blow up of the point L1 ∩ L2, and β is the birational contraction of the proper
transforms of the lines L1 and L2. Then we have the following possibilities:

• if X is the surface 34o, then Y is a cubic surface such that Type(Y ) = A4A1;
• if X is the surface 35o, then Y is a cubic surface such that Type(Y ) = 2A2.

Hence, it follows from Corollary 7.4, that Y does not admit an effective action of the group Ga.
Since X contains three lines passing through one point, it is not toric. One the other hand, it is
easy to see that X admits an effective diagonal action of a one-dimensional torus.

To complete the proof, we may assume thatX is one of the surfaces 26o or 31o. By Lemma 2.16(ii),
there is a double cover π : X → P1×P1 branched over a curve B of degree (2, 2). By construction,
this double cover is Aut0(X)-equivariant, and the curve B is Aut0(X)-invariant. Therefore, there
exists an exact sequence of groups

1 −→ µ2 −→ Aut(X) −→ Aut
(
P1 × P1, B

)
.

If X is the surface 26o, then B is a union of irreducible smooth curves of degrees (1, 1), (1, 0), (0, 1),
which intersect in one point, which implies that

Aut
(
P1 × P1, B

)
∼= B2 ⋊ µ2.

This can be shown by taking linear projection P1 × P1 99K P2 from the singular point Sing(B),
where we consider P1 × P1 as a quadric in P3. Thus, in this case, we have Aut0(X) ∼= Ga ⋊(2) Gm,
since Aut(X) contains a subgroup isomorphic to Ga ⋊(2) Gm generated by transformations

(y1 : y
′

1 : y2 : y
′

2) 7−→
(
y1 : ty

′

1 : t
2y2 + at2y21 : t

4y′2 + 2at4y2 + a2t4y21
)
,

where a ∈ k and t ∈ k∗. Similarly, if X is the surface 31o, then

Aut
(
P1 × P1, B

)
∼= Ga ⋊ µ2,

because B is a union of two irreducible smooth curves of degree (1, 1), which intersect in one point.
In this case, we have Aut0(X) ∼= Ga, since the Ga-action lifts from P1 × P1 to the surface X . �

Corollary 4.5. Main Theorem holds del Pezzo surfaces of degree > 4.

5. Del Pezzo surfaces of degree 1

In this section, we prove Main Theorem for del Pezzo surfaces of degree 1.

Proposition 5.1. Main Theorem holds for del Pezzo surfaces of degree 1.

We start with

Lemma 5.2. Let X be a Du Val del Pezzo surface of degree 1. Then X does not admit effective

actions of the group Ga.
17



Proof. Suppose that X admit an effective Ga-action. Let Φ: X 99K P1 be the anticanonical map.
It is Aut(X)-equivariant, and all its fibers are reduced irreducible curves of arithmetic genus 1.
Since Ga cannot effectively act on a smooth elliptic curve, we conclude that Ga acts non-trivially
on the base of Φ. Thus, there is exactly one Ga-invariant fiber, say C. Any fiber of Φ different
from C is a smooth elliptic curve. Thus we have

ρ(X) + 2 = χ(X) = χ(C)− 1,

so that χ(C) = ρ(X) + 3 > 4. But χ(C) 6 2, because C is a curve of arithmetic genus 1. �

Our next step in proving Main Theorem for del Pezzo surfaces of degree 1 is the following

Lemma 5.3. If X is one of the surfaces 1o, 2o, 3o, 4o, then Aut0(X) ∼= Gm.

Proof. By Lemma 5.2 these surfaces do not admit a Ga-action and they are not toric because their
singularities are not cyclic quotient. On the other hand, it is easy to see that each of these surfaces
admits a Gm-action. �

We also need the following easy local fact.

Lemma 5.4. Let (X ∋ P ) be a Du Val singularity defined over C that contains a reduced irreducible

curve C such that C is a Cartier divisor on X, and the singularity (C ∋ P ) is a simple cusp.

(i) If (X ∋ P ) is of type An, then n 6 2.
(ii) If (X ∋ P ) is of type Dn with n > 5, then some small analytic neighborhood of (X ∋ P )

can be given by the equation

x2 + y2z + zn−1 = 0,

so that C is cut out by z = y + φ(x, y, z), where mult0(φ) > 2.

Proof. Let us prove the assertion (i). In a neighborhood of the point P , the curve C is cut out by
a hypersurface, say H . Thus, we have C = X ∩ H in C3. Since the multiplicity of the curve C
at P equals 2, the hypersurface H is smooth at P . Therefore, we may assume that H is given by
z = 0, and C is given by {

x2 + y3 = 0,

z = 0.

Hence, the equation of the surface X is

x2 + y3 + zφ(x, y, z) = 0.

Since P ∈ X is a point of type An, the rank of the quadratic part of this equation is at least 2.
Then φ(x, y, z) contains a linear term. This implies that P ∈ X is of type A2 or A3.

Now, let us prove the assertion (ii). We may assume that P ∈ X is given in C3 by the equation

x2 + y2z + zn−1 = 0.

As above, we have C = X ∩H , where H is a hypersurface that is smooth at P . Then the equation
of the hypersurface H must contain a linear term. Moreover, one can see that this equation must
be of the form z = y + φ(x, y, z), which implies (ii). �

Corollary 5.5. Let X be a surface admitting an effective Gm-action, let C be a Gm-invariant

reduced irreducible curve in X that is a Cartier divisor on X, and let P be its singular point.

Suppose that X has Du Val singularity of type Dn at P , and C has a simple cusp at P . Then n = 4.

Proof. Suppose that n > 4. There exists a Gm-equavariant embedding of the germ P ∈ X to C3.
Let us choose Gm-semi-invariant coordinates in C3. By Lemma 5.4, we see that C = X ∩H , where
the equation of H has the form z = y+φ(x, y, z). But this equation cannot be Gm-semi-invariant,
which is a contradiction. �
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Now, we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let X be a Du Val del Pezzo surface of degree 1. Then X does not admit
an effective Ga-action by Lemma 5.2. Thus, the group Aut(X) is infinite if and only if X admits
an effective action of the group Gm.

Suppose thatX admits an effective Gm-action. By Lemma 5.3, to complete the proof, it is enough
to show that X is one of the surfaces 1o, 2o, 3o, 4o.

Let Φ: X 99K P1 be the anticanonical map. It is Gm-equivariant, and all its fibers are reduced
irreducible curves of arithmetic genus 1. Since Gm cannot effectively act on a smooth elliptic curve,
we conclude that Gm acts non-trivially on the base of Φ. There are exactly two Gm-invariant fibers.
Denote them by C1 and C2. Any fiber of Φ different from C1 and C2 is a smooth elliptic curve.
Thus we have

ρ(X) + 2 = χ(X) = χ(C1) + χ(C2)− 1,

so that χ(C1)+χ(C2) = ρ(X)+3 > 4. Since χ(Ci) 6 2, we have ρ(X) = 1 and χ(C1) = χ(C2) = 2.
This means in particular that C1 and C2 are cuspidal curves of arithmetic genus 1.

Let Pi be the singular point of Ci. Then

∅ 6= Sing(X) ⊂
{
P1, P2

}
.

The singularity of the surface X at the point P1 is of type An1
, Dn1

or En1
for some n1 > 1.

Likewise, if X is singular at P2, then P2 is a singular point of type An2
, Dn2

or En2
for some n2 > 0,

where n2 = 0 simply means that the point P1 is the only singular point of the del Pezzo surface X .
Without loss of generality, we may assume that n1 > n2. Since ρ(X) = 1, n1+n2 = 8 and n1 > 4.
Now, using Corollary 5.5, we obtain the following possibilities for Type(X): E8, E7A1, E6A2, 2D4.
But X is uniquely determined by Type(X) and the fact that | −KX | has two singular curves that
are both cuspidal. This follows from [30, Theorem 1.2] and [30, Table 4.1], see also Remark B.5.
Thus, we conclude that X is one of the surfaces 1o, 2o, 3o, 4o (see e.g. [5, Satz 2.11]). �

Let us conclude this section by an observation that the surfaces 2o, 3o, 4o can be obtained as finite
quotients of other surfaces in Big Table. The surface 2o is the quotient of the surface 11o by µ2.
The surface 3o is the quotient of the cubic surface 22o by µ3, and 4o is the quotient of a special
member of the family 35o by µ2 × µ2. In all the cases the action of the group is free outside
the singular locus. This observation can be used to obtain the description of the surfaces 2o, 3o, 4o.
To show this one can look at the exact sequence

0 −→ Pic(X)
α

−→ Cl(X)
β

−→
⊕

P∈X

Cl(X,P ),

where Cl(X,P ) is the local Weil divisor class group of the point P ∈ X . The map α is a primitive
embedding. Hence, we have Cl(X) = Pic(X)⊕ Cl(X)tors. By Corollary B.6, we have

Cl(X)tors 6= 0.

By Lemma 2.9(ii), the group Cl(X)tors defines a Galois abelian cover π : X ′ → X which is étale
outside of the locus Sing(X) and whose degree is |Cl(X)tors|. Using the local description of such
covers (see [27, 5]), we see that Type(X ′) = E6, D4, 2A1 in the cases 2o, 3o, 4o, respectively.

6. Del Pezzo surfaces of degree 2

In this section, we prove Main Theorem for del Pezzo surfaces of degree 2. To do this, we need
one (probably known) result about singular cubic and quartic curves (cf. [18, 29]).

Proposition 6.1. Let C be a reduced cubic or quartic curve in P2 such that Aut(P2, C) is infinite.
Then the curve C and the group Aut0(P2, C) are given in the following table:
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Equation of the curve C up to the action of PGL3(k) Aut0(P2, C)

x0x1(x0 + x1) = 0 G2
a ⋊Gm

x0x1x2 = 0 G2
m

x0(x0x2 + x21) = 0 B2

x20x2 + x31 = 0 Gm

x1(x0x2 + x21) = 0 Gm

x0x1(x0 − x1)(x0 − λx1) = 0 for λ ∈ k \ {0, 1} B2

x0(x
2
0x2 + x31) = 0 Gm

x0x1(x0x2 + x21) = 0 Gm

(x0x2 + x21)
2 − x40 = 0 Ga

x2(x
2
0x2 + x31) = 0 Gm

x0x1x2(x1 + x2) = 0 Gm

x0x1(x0x1 + x22) = 0 Gm

x30x2 + x41 = 0 Gm

x1(x
2
0x2 + x31) = 0 Gm

(x22 + x0x1)(x
2
2 + λx0x1) = 0 for λ ∈ k \ {0, 1} Gm

Proof. If C is one of the curves in the table, we can explicitly describe Aut0(P2, C) by finding all
elements in Aut(P2) ∼= PGL3(k) that leaves every irreducible component of the curve C invariant.
For example, if C is given by x0x1(x0 + x1) = 0, then Aut0(P2, C) consists of the transformations

(x0 : x1 : x2) 7−→
(
tx0 : tx1 : x2 + ax0 + bx1

)

for any t ∈ k∗, a ∈ k and b ∈ k. Thus, in this case, we have Aut0(P2, C) ∼= G2
a ⋊Gm as required.

Similarly, if C is given by x0(x0x2 + x21) = 0, then Aut0(P2, C) consists of the transformations

(x0 : x1 : x2) 7−→
(
t2x0 : tx1 + ax0 : x2 −

2a

t
x1 −

a2

t2
x0

)

for any t ∈ k∗ and a ∈ k, so that Aut0(P2, C) ∼= Ga⋊(1)Gm. Likewise, if C is the cubic x20x2+x
3
1 = 0,

then Aut0(P2, C) consists of the transformations (x0 : x1 : x2) 7−→ (t3x0 : t
2x1 : x2), where t ∈ k∗.

Thus, in this case, we have Aut0(P2, C) ∼= Gm.
The computations are very similar in all remaining cases. For instance, if C is the quartic curve

that is given by (x0x2 + x21)
2 − x40 = 0, then Aut(P2, C) consists of the transformations

(x0 : x1 : x2) 7−→
(
ζ2x0 : ζx1 −

ζa

2
x0 : x2 + ax1 −

a2

4
x0

)

where ζ ∈ {±1,±i} and a ∈ k, which implies that Aut(P2, C) ∼= Ga⋊µ4, so that Aut
0(P2, C) ∼= Ga.

We leave the computations in the remaining cases to the reader.
Therefore, to complete the proof, we must show that C is one of the curves listed in the table.

If C is the cubic curve, then C must be singular. On the other hand, all singular cubic curves are
already listed in the table except for the nodal one that is given by

x2(x
2
0 + x21) + x21 = 0.
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However, if C is this curve, then Aut(P2, C) is finite. Therefore, we may assume that deg(C) = 4.
Then we may have the following five cases:

(i) the curve C is irreducible;
(ii) C = C1 + C2, where C1 is a line and C2 is an irreducible cubic;
(iii) C = C1 + C2, where C1 and C2 are irreducible conics;
(iv) C = C1 + C2 + C3, where C1 and C2 are lines, and C2 are irreducible conic;
(v) C = C1 + C2 + C3 + C3, where C1, C2, C3 and C4 are lines.

Moreover, by our assumption, the group Aut(P2, C) contains a subgroup isomorphic to either Ga

or Gm (or both). We deal with these two (slightly overlapping) possibilities separately.
Suppose that Aut(P2, C) ⊃ Ga. Since each irreducible component is Ga-invariant, we conclude

that the case (ii) is impossible. Likewise, if C is irreducible, then C has a Ga-open orbit U ∼= A1.
Hence the curve C must be rational and its normalization morphism must be a homeomorphism,
and the complement C \ U is a single point, say P . The projection C 99K P1 from P must be
Ga-equivariant, so it is an isomorphism on U . This implies that P is a triple point and there is
exactly one line L ⊂ P2 such that C ∩ L = P . We may assume that P = (0 : 0 : 1) and L is given
by x0 = 0. Then the equation of C has the form x30x2 + x41 = 0. But then Aut0(P2, C) ∼= Gm,
which is a contradiction. Hence, we conclude that case (i) is also impossible.

If we are in case (iii), then the Ga-action of each irreducible conic C1 and C2 is effective, so that
the intersection C1 ∩ C2 consists of one point. In this case, in appropriate projective coordinates,
the curve C is given by (

x1x2 + x20 + x21
)(
x1x2 + x20 − x21

)
= 0,

so that C is listed in the table as required.
If we are in case (iv) or case (v), then the closure of any one-dimensional Ga-orbit is a line in

the pencil generated by C1 and C2, which implies that C is a union of four lines passing through
one point. Hence, we are in case (v), and the curve C can be given by

x0x1(x0 − x1)(x0 − λx1) = 0

for some λ ∈ k \ {0, 1}, so that C is in the table as well.
To complete the proof, we may assume that Aut(P2, C) ⊃ Gm. If C is irreducible, then it can be

given as the closure of the image of the map t 7→ (1 : t : t4), so that C is the curve x30x2 − x41 = 0
in the table. Hence, we may assume that C is reducible, i.e. we are not in case (i).

Suppose that Gm acts trivially on some irreducible component of the curve C. This component
must be a line, so that we are in one of the cases (ii), (iv) or (v). Without loss of generality, we
may assume that Gm acts trivially on the line C1. Then there exists a Gm-fixed point O ∈ P2 \C1,
so that the closure of any Gm-orbit in P2 is a line connecting O and a point in C1. This implies
that we are in case (v), and the lines C2, C3, C4 all pass through O, so that C is given by

x0x1x2(x1 + x2) = 0

in appropriate projective coordinates. This curve is in the table. Therefore, to complete the proof,
we may assume that Gm acts effectively on each irreducible component of the curve C.

If we are in case (v), then each line among C1, C2, C3 and C4 meet the union of the remaining
lines in at most two points. This implies that all these four lines must pass through one point.
Such curve is in the table and we already met it earlier in the proof. Hence, case (v) is done.

Suppose that we are in case (iii), so that C = C1 + C2, where both C1 and C2 are irreducible
conics. Then the intersection C1 ∩ C2 consists of at most two points. Moreover, the intersection
cannot consists of one point, since otherwise we would have Aut(P2, C) ∼= Ga. Hence, we see that
the intersection C1 ∩ C2 consists of exactly two points. Then the curve C can be given by

(x22 + x0x1)(x
2
2 + λx0x1) = 0
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for some λ ∈ k \ {0, 1}. This curve is also in the table. Thus, case (iii) is also done.
Now we suppose that we are in case (iv). Then C1 and C2 are lines, and C3 is a conic. Then

#
(
C3 ∩

(
C1 ∪ C2

))
6 2,

so that at least one of the lines C1 and C2 must be tangent to C3. If only one of them is tangent,
then C can be given by x0x1(x0x2 + x21) = 0. Similarly, if both lines are tangent to the conic C3,
then C can be given by x0x1(x0x1 + x22) = 0. In both subcases, the curve C is in the table.

Finally, we suppose that we are in case (ii). Then C2 is a cuspidal cubic curve. Now, choosing
appropriate coordinates on P2, we may assume that C2 is given by

x20x2 − x31 = 0,

and the Gm-action on P2 is described earlier in the proof. Then the Gm-action on C2 has exactly
two fixed points: the points (0 : 0 : 1) and (1 : 0 : 0). If the line C1 passes through both of them,
then the curve C is given by

x0x1(x0x2 + x21) = 0.

Similarly, if (1 : 0 : 0) ∈ C1 and (0 : 0 : 1) /∈ C1, then the curve C is given by x2(x
2
0x2 + x31) = 0.

Vice versa, if (1 : 0 : 0) /∈ C1 and (0 : 0 : 1) ∈ C1, then the curve C is given by x0(x
2
0x2 + x31) = 0.

In every subcase, we see that the quartic curve C is listed in the table as required. �

Using Proposition 6.1, we immediately obtain

Corollary 6.2. Main Theorem holds for del Pezzo surfaces of degree 2.

Proof. Let X be a Du Val del Pezzo surface of degree 2. Then X is a hypersurface in P(1, 1, 1, 2)
that is given by

w2 = φ4(x0, x1, x2),

where φ4(x0, x1, x2) is a homogeneous polynomial of degree 4. The natural projection to P2 gives
a double cover π : X → P2. Let B be the branch curve of this double cover. Then B is the quartic
curve in P2 that is given by φ4(x0, x1, x2) = 0.

Since the double cover π is Aut(X)-equivariant, it gives a homomorphism Aut0(X) → Aut0(P2, B),
whose kernel is either trivial or isomorphic to µ2. Thus, the curve B must be one of the quartic
curves listed in the table in Proposition 6.1 except for the quartic curve consisting of four lines
passing through one point, because X has Du Val singularities. Now, going through the equations
listed in the table in Proposition 6.1, we obtain all possibilities for the polynomial φ4(x0, x1, x2).
This shows that if Aut(X) is infinite, then

• either Aut(X) ∼= Ga and X is the surface 7o,
• or Aut(X) ∼= Gm and X is one of the surfaces 5o, 6o, 8o, 9o, 10o, 11o, 12o, 13o.

Vice versa, if X is the surface 7o, then the group Ga acts on X as follows:
(
x0 : x1 : x2 : w

)
7−→

(
x0 + tx1 : x1 : x2 − 2tx0 − t2x1 : w

)
,

where t ∈ Ga. Thus, in this case, we have Aut(X) ∼= Ga. Similarly, if X is one of the del Pezzo
surfaces 5o, 6o, 8o, 9o, 10o, 11o, 12o, 13o, then X admits an effective action of the group Gm,
so that Aut(X) ∼= Gm as listed in Big Table. �

7. Cubic surfaces

Now, we prove Main Theorem for del Pezzo surfaces of degree 3, which easily follows from [28].
Nevertheless, we prefer to give an independent proof here.

Lemma 7.1. Let Xbe a Du Val cubic surface in P3.
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(i) If X contains three lines L1, L2, L3 that meet each other at three distinct points (a triangle),
then X does not admit an effective action of the group Ga.

(ii) If X is toric, then ρ(X) = 1, #(X) = 3, and the toric boundary is composed of three lines

forming a triangle.

Proof. If X contains a triangle and admits an effective Ga-action, then the Ga-action is trivial on
the triangle, so that this action is trivial on the hyperplane in P3 that passes through the triangle,
which implies that the closure of any Ga-orbit in X is contained in a line. The latter is impossible,
since X contains finitely many lines. This proves (i)

To prove (ii), suppose that the surface X is toric. Let D = D1+ · · ·+Dr be the toric boundary.
Then r = ρ(X) + 2. Since every line on X is torus-invariant and D ∼ −KX , we have

3 =
r∑

i=1

(−KX) ·Di > r.

Therefore, we conclude that ρ(X) = 1, r = 3 and−KX ·D1 = −KX ·D2 = −KX ·D3 = 1. Moreover,
the lines D1, D2, D3 form a triangle, because the pair (X,D) has log canonical singularities. �

Now, we are ready to prove

Proposition 7.2. Main Theorem holds for weakly minimal cubic surfaces.

Proof. Let X be a weakly minimal Du Val cubic surface. If τ(X) = 1, then Theorem 3.12 implies
that X is the surfaces 19o, and its basic properties are described in Example 3.11. In this case,
the surface X admits an algebraic torus action

(x0, x1, x2, x3) 7−→ (x0, tx1, t
2x2, t

−1x3).

Since X contains three lines passing through one point, it is not toric. Since X contains a triangle,
it does not admit an unipotent group action by Lemma 7.1, so that Aut0(X) ∼= Gm as required.

Thus, to complete the proof, we may assume that τ(X) > 1. By Theorem 3.8, we have only
the following possibilities: 14o, 15o, 16o, 18o, 21o, 23o.

Consider the cases 16o, 21o, 23o. From the equations in Theorem 3.8, we see that X contains
a triangle that is cut out by y1y2 = 0. Then by Lemma 7.1(i), we conclude that the unipotent rad-
ical of Aut0(X) is trivial. The surface 16o is a toric cubic surface because its equation is binomial,
and the surfaces 21o and 23o are not toric by Lemma 7.1(ii). Therefore, if X is the surface 16o,
then Aut0(X) ∼= G2

m. Similarly, if X is one of the surfaces 21o or 23o, then we have Aut0(X) ∼= Gm,
because X admits a diagonal effective action of the group Gm.

Now, we suppose thatX is the surface 18o. Then Type(X) = A5, and it follows from Theorem 3.8
that X is a hypersurface in P(1, 2, 3, 3) that is given by

y23 = y32 + y61 + y1y2y
′

3.

Let L1, L2, L3 be the curves y1 = y23 − y32 = 0, y2 = y3 − y31 = 0, y2 = y3 + y31 = 0, respectively.
Then L1, L2 and L3 are lines meeting at one point. If X admits an effective action of the group Gm,
then L3 contains a Gm-fixed point P /∈ Sing(X), and there exists a Gm-equivariant diagram

X̂
β

%%❏
❏❏

❏❏
❏

α

yyss
ss
ss

X Y

where α is the blow up of the point P , the morphism β is the birational contraction of the proper
transform of the line L3, and Y is a singular del Pezzo surface of degree 2 such that Type(X) = A6.
The latter contradicts Corollary 6.2, so that X does not admit an effective action of the group Gm.
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Then Aut0(X) is unipotent. By Corollary 2.11, the surfaceX does not admit an effective G2
a-action.

Then dimAut0(X) 6 1. On the other hand, the group Aut(X) contains transformations
(
y1 : y2 : y3 : y

′

3

)
7−→

(
y1 : y2 : y3 + ay1y2 : y

′

3 + 2ay3 + a2y1y2
)
,

where a ∈ k. They generate a group isomorphic to Ga. Then Aut0(X) ∼= Ga by Corollary 2.2.
Let X be the surface 15o. As in the previous case, the surface X is a sextic hypersurface in

the weighted projective space P(1, 2, 3, 3). But now the surface X is given by y23 = y32 + y′3y1y2.
Observe that the group Aut(X) contains transformations

(y1 : y2 : y3 : y
′

3) 7−→
(
y1 : t

2y2 : t
3y3 + at3y1y2 : t

4y′3 + 2at4y3 + a2t4y1y2
)

for any a ∈ k and t ∈ k∗. They generate a group isomorphic to B2. This implies that Aut0(X) ∼= B2,
because X is not toric by Lemma 7.1(ii), and X admits no effective G2

a-action by Corollary 2.11.
Finally, if X is the surface 14o, then it follows from Theorem 3.8 that X is a hypersurface in

P(1, 2, 3, 3) that is given by y23 = y32 + y′3y
3
1. Using this, one can show that the group Aut0(X)

consists of transformations
(
y1 : y2 : y3 : y

′

3

)
7−→

(
y1 : t

2y2 : t
3y3 + ay31 : t

6y′3 + a2y31 + 2at3y3
)
,

where a ∈ k and t ∈ k∗. Thus, in this case, we have Aut0(X) ∼= Ga ⋊(3) Gm, which also follows
from Corollary B.8. �

To complete the proof of Main Theorem for Du Val cubic surfaces, we need

Lemma 7.3. Let X be a non-weakly minimal Du Val cubic surface such that Aut0(X) is infinite.
Then Aut0(X) ∼= Gm and X is one of the surfaces 17o, 20o or 22o.

Proof. The surface X contains a line L such that L ⊂ X \ Sing(X). By Lemma 2.16(i) there is
a conic bundle ψ : X → P1 such that L is its double section. If X admits an effective Ga-action,
then the group Ga fixes the ramification points of the double cover L→ P1 induced by ψ, so that
the group Ga acts trivially on L, which implies that it also acts trivially on the fibers of the conic
bundle ψ, so that the Ga-action on X is trivial, which is a contradiction. Hence, we conclude that
the group Aut0(X) contains no unipotent subgroups. Then Aut0(X) must be a torus, which implies
that Aut0(X) ∼= Gm, because X is not toric by Lemma7.1(ii).

Let ψ′ : X → X ′ be the contraction of the line L. Then X ′ is a quartic Du Val del Pezzo surface
such that ρ(X ′) = ρ(X)− 1 and Type(X) = Type(X ′). Note that the group Aut(X ′) is infinite,
and Aut0(X) is the stabilizer in Aut0(X ′) of the point ψ′(L). Let U ′ be the complement in X ′ to
the union of all lines. Then ψ′(L) ∈ U ′ by Corollary 2.14.

Suppose that ρ(X) = 2. Then ψ is an extremal contraction. By Lemma 2.12(ii), the singular
points of the surface X can be of types D4, D5, A3, and A1, where A1 appears even number of times.
We have two possibilities: Type(X) = D5 and A32A1, so that X ′ is one of the surfaces 24o or 25o.
In both cases, the subset U ′ is the open Aut0(X ′)-orbit (cf. Remark B.4), which immediately
implies that Aut0(X) ∼= Gm and X is one of the surface 17o or 20o.

Now, we assume that ρ(X) > 2. If Type(X) = D4, then X
′ is the surface 26o. Arguing as above,

we see that Aut0(X) ∼= Gm and X is the surface 22o. Thus, to complete the proof, we may assume
that ρ(X) > 2 and all the singularities of X are of type An.

We claim that the action of Aut0(X) on L is trivial. Indeed, suppose that this is not the case.
Let us seek for a contradiction. Let P1 and P2 be the ramification points of the double cover L→ P1,
let F1 and F2 be the fibers of the conic bundle ψ passing through the points P1 and P2, respectively.
Then P1 and P2 are fixed by Aut0(X), and these are all Aut0(X)-fixed points on L, so that all
fibers of the conic bundle ψ other than F1 and F2 are smooth. Since ρ(X) > 2, there exists at
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least one reducible fiber. Thus, we may assume that F1 is reducible. Then

F1 = F ′

1 + F ′′

1 ,

where F ′

1 and F ′′

1 are lines. Then P1 = F ′

1 ∩ F
′′

1 ∩ L and the surface X is smooth along F1, which
implies that Sing(X) ⊂ F2 and F2 is irreducible (but multiple). In particular, we have ρ(X) = 3.
On the other hand, using Lemma 2.12(ii), we see that either Type(X) = 2A1 or Type(X) = A3.
This contradicts the Noether formula. Therefore, the action of Aut0(X) on the line L is trivial,
so that the action of the group Aut0(X) on the base of the conic bundle ψ is trivial as well.

Let M ′ be a line in X ′ (it does exist since ρ(X ′) > 1), and let M be its proper transform on X .
Then ψ′(L) 6∈ M ′ by Corollary 2.14, so that M is a line on X , which is disjoined from the line L.
Then M is an Aut0(X)-invariant curve, which is not contained in the fibers of the conic bundle ψ,
since ψ is given by the projection from L. Therefore, if C is a general fiber of ψ, then C contains
at least three Aut0(X)-fixed points C ∩ (L∪M), so that the Aut0(X)-action on C must be trivial.
This implies that the action of Aut0(X) on X is also trivial, which is a contradiction. �

Combining Proposition 7.2 and Lemma 7.3, we obtain

Corollary 7.4. Main Theorem holds for del Pezzo surfaces of degree 3.

Thus Main Theorem holds for Du Val del Pezzo surface of degrees 1, 2, 3, 4, 5, 6. This follows
from Proposition 5.1 and Corollaries 4.5, 6.2, 7.4. This completes the proof of Main Theorem.
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8. Big Table

Let X be a Du Val del Pezzo surface such that Aut(X) is infinite. Then the type Type(X), the degree K2
X , the Picard rank ρ(X),

the number of lines #(X), the Fano–Weil index τ(X), the group Aut0(X), and the equation of the surface X are given below.
The column No indicates a del Pezzo surface from which X can be obtained by blowing up a smooth point that does not lie on a line.

K2
X ρ(X) #(X) Type(X) τ(X) No Aut0(X) equation & total space

1o 1 1 1 E8 1 – Gm y23 = y32 + y′1y
5
1 P(1, 1, 2, 3)

2o 1 1 3 E7A1 1 – Gm y23 = y31y
′

1y2 + y32 P(1, 1, 2, 3)

3o 1 1 4 E6A2 1 – Gm y23 = y32 + y′21 y
4
1 P(1, 1, 2, 3)

4o 1 1 5 2D4 1 – Gm y23 = y2(y2 + y1y
′

1)(y2 + λy1y
′

1) for λ ∈ k \ {0, 1} P(1, 1, 2, 3)

5o 2 1 1 E7 2 – Gm y22 = y1(y
2
1y

′′

1 + y′31 ) P(1, 1, 1, 2)

6o 2 1 2 D6A1 2 – Gm y22 = y1y
′

1(y1y
′′

1 + y′21 ) P(1, 1, 1, 2)

7o 2 1 2 A7 1 – Ga y22 = (y1y
′′

1 + y′21 )
2 − y41 P(1, 1, 1, 2)

8o 2 1 3 A5A2 2 – Gm y22 = y′′1(y
2
1y

′′

1 + y′31 ) P(1, 1, 1, 2)

9o 2 1 4 D43A1 2 – Gm y22 = y1y
′

1y
′′

1(y
′

1 + y′′1) P(1, 1, 1, 2)

10o 2 1 4 2A3A1 2 – Gm y22 = y1y
′

1(y1y
′

1 + y′′21 ) P(1, 1, 1, 2)

11o 2 2 4 E6 1 14o Gm y22 = y31y
′′

1 + y′41 P(1, 1, 1, 2)

12o 2 2 5 D5A1 2 – Gm y22 = y′1(y
2
1y

′′

1 + y′31 ) P(1, 1, 1, 2)

13o 2 2 6 2A3 1 – Gm y22 = (y′′21 + y1y
′

1)(y
′′2
1 + λy1y

′

1) for λ ∈ k \ {0, 1} P(1, 1, 1, 2)

14o 3 1 1 E6 3 – Ga ⋊(3) Gm x0x
2
2 = x31 + x3x

2
0 P3

15o 3 1 2 A5A1 3 – B2 x0x
2
2 = x31 + x0x3x1 P3

16o 3 1 3 3A2 3 – G2
m x0x2x3 = x31 P3

17o 3 2 3 D5 1 24o Gm x20x3 = x2(x0x2 − x21) P3

18o 3 2 3 A5 3 – Ga x0x
2
2 = x31 + x30 + x0x3x1 P3

19o 3 2 4 A4A1 1 – Gm x3(x0x2 − x21) = x20x1 P3

20o 3 2 5 A32A1 1 25o Gm x3(x0x2 − x21) = x0x
2
1 P3

21o 3 2 5 2A2A1 3 – Gm x0x2x3 = x31 + x0x
2
1 P3

22o 3 3 6 D4 1 26o Gm x20x3 = x1x2(x1 + x2) P3

23o 3 3 7 2A2 3 – Gm x0x2x3 = x1(x1 − x0)(x1 − λx0) for λ ∈ k \ {0, 1} P3

24o 4 1 1 D5 4 – G2
a ⋊Gm y23 = y32 + y21y4 P(1, 2, 3, 4)

25o 4 1 2 A32A1 4 – B2 ×Gm y23 = y2y4 P(1, 2, 3, 4)

2
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K2
X ρ(X) #(X) Type(X) τ(X) No Aut0(X) equation & total space

26o 4 2 2 D4 2 – Ga ⋊(2) Gm y22 = y′2y
2
1 + y′41 P(1, 1, 2, 2)

27o 4 2 3 A4 1 36o B2 x0x1 − x2x3 = x0x4 + x1x2 + x23 = 0 P4

28o 4 2 3 A3A1 4 – B2 y23 = y61 + y2y4 P(1, 2, 3, 4)

29o 4 2 4 A22A1 2 – G2
m y2y

′

2 = y31y
′

1 P(1, 1, 2, 2)

30o 4 2 4 4A1 2 – G2
m y2y

′

2 = y21y
′2
1 P(1, 1, 2, 2)

31o 4 3 4 A3 2 – Ga y22 = y′2y1y
′

1 + y41 + y′41 P(1, 1, 2, 2)

32o 4 3 5 A3 1 37o Gm x0x1 − x2x3 = x0x3 + x2x4 + x1x3 = 0 P4

33o 4 3 6 A2A1 1 38o Gm x0x1 − x2x3 = x1x2 + x2x4 + x3x4 = 0 P4

34o 4 3 6 3A1 2 – Gm y2y
′

2 = y21y
′

1(y
′

1 + y1) P(1, 1, 2, 2)

35o 4 4 8 2A1 2 – Gm y2y
′

2 = y1y
′

1(y
′

1 − y1)(y
′

1 − λy1) for λ ∈ k \ {0, 1} P(1, 1, 2, 2)

36o 5 1 1 A4 5 – U3 ⋊Gm y23 + y32 + y1y5 = 0 P(1, 2, 3, 5)

37o 5 2 2 A3 1 – G2
a ⋊Gm u22v0 + (u20 + u1u2)v1 = 0 P2 × P1

38o 5 2 3 A2A1 1 42o B2 ×Gm

39o 5 3 4 A2 1 43o B2 u0u1v0 + (u21 + u0u2)v1 = 0 P2 × P1

40o 5 3 5 2A1 1 44o G2
m u20v0 + u1u2v1 = 0 P2 × P1

41o 5 4 7 A1 1 45o,46o Gm u0u1v0 + (u0 + u1)u2v1 = 0 P2 × P1

42o 6 1 1 A2A1 6 – B3 — P(1, 2, 3)

43o 6 2 2 A2 3 – U3 ⋊Gm y1y3 = y22 + y′41 P(1, 1, 2, 3)

44o 6 2 2 2A1 2 – B2 × B2 y1y2 = y′21 y
′′

1 P(1, 1, 1, 2)

45o 6 3 3 A1 2 – G2
a ⋊Gm y1y2 = y′1y

′′

1(y
′

1 + y′′1) P(1, 1, 1, 2)

46o 6 3 4 A1 1 48o B2 ×Gm u0v0 + u1v1 + u2v2 = 0, u0v1 + u1v2 = 0 P2 × P2

47o 6 4 6 smooth 1 49o G2
m u0v0w0 = u1v1w1 P1 × P1 × P1

48o 7 2 2 A1 1 50o B3

49o 7 3 3 smooth 1 51o,52o B2 × B2

50o 8 1 0 A1 4 – G3
a ⋊ (GL2(k)/µ2) — P(1, 1, 2)

51o 8 2 1 smooth 1 53o G2
a ⋊GL2(k) u0v0 = u1v1 P2 × P1

52o 8 2 0 smooth 2 – PGL2(k)× PGL2(k) — P1 × P1

53o 9 1 0 smooth 3 – PGL3(k) — P2

2
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Appendix A. Lines and dual graphs

In this appendix, we present equations of the lines on del Pezzo surfaces that appear in Big
Table. We also present the dual graphs of all the curves with negative self-intersection numbers
on their minimal resolutions. As in the paper [7], we will denote a (−1)-curve by •, and we will
denote a (−2)-curve by ◦. We will exclude surfaces 48o (see Example 2.3), 49o, 50o, 51o, 52o, 53o.

Let X be a del Pezzo surface of degree d in Big Table. Take the equation of X from Big Table.
The lines on X and the dual graphs of all the curves with negative self-intersection numbers on
its minimal resolution can be described as follows.

(1o) One has d = 1 and Type(X) = E8. The dual graph is

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ •

The surface X is weakly-minimal. The only line on X is x23 − x32 = x0 = 0.
(2o) One has d = 1 and Type(X) = E7A1. The dual graph is

◦

◦ ◦ ◦ ◦ ◦ ◦

• • ◦ •

The surface X is weakly-minimal. The lines are cut out by x0 = 0, x1 = 0 and x3 = x2 = 0.
(3o) One has d = 1 and Type(X) = E6A2. The dual graph is

◦
◆◆◆

◆◆◆

☛☛
☛☛
☛☛
☛☛
☛☛
☛

◦
♣♣♣

♣♣♣

✸✸
✸✸

✸✸
✸✸

✸✸
✸

•

•

• ◦ •

◦ ◦ ◦ ◦ ◦

The surface X is weakly-minimal. The lines are cut out by x0 = 0, x1 = 0 and x2 = 0.
(4o) One has d = 1 and Type(X) = 2D4. The dual graph is

◦ • ◦

◦ ◦ • ◦ ◦

•

▲▲▲▲▲▲
•

rrrrrr

◦ • ◦

The surface X is weakly-minimal. The lines are cut out by x0 = 0, x1 = 0 and x3 = 0.
(5o) One has d = 2 and Type(X) = E7. The dual graph is

◦ ◦ ◦ ◦ ◦ ◦ •

◦

The surface X is weakly-minimal, and the line is x0 = x3 = 0.
(6o) One has d = 2 and Type(X) = D6A1. The dual graph is

◦

• ◦ ◦ ◦ ◦ ◦ • ◦

The surface X is weakly-minimal. The lines are x0 = x3 = 0 and x1 = x3 = 0.
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(7o) One has d = 2 and Type(X) = A7. The dual graph is

◦ ◦ ◦ ◦ ◦ ◦ ◦

• •

The surface X is weakly-minimal, and the lines are x1 = x3 ± x20 = 0.
(8o) One has d = 2 and Type(X) = A5A2. The dual graph is

◦ ◦ ◦ ◦ ◦

• • •

◦

▲▲▲▲▲▲
◦

rrrrrr

The surface X is weakly-minimal. The lines are x1 = x3 ± x0x2 = 0 and x2 = x3 = 0.
(9o) One has d = 2 and Type(X) = D43A1. The dual graph is

◦ • ◦
▲▲

▲▲
▲▲

◦ ◦ • ◦ •

◦ • ◦

rrrrrr

The surface X is weakly-minimal. The lines are cut out by x3 = 0.
(10o) One has d = 2 and Type(X) = 2A3A1. The dual graph is

◦ • ◦

◦ • ◦ • ◦

◦ • ◦

This surface is weakly-minimal. The lines are x0 = x3 = 0, x1 = x3 = 0, x2 = x3±x0x1 = 0.
(11o) One has d = 2 and Type(X) = E6. The dual graph is

◦ ◦ ◦ ◦ ◦

• ◦ •

•

▲▲▲▲▲▲
•

rrrrrr

This surface is not weakly-minimal. The lines are x0 = x3 ± x21 = 0 and x2 = x3 ± x21 = 0.
(12o) One has d = 2 and Type(X) = D5A1. The dual graph is

◦ • •

◦ ◦ ◦ • ◦

◦ • •

The surface X is weakly-minimal. The lines are cut out by x0 = 0, x2 = 0 and x1 = x3 = 0.
(13o) One has d = 2 and Type(X) = 2A3. The dual graph is

◦ ◦ ◦

•

rrrrrr
•

▲▲▲▲▲▲

• •
▲▲

▲▲
▲▲ •

rr
rr
rr

•

◦ ◦ ◦

The surface X is weakly-minimal. The lines are cut out by x0 = 0, x1 = 0 and x2 = 0.
29



(14o) One has d = 3 and Type(X) = E6. The dual graph is

◦

◦ ◦ ◦ ◦ ◦ •

The surface X is weakly-minimal. The line is x0 = x1 = 0.
(15o) One has d = 3 and Type(X) = A5A1. The dual graph is

◦ ◦ ◦ ◦ ◦ • ◦

•

The surface X is weakly-minimal. The lines are x0 = x1 = 0 and x1 = x2 = 0.
(16o) One has d = 3 and Type(X) = 3A2. The dual graph is

◦ ◦ • ◦ ◦

• ◦ ◦ •

The surface X is weakly-minimal. The lines are x0 = x3 = 0, x1 = x3 = 0 and x2 = x3 = 0.
(17o) One has d = 3 and Type(X) = D5. The dual graph is

• • ◦ ◦ ◦ ◦ ◦ •

◦

The surface X is weakly-minimal. The lines are x0 = x1 = 0, x0 = x2 = 0 and x2 = x3 = 0.
(18o) One has d = 3 and Type(X) = A5. The dual graph is

◦ ◦ ◦ ◦ ◦ •

• •

The surface X is weakly-minimal. The lines are cut out by x1 = 0.
(19o) One has d = 3 and Type(X) = A4A1. The dual graph is

• ◦ • •

◦ ◦ ◦ ◦

•

The surface X is weakly-minimal. The lines are cut out by x0 = 0 and x1 = 0.
(20o) One has d = 3 and Type(X) = A32A1. The dual graph is

◦ • ◦
▲▲

▲▲
▲▲

◦ • • •

◦ • ◦

rrrrrr

Then X is not weakly-minimal. The lines are cut out by x0 = 0, x1 = 0 and x2 = 0.
(21o) One has d = 3 and Type(X) = 2A2A1. The dual graph is

◦ • ◦

◦ • ◦ • ◦

•

▲▲▲▲▲▲
•

rrrrrr

The surface X is weakly-minimal. The lines are cut out by x1 = 0, x2 = 0 and x3 = 0.
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(22o) One has d = 3 and Type(X) = D4. The dual graph is

•
▲▲

▲▲
▲▲ • ◦

▲▲
▲▲

▲▲

• • ◦ ◦

•

rrrrrr
• ◦

rrrrrr

Then X is not weakly-minimal. The lines on X are cut by x0 = 0 and x3 = 0.
(23o) One has d = 3 and Type(X) = 2A2. The dual graph is

◦ ◦

•

rrrrrr
• •

▲▲▲▲▲▲

•
▲▲

▲▲
▲▲ • •

rr
rr
rr

•

◦ ◦

The surface X is weakly-minimal. The lines are cut out by x1 = 0, x2 = 0 and x3 = 0.
(24o) One has d = 4 and Type(X) = D5. The dual graph is

◦

◦ ◦ ◦ ◦ •

The surface X is weakly-minimal. The line is x22 − x31 = x0 = 0.
(25o) One has d = 4 and Type(X) = A32A1. The dual graph is

◦ • ◦ ◦ ◦ • ◦

The surface X is weakly-minimal. The lines are x1 = x2 = 0 and x22 − x31 = x0 = 0.
(26o) One has d = 4 and Type(X) = D4. The dual graph is

◦

• ◦ ◦ ◦ •

The surface X is weakly-minimal, and the lines are x2 ± x21 = x0 = 0.
(27o) One has d = 4 and Type(X) = A4. The dual graph is

•

◦ ◦ ◦ ◦ • •

Then X is not weakly-minimal. The lines are cut out by x0 = 0 and x1 = 0.
(28o) One has d = 4 and Type(X) = A3A1. The dual graph is

•
◗◗◗

◗◗◗
◗◗◗

◦ ◦ ◦ • ◦

•

♠♠♠♠♠♠♠♠♠

The surface X is weakly-minimal. The lines are x22 − x1x3 = x0 = 0 and x1 = x2 ± x30 = 0.
(29o) One has d = 4 and Type(X) = A22A1. The dual graph is

◦ • ◦ •

◦ • ◦ •

The surface X is weakly-minimal. The lines are cut out by x2 = 0 and x3 = 0.
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(30o) One has d = 4 and Type(X) = 4A1. The dual graph is

• ◦ • ◦

◦ • ◦ •

The surface X is weakly-minimal. The lines in X are cut by x4 = 0.
(31o) One has d = 4 and Type(X) = A3 and #(X) = 4. The dual graph is

•
❙❙❙

❙❙❙
❙❙ •

❦❦❦
❦❦❦

❦❦

◦ ◦ ◦
❙❙❙

❙❙❙
❙❙

•

❦❦❦❦❦❦❦❦ •

The surface X is weakly minimal. The lines are x2 ± x21 = x0 = 0 and x2 ± x20 = x1 = 0.
(32o) One has d = 4 and Type(X) = A3 and #(X) = 5. The dual graph is

◦ ◦ ◦

• • •

• •

Then X is not weakly-minimal. The lines are cut out by x0 = 0 and x1 = 0.
(33o) One has d = 4 and Type(X) = A2A1. The dual graph is

•

tt
tt
tt

•
❏❏

❏❏
❏❏

◦
❏❏

❏❏
❏❏ ◦ • ◦ •

• •

tttttt

Then X is not weakly-minimal. The lines are cut out by x1 = 0 and x0 = 0.
(34o) One has d = 4 and Type(X) = 3A1. The dual graph is

•

tt
tt
tt

•
❏❏

❏❏
❏❏

◦
❏❏

❏❏
❏❏ • ◦ • ◦

• •

tttttt

The surface X is weakly-minimal. The lines are cut out by x2 = 0 and x3 = 0.
(35o) One has d = 4 and Type(X) = 2A1 and #(X) = 8. The dual graph is

◦

❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢❢
❢❢❢❢

rr
rr
rr

▲▲
▲▲

▲▲

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳

• • • •

• • • •

◦

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

▲▲▲▲▲▲
rrrrrr

❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

The surface X is weakly-minimal. The lines are cut out by x2 = 0 and x3 = 0.
(36o) One has d = 5 and Type(X) = A4. The dual graph is

◦ ◦ ◦ ◦

•

The surface X is weakly minimal. The line is given by x22 + x31 = x0 = 0.
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(37o) One has d = 5 and Type(X) = A3. The dual graph is

◦ ◦ ◦ •

•

Then X is weakly minimal. The lines are x0 = x2 = 0 and y1 = x2 = 0.
(38o) One has d = 5 and Type(X) = A2A1. The dual graph is

• • ◦ ◦ • ◦

Then surface X is not weakly minimal. It is given in P5 by




x0x2 = x1x5,

x0x3 = x25,

x1x3 = x2x5,

x1x4 = x25,

x2x4 = x3x5.

The lines on X are cut out by x5 = 0.
(39o) One has d = 5 and Type(X) = A2. The dual graph is

•

• • ◦ ◦

❦❦❦❦❦❦❦❦

❙❙❙
❙❙❙

❙❙

•

Then X is not weakly minimal. The lines are cut out by x0 = 0 and x1 = 0.
(40o) One has d = 5 and Type(X) = 2A1. The dual graph is

◦ • ◦

• • • •

Then X is not weakly minimal. The lines are cut out x0 = 0, x1 = 0 and x2 = 0.
(41o) One has d = 5 and Type(X) = A1. The dual graph is

◦

✐✐✐
✐✐✐✐

✐✐✐
✐✐

❯❯❯❯
❯❯❯

❯❯❯❯
❯

• • •

• • •

•

❯❯❯❯❯❯❯❯❯❯❯❯

✐✐✐✐✐✐✐✐✐✐✐✐

Then X is not weakly minimal. The lines are cut out by x0 = 0, x1 = 0, y0 = 0, y1 = 0.
(42o) One has d = 6 and Type(X) = A2A1. The dual graph is

◦ ◦ • ◦

Then X is weakly minimal. The line is x0 = 0.
(43o) One has d = 6 and Type(X) = A2. The dual graph is

•

◦ ◦

❦❦❦❦❦❦❦❦

❙❙❙
❙❙❙

❙❙

•

The surface X is weakly minimal. The lines are x0 = x1 = 0 and x0 = x2 = 0.
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(44o) One has d = 6 and Type(X) = 2A1. The dual graph is

• ◦ • ◦

The surface X is weakly minimal. The lines are cut out by x2 = 0.
(45o) One has d = 6 and Type(X) = A1. The dual graph is

•

• ◦ •

The surface X is weakly minimal. The lines are cut out by x2 = 0.
(46o) One has d = 6 and Type(X) = A1 and #(X) = 4. The dual graph is

• • ◦ • •

The surface X is not weakly minimal. The lines are cut out by x0 = 0.
(47o) One has d = 6 and X is smooth. The dual graph is

• •
◆◆◆

◆◆◆

•

♣♣♣♣♣♣

◆◆◆
◆◆◆

•

• •

♣♣♣♣♣♣

Then X is not weakly minimal. The lines are cut out by x0 = 0, y0 = 0 and z0 = 0.

Appendix B. Del Pezzo surfaces of homology type of P2

In this section, we recall classification of Du Val del Pezzo surfaces whose Weil divisor class
group is cyclic [22, 14, 30]. By Lemma 2.9(iii), each such surface except P2 and P(1, 1, 2) contains
a unique line that generated its class group.

Proposition B.1. Let X be a Du Val del Pezzo surface such that Cl(X) ∼= Z, and let d := K2
X .

Then d 6= 7. If d 6 6, then there is an embedding X →֒ P(1, 2, 3, d) such that X is given by

φ(y1, y2, y3, yd) = 0,

where φ is a homogeneous polynomial of weighted degree 6. If 2 6 d 6 6, then

φ = y23 + y32 + y6−d
1 yd,

so that X is uniquely determined by its degree. If d = 1, there are exactly two possibilities:

φ = y23 + y32 + y51yd,(B.2)

φ = y23 + y32 + y51yd + y21y
2
2,(B.3)

which give us two non isomorphic surfaces. The only line L ⊂ X is cut out by y1 = 0.

Proof. The proof is similar to the proof of Theorem 3.8. �

Thus, if d = 9, 8, 6, then X ∼= P2, P(1, 1, 2), P(1, 2, 3), respectively.

Remark B.4. In the notation and assumptions of Proposition B.1, one can show that X \L ∼= A2.
Moreover, there is cell decomposition X = A2 ∪ A1 ∪ A0. In particular, we have

Hq(X,Z) ∼= Hq(P
2,Z)

for all q (cf. [3]). In the case d = 1, we can say even more: H∗(X,Z) ∼= H∗(P2,Z) as rings.

Remark B.5. Suppose that X is a Du Val del Pezzo surface of degree 1 such that Cl(X) ∼= Z.
By Proposition B.1, X is a hypersurface in P(1, 1, 2, 3) that is given

(i) either by y23 + y32 + y51y
′

1 = 0,
(ii) or by y23 + y32 + y51y

′

1 + y21y
2
2 = 0.
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These possibilities are distinguished by the collection of singular curves in the pencil | − KX |.
Indeed, in the first case, the pencil | −KX | contains two singular curves y1 = 0 and y′1 = 0, which
are both cuspidal. In the second case, it has three singular curves y1 = 0, y′1 = 0 and 4y1+27y′1 = 0.
One of them is cuspidal, and the remaining two curves are nodal.

Corollary B.6. Let X be a Du Val del Pezzo surface, let d := K2
X . If Cl(X) ∼= Z, then Type(X) is

(B.7) E8, E7, E6, D5, A4, A2A1, A1, ∅

in the case when d = 1, 2, 3, 4, 5, 6, 8, 9, respectively. Vice versa, if ρ(X) = 1 and Type(X) is

one of the types (B.7), then Cl(X) ∼= Z.

Proof. The first assertion easily follows from Proposition B.1. To prove the second one, we may
assume that d 6 5, since the remaining cases are easy. Let Cl(X,P ) be the local Weil divisor class
group of the (unique) singular point P ∈ X . Then in the cases (B.7) we have

Cl(X,P ) ∼= Z/dZ,

see e.g. [5, Satz 2.11]. Therefore, for any line L ⊂ X the divisor dL is Cartier. Since dL ∼Q −KX ,
we have dL ∼ −KX . Now, the assertion follows from Lemma 2.9(iii) and Proposition 3.4. �

For every d ∈ {2, . . . , 6}, letXd be the Du Val del Pezzo surface of degree d such that Cl(Xd) ∼= Z.
As we already mentioned earlier, the surface Xd contains exactly one line Ld and Cl(Xd) = Z[Ld].

Take a point Pd ∈ Ld \ Sing(Xd). Let σd : X̃d → Xd be the blow up of the point Pd, and let L̃d be

the proper transform on X̃d of the line Ld. Then

L̃2
d = −1 +

1

d
< 0,

and KX̃d
· L̃d = 0. Therefore, there exists a crepant contraction ϕd : X̃d → X ′

d−1 of the curve L̃d,

where X ′

d−1 is a singular Du Val del Pezzo surface such that Cl(X ′

d−1)
∼= Z and K2

X′

d

= K2
X̃
= d−1.

Thus, if d 6= 2, then X ′

d−1
∼= Xd−1 by Proposition B.1. If d = 2, then X ′

1 is one of the two surfaces
described in Remark B.5, so that we also let X1 = X ′

1. Hence, we obtain the following diagram:

X̃6
ϕ6

$$❏
❏❏

❏❏
❏σ6

zztt
tt
tt

X̃5
ϕ5

$$❏
❏❏

❏❏
❏σ5

zztt
tt
tt

X̃4
ϕ4

$$❏
❏❏

❏❏
❏σ4

zztt
tt
tt

X̃3
ϕ3

$$❏
❏❏

❏❏
❏σ3

zztt
tt
tt

X̃2
ϕ2

$$❏
❏❏

❏❏
❏σ2

zztt
tt
tt

X6
//❴❴❴❴❴❴❴ X5

//❴❴❴❴❴❴❴ X4
//❴❴❴❴❴❴❴ X3

//❴❴❴❴❴❴❴ X2
//❴❴❴❴❴❴❴ X1

It allows us to reconstruct all surfaces in Proposition B.1 starting from X6 = P(1, 2, 3).
Each birational transformation Xd−1 99K Xd is Aut

0(Xd−1)-equivariant, so that it gives a natural
embedding Aut0(Xd−1) →֒ Aut0(Xd) such that Aut0(Xd−1) is just the stabilizer of the point Pd.
Moreover, there following two assertions hold:

• if d > 3, then Aut0(Xd) transitively acts on Ld \ Sing(Xd);
• if d = 2, then Aut0(X2) ∼= Gm has two orbits in L2 \ Sing(X2), an open orbit and a closed
orbit that consists of a single point, which explains two possibilities in Remark B.5.

The construction allow also to compute Aut0(X) in the cases 1o, 5o, 14o, 24o, 36o of Big Table.

Corollary B.8. Let X be a Du Val del Pezzo surface such that Cl(X) ∼= Z, and let d := K2
X .

Then the group Aut0(X) is isomorphic to

B3, B2 ×Gm, G2
a ⋊Gm, Ga ⋊(3) Gm, Gm

in the case when d = 6, 5, 4, 3, 2, respectively. If d = 1, then Aut0(X) ∼= Gm if X is given by (B.2),
and Aut0(X) = {1} if X is given by (B.3).
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