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COMPLEMENTS ON SURFACES
V. V. Shokurov : UDC 512.774

The main result is a boundedness theorem for n-complements on algebraic surfaces. In addition, this
theorem is used in a classification of log Del Pezzo surfaces and birational contractions for threefolds.
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1. Introduction

An introduction to complements can be found in Sec. 5 in [23] (also see the end of this section).
1.1. Example. Let S = Pg(F3) be a ruled surface over a nonsingular curve E of genus 1, which corresponds
to a nonsplitting vector bundle F3/E of rank 2 (Theorem 5(i) in [3]). The ruling is denoted by f: S — E. It
has a single section Pg(F}) in its linear and even numerical equivalence class (by 2.9.1 in [22], cf. arguments
below). We identify the section with E.

We note that E|g ~ det F> ~ 0, where ~ denotes linear equivalence (cf. Proposition 2.9 in [10]). On
the other hand, (Ks + E)|g ~ Kg ~ 0 according to the adjunction formula. Therefore, (Ks + 2E)|g ~ 0
(Lemma 2.10 in [10]). But K5+ 2E = 0/E, where = denotes numerical equivalence. Therefore, Kg + 2F =
f*((Ks+2E)|g) ~ 0 (2.9.1 in [22]). Equivalently, we can choose —Ks = 2F as an anticanonical divisor. In
particular, — K5 is nef because E? = (.

The latter also implies that the cone NE(S) is two-dimensional and has two extremal rays:

o the first ray R; is generated by a fiber F of the ruling f and
e the second ray R, is generated by the section E.
We contend that E is the only curve in R,.

Indeed, if there is a curve C # E in Ry, then C' = mE, where m = (C.F) is the degree of C as a
multisection of f. We can assume that m is minimal. Then, as above, C ~ mEFE, which induces another
fibering with the projection g: S — P!. All fibers of g are nonsingular curves of genus 1. However, some of
them may be multiple. According to our assumptions, any multiple fiber G; has multiplicity m; = m > 2,
and we have at least two of them. Therefore, if G; = E, then another multiple fiber G = E gives another
section in R,. This is impossible.

Therefore, in general, a nef anticanonical divisor —K may not be semiample, and we may have no
complements when —K is just nef. The same can occur in the log case.

1.2. Example. Now let E be a fiber of an elliptic fibering f : S — Z such that

e [F is a nonsingular elliptic curve and

e m is the multiplicity of f in E, i.e., m is the minimal positive integer with mE ~ 0 locally/Z.
Then, for a canonical divisor K, K ~ aFE locally/Z with a unique 0 < a < m — 1. Moreover, in the
characteristic 0, a = m — 1, or K + E ~ 0, which means that K + bF with some real 0 < b < 1 has a
1-complement locally/Z. However, if the characteristic p is positive, we can construct such a fibering with
m = p* and any 0 < a < m — 1 (e.g., see Example 8.2 in [11] for m = p? and 0 < a < p —1). Therefore,
K + bE with b close to 1 has no n-complements with bounded n because such a complement would have the
form K+ E ~ (a+1)E and n(K + E) ~ n(a+ 1)E + 0 when n,a < p and m > p. Therefore, K + E can
be an n-complement having a rather high index n|m. However, it is high in the Archimedean sense, but n is
small p-adically when m = p.

We therefore assume everywhere below that the characteristic is 0.
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1.3. Conjecture on complements. We consider log pairs (X, B) with boundaries B such that K + B is
log canonical. Then complements in any given dimension d are bounded. This means that there exists a finite
set Ny of natural numbers such that any contraction f : X — Z satisfying certain conditions that we discuss
below and having dim X < d has an n-complement locally/Z for some index n € N,.

Of course, we must assume that

(EC) there exists at least some n-complement.

In particular, if B = 0, then the linear system | — nK| # 0 (cf. Corollaries 1.16-1.17 and (NV) in Re-
mark 2.6) and its generic element have good singularities in terms of complements (see explanations before
Corollary 1.16). Perhaps, the existence of complements (EC) is sufficient. The following conditions are more
realistic and important for applications:

(SM) the multiplicities b; of B are standard, i.e., b; = (m — 1)/m for a natural number m or b; = 1 (as
for m = o0);
(WLF) (X/Z, B) is weak log Fano, which means that —(K + B) is nef and big/Z.
We note that these conditions imply (EC) according to the proof of Proposition 5.5 in [23]. By Example 1.1,
the condition that —(K + B) is just nef is not sufficient even for (EC).

1.4. Main Theorem. The complements in dimension two are bounded under the condition (WLF) and
(M) the multiplicities b; of B are standard, i.e., b; = (m — 1)/m for a natural number m or b; > 6/7.

More precisely, for almost all contractions and all contractions of relative dimension zero and one, we can
take a complementary indez in RN, = {1,2,3,4,6}.

Here, “almost all” means up to a bounded family of contractions in terms of moduli. This really concerns
spaces of moduli in the global case or that of log Del Pezzos. The moduli themselves may not be the usual
ones according to Remark 1.13. By the global case, we mean that Z = pt. The other cases are local/Z.

1.5. Definition (cf. Theorem 5.6 in [23]). We say that a complement K + B* is nonezceptional if it is not
Kawamata log terminal when Z = pt. and is not purely log terminal on a log terminal resolution when
Z # pt. The former is called global, and the latter local. The corresponding log pair (X/Z, B) is called
nonexceptional if it has a nonexceptional complement. For instance, surface Du Val singularities of types A,
and D, are nonexceptional even though they have trivial complements that are canonical (cf. Example 1.7).
They respectively have other 1- and 2-complements that are nonexceptional.

On the other hand, the pair (X/Z, B) is ezceptional if each of its complements K+ Bt is exceptional. The
latter means that K + B* is Kawamata log terminal when Z = pt. and is ezceptionally log terminal when
Z # pt. The exceptional log-terminal property means the purely log-terminal property on a log terminal
resolution. The Du Val singularities of exceptional types E¢,E;, and Eg are really exceptional from this
standpoint as well (cf. Example 5.2.3 in [23]).

If the pair (X/Z, B) is exceptional and Z # pt., then for any complement K + B*, any possible divisor
(at most one, as can be proved) with log discrepancy 0 for K + B* has the center over the given point in Z.
Otherwise, we can find another complement B*' > B* that is nonexceptional (see the Proof of Theorem 3.1:
General Case in Sec. 3).

For instance, in the main theorem, the n-complements with n not in RN, are over Z = pt. and excep-
tional, as we see later in Theorems 3.1 and 4.1. The theorem states that the global exceptions are bounded.
Some of them are discussed in Sec. 5. In higher dimensions, it is conjectured that such complements and the
corresponding pairs (X/ pt., B) under conditions (WLF) and (SM) are bounded. Of course, this is not true
if we drop (WLF) (see Example 1.7). However, it may hold formally and even in the local case under certain
conditions, as suggested in Remark 1.14.

We note that V; in the conjecture on complements differs from RN, in the main theorem in exceptional
cases, which are still not completely classified. Nonetheless, we define corresponding ezceptional indexes as
EN; = N, \ RN>. We say that RN, is the regular part of N, in the conjecture for dimension two. We note
that RN2 = N1 = RN]_ U ENl, where RN1 = {1,2} and ER1 = {3, 4, 6}
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1.6. Conjecture. In general, we can define EN; = N, \ Ny_; and conjecture that RNy = N,_; or, equiva-
lently, that EN, really corresponds to exceptions. Evidence supporting this is related to our method in the
proof of the main theorem and Borisov—Alekseev’s conjecture [2].

Some extra conditions on multiplicities are needed: (SM) or an appropriate version of (M) (cf. (M)’ in
Remark 4.7.2, (M)” in 7.1.1, and 2.3.1).

Basic examples of complements can be found in 5.2 in [23].

1.7. Example-Problem. Trivial complements. Let X/Z be a contraction with only log canonical singular-
ities on X and with K = 0/Z, e.g., Abelian variety, K3 surface, Calabi-Yau threefold, or a fibering of them.
It is known that K is then semiample locally/Z: K ~q 0 or nK ~ 0 for some natural number n (at least
in the log-terminal case, cf. Remark 6-1-15(2) in [14]). Such minimal n is known as the indez of X/Z, to
be more precise, over a point P € Z. Indices are global when Z = P = pt., and local otherwise. Therefore,
if we consider X/Z as a log pair with B = 0, then (EC) is fulfilled for the above n. In the global case,
the conjecture on complements suggests that we can find such n in N; for a given dimension d = dim X.
Moreover, in that case, we can replace B = 0 by B under (SM) according to Monotonicity 2.7 below and
assuming that X can be seminormal. In the local case, we need an additional assumption on the presence of a
log canonical singularity/P, i.e., there exists an exceptional or nonexceptional divisor E with log discrepancy
0 for K + B and with centerx(E)/P. Otherwise, a complement can be nontrivial: B > B.

This really holds in dimensions one and two by Corollary 1.9 below. In dimension three, it is known that
any global index n divides the Beauville number

by =25.3%.52.7.11-13-17-19

when X/ pt. has at most terminal singularities and B = 0. We note that a similar two-dimensional number is
by = 12. Its proper divisors give N; = RN,. We therefore conjecture that N, consists of the (proper) divisors
of the Beauville number. Perhaps we have something like this in higher dimensions.

Of course, if indices are bounded in a given dimension d, we have a universal index I; as their least
common multiple. The case of the conjecture on complements under consideration in dimension d is equivalent
to the existence of such I;. As usual in mathematics, it is known only that I; = 12 and that I, exists (see
Corollary 1.9). We suggest that I, ~ bs3. In particular, this means that b; corresponds to nonexceptional
cases. We also note that in the global case, according to our definition, contractions and their complements
are nonexceptional when they are Kawamata log terminal, for instance, Abelian varieties. These varieties
have unbounded moduli in any dimension d > 2, but their index is 1. Therefore, from the formal standpoint
of Remark 1.14 below, we treat them as a regular case.

We note that we are still discussing the case that is opposite to the assumption (WLF) in the main
theorem. Indeed, if we consider a birational contraction X/Z, then the indices are not bounded, for instance,
when X = Z is a neighborhood of a quotient singularity. Nonetheless, the above should hold when X is really
log canonical in P as we suppose. In the surface case, such singularities with B = 0 are known as elliptic,
and they have a Kodaira dimension zero in a certain sense. Their universal index is 12. The conjecture on
complements implies the existence of such a universal number in any dimension.

An inductive explanation can be presented in the log canonical case (¢f. Remark 1.14). Using the log
minimal model program (LMMP), it is possible to reduce to the case where B has a reduced component
E. Then, by the adjunction formula, the index of K + B near E coincides with the same for the restriction
Kg+ Bg = (K + B)|g. It is therefore not surprising that indices for dimension d — 1 = dim E should divide
indices in dimension d. If the above restriction is epimorphic for Cartier multiples of Kz + Bg, then both
indices coincide over a neighborhood of P € Z. This holds, for example, when X/Z is birational. We see in
Sec. 3 that this works in fiber cases as well.

Finally, we note that in the fiber case, the complements can be nontrivial when the above condition on
log canonicity is not fulfilled. Let X be smooth and B = 0. Then the index of K in a neighborhood of a fiber
F C X over P can be arbitrarily high. The point is that the contraction X/Z itself is not smooth in those
cases and the fiber F'is multiple. For instance, K and F have multiplicity m near a fiber F' of type ml, in an
elliptic fibering. However, there exists the 1-complement K + F’ in a neighborhood of F. This, in particular,
explains why complements are fruitful even in such a well-known case as elliptic fiberings. More details can
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be found in Sec. 3. According to Example 1.2, this does not work well in the positive characteristic p. It
might work modulo p factors.

Each trivial complement, i.e., a complement with B* = B, defines a cover X = X of degree d, which is
unramified in divisors with respect to B: a covering is B-unmmzﬁed if it preserves the boundary B, i.e., the
inequality multp, B = b; > (m; — 1)/m;, where m; is any ramification multiplicity/D; (2.1.1 in [23]), holds
for each prime D; in X. The conjecture in this case states boundedness of such degrees. In terms of a local or
global algebraic fundamental group 7(X/Z), they correspond to normal subgroups of finite index and with a
cyclic quotient. A general conjecture here states that 7(X/Z) is quasi-Abelian and even finite in exceptional
cases (see Remark 1.14). The structure of the fundamental group is interesting even for nonsingular X.

We know that the condition (EC) is satisfied in the previous example. Therefore, according to the general
philosophy and to the conjectures there, the following results are not surprising.

1.8. Corollary. We can replace the condition (WLF) in the main theorem with (EC).

This is proved in Secs. 3 and 4. More advanced results can be found in Remark 4.7. We consider only a
trivial case here.

Proof: Numerically trivial case under (SM) We suppose that K + B = 0/Z and it has a trivial
complement B = B (cf. Monotonicity 2.7). Moreover, we consider the global case where Z = pt. (for the
local case, see Sec. 3). We must bound the index of K + B.

It is well known that if B = 0 and X has only canonical singularities, then the index of K divides
I; = 12. On the other hand, the pairs (X, B) with B # 0 and surfaces X with noncanonical singularities are
bounded when they are e-log canonical for any fixed € > 0, for instance, for £ > 1/7 (Theorem 7.7 in [2]).
Therefore, their indices are bounded as well. We note that by (SM), the possible multiplicities b; satisfy the
descending chain condition (d.c.c.).

1t follows that we must bound the indices in the non-e-log canonical case for an appropriate €. We take
€ = 1/7. We can suppose that after a log terminal resolution, B has the multiplicity b = b; > 6/7 in a prime
divisor D = D;. The resolution has the same indices (cf. Lemma 5.4 in [23]). Moreover, for the regular
complements or for almost all (S, B), all b; = 1, when b; > 6/7, and the index is in RN,. Therefore, there
exists a real ¢ > 0 such that all b = 1 when BZ > ¢, and we then have a regular complement. To reduce
this to the main theorem, we apply the LMMP. (Cf. Tsunoda’s Theorem 2.1 in {29], which states that if B
is reduced and K + B =0, then K + B has an index <66.)

We have the extremal contraction f : X — Z because K + B — bD is negative on a covering family
of curves. If f is birational, we replace X with Z. Then D is not contracted, because (K + B — bD.D) =
—bD? > 0.

If Z is a curve, then f is a ruling. Further, according to a one-dimensional result of our corollary applied
to the generic fiber, b; = 1, and K + B has a regular index near the generic fiber of f. We note that D is a
multisection of f with multiplicity at most 2. If D is a 1-section, we reduce the problem to a one-dimensional
case after an adjunction, Kp + Bp = (K + B)|p. In that case, we use the same arguments as in Example 1.1
(cf. Lemma 2.20). We can take a complement with an even index when K + B has the index 2 near the
generic fiber.

Otherwise, D is an irreducible double section of f. In that case, the index is in RN, near each fiber. The
same holds for the entire X, except for the case where B =D, Kp+ Bp = (K+ B)p ~0,and 2(K+B) ~0
(see Lemma 2.21).

Finally, if Z = pt., we can apply the main theorem for B — ¢D for some ¢ > 0. The main difficulties are
here.

1.9. Corollary. Under (SM), I, exrists. Moreover, for the trivial complements, each b; = 1 when b; >
L/(I; + 1), and for almost all trivial complements, each b; = 1 when b; > 6/7.
 In the global case where (X, B) is not Kawamata log terminal and in the local case, we can replace the
inezplicit I, with I = 12 and (SM) with (M). Then each b; = 1 when b; > 6/7.
If we have an infinite number of exceptional divisors with log discrepancies O over P, then we can even
replace I} = 12 with 2. '
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Proof: Global case. We suppose that Z = pt. (we consider other cases in Sec. 3). Then the results follow
from the above arguments and from Theorem 7.7 in [23]. The non-Kawamata log terminal case corresponds
to regular complements by the main theorem (cf. the inductive theorem and Theorem 4.1 below).

For global and local cases with an infinite number of exceptional divisors with log discrepancies 0, see
2.3.2.

1.10. Corollary. Under (SM), let P € (X, B) be a threefold log canonical singularity having a trivial com-
plement as in Ezxample 1.7. Then its index divides I;. Moreover, each b; =1 when b; > L/(I; + 1).

If (X, B) has at least two exceptional divisors/ P with log discrepancy 0, then we can replace the inezxplicit
I with I, = 12. The same holds for one ezceptional or nonezceptional divisor with center passing through P
but not equal to P.

If (X, B) on some resolution has a triple point in an ezceptional locus of divisors/ P with log discrepancy
0, then we can even replace I, = 12 with 2.

Proof. According to the very definition of a trivial complement, we have an exceptional divisor £/ P with log
discrepancy 0. By the LMMP (cf. Theorem 3.1 in [24]), we can make a crepant resolution g : ¥ — X of just
this £, and E is in the reduced part of the boundary BY. By the adjunction, Kz + Bg = (Ky + BY)|g =0,
and Bg has only standard coefficients. Therefore, it has a trivial complement. Then, by Coroliary 1.9 and
by the local inverse adjunction, Ky + BY has the same Cartier index, and it divides I when the restriction
Kg + Bg = (Ky + BY)|g is Kawamata log terminal. We can use a covering trick here as well. Then, by
the Kawamata—Viehweg vanishing, the restrictions m(Kg + Bg) = m(Ky + BY)|g are epimorphic when m
divides the index of Kg + Bg. Therefore, K + B has the same index, and it divides Is.

Other special cases follow from special cases in Corollary 1.9 (cf. Corollary 5.10 in [23]). Then the index
divides I; = 12. A difficulty here is related to an application of the above surjectivity to a seminormal surface
E. However, its combinatoric is quite simple.

We can simulate examples on well-known varieties as in the next example.

1.11. Example. Let X = P¢ and B = Y_ b;L;, where the prime divisors L; are hyperplanes in a generic
position and there are at most ! of them. (The latter holds when min{b; # 0} > 0.) Then, for any boundary
coefficients 0 < b; < 1, the log pair (X, B) is log terminal. If we have a reduced component L; in B, we can
restrict our problem on L;. Therefore, really new complements are related to the case where all b; < 1, which
we assume below. We note that if all b; are rational (or >_b; < d + 1), the condition (EC) follows from the
inequality Y b; < d + 1. The existence of an n-complement is equivalent to another inequality,

deg|(n+1)B] = |(n+b]/n<d+1.
The conjecture on complements states that we can choose such n in a finite set N;. The space
Ts={(by,...,b) | b; €[0,1] and D b; < d+1}

is compact, and the vectors v = (b1, .. ., ) without n-complements form a union of convex rational polyhedra:
b; > c;. In the intersection, they give a vector v without any n-complements; we can also assume that it is
maximal, Y b; = d+1, and b; > 0. But this is impossible, because there exists an infinite set of approximations
with natural numbers n such that (n + 1)b; = N, + §;,¢ = 1,2, where |§; — b;| <& <« 1, and N is an integer.
Indeed, then each |(n + 1)b;] = N;, and

S+ 1b/n= Njn=> b+ (b—8)/n<d+1+le/n.

Hence, Y |(n+1)b;]/n < d+1 when le < 1, because d is an integer. We can find the required approximation
from another one, nb; = Nj; + ¢;, where ¢; = §; — b;, |&;| < € € 1, and NV; is an integer. It has the required
solutions n according to the Kronecker theorem (Theorem IV in Sec. 5 of Chap. 3 in [7]) with L; = b;x and
a; = 0. Indeed, for every integer number u;, > ujo; = 0 is an integer.

Explicitly, this is known up to d = 2: for d = 1, see Example 5.2.1 in [23]; for d = 2 under (SM) with
n < 66, see Prokhorov, Example 6.1 in [20] (cf. Tsunoda’s Theorem 2.1 in [29]).
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We can generalize this and suppose that d is any positive rational (and, maybe even, real) number, the
hyperplanes are in a nongeneric position, and with hypersurfaces rather than hyperplanes of fixed degrees.
Moreover, we can consider complements with » divided by a given natural number m (cf. Lemma 2.29). (We
can consider this even for [ = oo, as for d = 1. However, the boundedness is unknown for [ = co and d > 1.)

There exists a corresponding local case; we consider a contraction X/Z with a fiber F = P¢ and B =
>~ b;L;, where prime divisors L; intersect F' in hyperplanes in a generic position. :

Of course, more interesting cases are related to a nongeneric position and have hypersurfaces rather than
hyperplanes. They also give nontrivial examples of trivial complements. For instance, if C C P? is a plane
curve of degree 6 with one simple triple point singularity, then K 4 C/2 is log terminal and has a trivial
2-complement. The corresponding double cover X — P2 produces a K3 surface X with a single Du Val
singularity of type D4 over the triple singularity of C. For a generic C, after a resolution of X , wWe obtain
a nonsingular K3 surface Y with a Picard lattice of rank 5 and an involution on Y that is identical on the
lattice. We note that a generic curve C' is a generic trigonal curve of genus 7. But this is a different tale.

1.12. Example-Problem. Other interesting complements correspond to Galois quotients. Let G : X be an
(effective) action of a finite group G on a log pair (X/Z, B) with a boundary B under (SM), and let —(K + B)
be nef. For instance, X = P" or a Fano variety, Abelian variety, Calabi—Yau threefold, or an identical
contraction of a nonsingular point. Then on the quotient f : X — Y = X/G, we have a unique boundary By
such that K+ B = f*(Ky+ By). Hence, (Y/Z, By) is a log pair of the same type as (X/Z, B). The (minimal)
complement index n in this case is an invariant of the action of the group. In the global one-dimensional case
X = P!, there exists an action of a finite group G C PGL(1) with n € N;. All exceptional cases have the
quotient description. But in dimension d > 1, it may be that some complement indices do not correspond
to quotients of PGL(d) and not all exceptional cases have a quotient description for X = P or some other
nonsingular Del Pezzos. Even in the one-dimensional case, Y = P! with B = (n ~ 1)P/n+ (m —1)Q/m and
n > m > 2 does not correspond to a Galois quotient. In higher dimensions, we expect more asymmetry as
in a modern cosmology. But among the symmetrical minority, we may encounter real treasures.

Quotients X/G for finite groups of automorphisms of K3 surfaces X reflect the geometry of the pairs
(X,G). According to Nikulin, such pairs (X, G) are bounded when G is nontrivial (cf. Theorem 18.5 in [5]),
in particular, with a nonsymplectic action. On the other hand, each Abelian surface X has an involution.
Therefore, pairs (X, Z,) are not bounded in that case. However, we expect that the pairs (X, G) with K =0
and nonsingular X are bounded when (X,G) is quite nontrivial (nonregular). For instance, X has the
irregularity 0 and G % Z,, with proper divisors m|12. We can say that such pairs (X, G) are ezceptional for
dimension two. Indeed, if we have such a group G, then it has a fixed point, according to the classification of
algebraic surfaces. If the fixed point is not isolated, it produces a nontrivial boundary on X/G. Otherwise,
it gives a non-Du Val singularity on X/G when the action is nonsymplectic. Then X/G with a boundary
belongs to a bounded family by Corollary 1.8 and Theorem 7.7 by Alekseev [2]. Perhaps this sometimes holds
for symplectic actions as well as for K3 surfaces.

1.13. Remark. The moduli spaces mentioned after the main theorem can have real parameters correspond-
ing to boundary coefficients. If we want the usual algebraic moduli, we can forget boundaries or impose
a condition such as (SM). A bit more generally, we can suppose that 1 is the only accumulation point for
possible boundary multiplicities.

1.14. Remark. In addition to Conjecture 1.6, we suggest that regular RNy = Ny_; is sufficient for global
nonexceptional and any local complements in dimension d. We verify this in- this paper for RN, = N;. An
explanation is related to Lemma 5.3 in [23]. If we really have log canonical singularities, we can induce the
problem from a lower dimension (cf. Proof of Theorem 5.6 in [23] and Induction Theorem 2.3 below). This
means that in this case, we only need indices from N4z_; for dimension d. The same holds if we can increase
B to B’ preserving all requirements on K + B for K + B’ and K + B’ has a log canonical singularity. A
good choice is to simulate construction of complements. Therefore, we take B’ = B* = B + H/n, where
H € |-nK—|(n+1)B]| for some n. If K+ B™ is log canonical, we have an n-complement. This complement
is bounded when n € Ny or n € N;_;. Otherwise, we have a log singular case where H is called a singular
element and K + B* is a singular complement. Keel and McKernan referred to such an H as a tiger, but it
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looks more like a must. In this case, we can consider a weighted combination B’ = aB + (1 — a)B™, and for
an appropriate 0 < a < 1, the log divisor K + B’ is log canonical but not Kawamata log terminal. Therefore,
we have no reduction to dimension d—1 when we have no singular elements or such complements. These
cases correspond to exceptions. In particular, | — nK — [(n+1)B]| = 0 for each n € RNy in the exceptional
case. However, | —nK — [(n+ 1)B]| # 0 for some n € RN, in the regular cases. (Cf. Corollaries 1.16-18 for
d = 2 below.) :

In the local case, singular elements are easy to construct by adding a pullback of a hyperplane section
of the base Z. In the global case, singular elements define an ideal sheaf of the type of Nadel-multipliers
ideal sheaf. No singular elements and B = 0 implies the existence of a Kahler-Einstein metric with a
good convergence in singularities (cf. [18]). It is known that X is then stable in the sense of Bogomolov
(cf. Proposition 1.6 in [28]) and exceptions with B = 0 should be bounded. An algebraic counterpart of this
idea is the Borisov—Alekseev conjecture. Therefore, we can expect the same for exceptions with B # 0, at
least under (SM). We prove this for dimension two in Sec. 4. We discuss some exceptions in Sec. 5.

We think the same or something close holds in any dimension (which will be discussed elsewhere), as well
as for exceptional and nonexceptional cases in the formal sense. This means that they have an appropriate
index: some n € RN, in the regular case and only some n € ERy in the exceptional case. In the local
cases, we replace d by d — 1. For instance, any Abelian variety is exceptional according to Definition 1.5,
but they are nonexceptional from the formal standpoint. Their moduli are unbounded, as expected, in the
nonexceptional case. On the other hand, an elliptic fiber of type III or any other exceptional type is formally
exceptional. In a certain sense, their moduli are bounded. However, the log terminal singularities of this
type, i.e., with the same graph of a minimal resolution, are unbounded, but again bounded if we suppose the
e-log terminal property. For instance, the Du Val or surface canonical singularities of the exceptional types
are bounded up to a certain degree (cf. Corollaries 7.3-4). This is a local version of the Borisov—-Alekseev
conjecture. o

1.15. Remark. Complements and their indices allow us to classify contractions. In particular, we divide
them into exceptional and regular. This implies the same in some special situations.

For instance, any finite (and even reductive) group representation or, more generally, action on a Fano
or on an algebraic variety with a numerically seminegative canonical divisor can be treated as exceptional or
regular, and they have such an invariant as the index in accordance with their quotients in Example 1.12.
In particular, this works for subgroups of PGLs. In the case of G C PGL(1), all the exceptional subgroups
correspond to exceptional boundary structures on P! = P'/G. Crystallographic groups give other possible
examples. ,

We can apply the same ideas to a classification of surface quotients, log terminal or canonical, or elliptic
singularities, or their higher-dimensional analogues. The same holds for elliptic fiberings or other fiberings
with complements.

Quite possibly, the most important applications of complements are still to come; perhaps they are
related to classifications of contractions of threefolds X seminegative with respect to- K. They may help to
choose an appropriate model for Del Pezzo, elliptic fiberings, and conic bundles. A strength of these methods
is that they apply in the most general situation when we have log canonical singularities and contractions are
extremal in an algebraic sense, or even just contractions. This also shows a weakness because the distance to
very special applications, when we have such restrictions as terminal singularities and/or extremal-property
contractions, can be quite long and difficult. In addition, exceptional cases are still not classified completely
and explicitly.

We give a primitive sample in 5.1.3.

Another application to a log uniruledness is given in [15] (cf. Remark 6.9.)

We now explain the statement of the main theorem and outline a plan of its proof. We also derive some
corollaries. Let S be a normal algebraic surface and C' + B be a boundary (or subboundary) in it. We
assume that C = |C + B] is the reduced part of the boundary and B = {C + B} is its fractional part. Let
f: S — Z be a contraction. We fix a point P € Z. We must find n € RN; such that K + C 4 B has
an n-complement locally over a neighborhood of P € Z or prove that other possibilities are bounded. More
precisely, the latter ones are only global: Z = P and (S,C + B) are bounded. In particular, the underlying
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S are bounded. On the other hand, for (S/Z,C + B) having an n-complement, there exists an element
D € |-nK —nC — [(n+1)B]| such that for Bt = |(n+1)B]/n+ D/n, K + C + B has only log canonical
singularities (cf. Definition 5.1 in [23]). In the local case, a linear system means a local one/ P. :

As in Corollary 1.8 we can prove more.

1.16. Corollary. Let (S/Z,C + B) be a quasi log Del Pezzo, i.e., a pair under (EC) with nef/Z —(K +
C + B), and let (M) hold for B. Then for almost all of them, there exists an index n € RN, such that
| —nK —nC — [(n+1)B]| # 0 or, equivalently, we have a nonvanishing R°f,O(-nK —nC — | (n+1)B]) # 0
in P. More precisely, the same holds for n € RNy = {1,2} when K 4+ C + |(n+ 1)B]/n is not ezceptionally
log terminal, i.e., there exists an infinite set of exceptional divisors/P with the log discrepancy 0.

Moreover, we need the condition (M) in only the global case with only Kawamata log terminal singularities,
in particular, with C = 0, and the exceptions for RNy belong to it. In this case, we can choose a required n
n Nz.

The last two statements are proved in Sec. 4, and a more precise picture is given in Example 7.10. We
also note that n in the local case in the corollary depends on P. We prove that N, is finite, but we still have
no explicit description of it. By Monotonicity 2.7, |(n + 1)B| > nB under the condition (SM), or even (M)

1.17. Corollary. Again, let conditions (EC) and (M) hold. Then for almost all log pairs (S/Z,B + C),
there exists an index n € RN, such that | — n(K + C + B)| # 0 or, equivalently, we have a nonvanishing
ROf,O(—n(K + C + B)) # 0 in P. More precisely, the same holds forn € RNy = {1,2} when K +C + B is
not exceptionally log terminal.

The ezceptions for RN> belong to only the global case with Kawamata log terminal singularities, in
particular, with C = 0. In this case, we can choose n in Ny, but we should require that b; > m/(m + 1) with
the mazimal m € Na instead of b; > 6/7 in (M).

In particular, if the boundary C+B is reduced, i.e., B = 0, then |-n(K+C)| # 0 or R°f,O(—n(K+C)) #
0 in P.

The last nonvanishing is nontrivial even when S is a Del Pezzo surface with quotient singularities because
it states that | — nK| # 0 or h%(S, —nK) # 0 for bounded n. Such Del Pezzo surfaces form an unbounded
family; moreover, the indices of K for them are unbounded, as are their ranks of the Picard group.

1.18. Corollary. Again, let (EC) and (M) hold. A log pair (S/Z,B + C) is exceptional when Z = pt.,

(S, B+ C) is Kawamata log terminal, in particular, C = 0, and for eachn € RNy, | —nK — |(n+1)B]| =0

or |—n(K+ B)| = 0; equivalently, we have a vanishing h°(S, —nK —|(n+1)B]) = 0 or k%(S, —n(K +B)) = 0.
In particular, if the boundary B is reduced, i.e., B =0, then | —nK| =0 or A°(S, —nK) = 0.

Quite soon, in the proof of the global case in the inductive theorem, we see that an inverse holds, at
least in the weak Del Pezzo case and in the formal sense. This leads to the following question.

1.19. Question. Under (WLF) and (SM), does any (X/Z, B) with a formal regular complement have a real
nonexceptional regular complement in the sense of Definition 1.57 In general, this is not completely true
(reg(X, B*) = 1), for instance, locally for non-log terminal singularities with 2-complements of type E2? (see
Sec. 6); the singularity is exceptionally log terminal. It holds for log terminal singularities of types A,, and
D,,. But it is unknown, even for surfaces X = S/ pt.

The inverse does not hold if we drop (WLF), for instance, for Abelian varieties, as mentioned in Ex-
ample 1.7. However, it looks possible for P! x E where E is an Abelian, in particular, an elliptic curve.
In this case, —K has a positive numerical dimension. Moreover, each 1-complement in such a case has log
singularities. Alas, these complements are not quite nonexceptional as well. We explain this in Sec. 7 in
terms of reg(S, B*), which specifies the question for 1- and 2-complements with reg(S, BY) = 1.

The above corollaries show that it is easier to construct a required D € | —nK —nC — |(n + 1)B]| with
small n when K + C + B has more log singularities. An expansion of this fact is related to the inductive
theorem in Sec. 2, an analogue of arguments in Theorem 5.6 in [23]. As in the last theorem, under conditions
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of the inductive theorem, we extend or lift D and a complement from its one-dimensional restriction or
projection. Therefore, we say that we have an inductive case or complement, and the latter has regular
indices and is nonexceptional in the global case.

We can then try to change (X/Z, B) such that a type of complement is preserved and the new (X/Z, B)
satisfies the inductive theorem. For instance, we can increase B as is done for local complements in Sec. 3.
Here, in the global case, a problem arises with standard multiplicities. Fortunately, all the other cases are
global and Kawamata log terminal, where we use a reduction to the inductive theorem or to a Picard number-
1 case which, in addition, is 1/7-log terminal in points. In the latter case, we apply Alekseev’s results [2].
We discuss this in Sec. 4.

2. Inductive Complements

2.1. Example. Let S = Pg(F3) be a ruled surface over a nonsingular curve E of genus 1, which corresponds
to a nonsplitting vector bundle F3/E of rank 2 (see p. 141 in [5]) with an odd determinant. The ruling is
denoted by f: S — E. It has a single section Pg(F}) in its linear class by a Riemann—Roch and a vanishing
below. We identify the section with F.

We note that E|g ~ det F; ~ O for a single point O € E (cf. Proposition 2.9 in Chap. 5 in [10]).
Therefore, we have a natural structure of an elliptic curve on E with O as a zero. On the other hand,
(Ks+ E)|g ~ Kg ~ 0 according to the adjunction formula. Therefore, (Kg+2E — f*O)|g ~ 0 (see Lemma
2.10 in Chap. 5 in [10]). But Ks+2F = 0/FE. Therefore, as in Example 1.1, K +2E — f*O ~ 0, and we can
choose —Ks = 2E — f*O as an anticanonical divisor. In particular, K% = 0, and —K is nef because Fj is
not splitting. The latter also implies that the cone NE(S) is two-dimensional and has two extremal rays:

o the first ray R; is generated by a fiber F' of the ruling f and
e the second ray R, is generated by — K.

Because —Kg = 2E — f*O, the ray R, has no sections. We contend that R, has three unramified double
sections C;, 1 < i < 3. Each of them is C; ~ 2E — f*(O + 6;) = —Kgs — f*0;, where 0; is a nontrivial
element of the second order in Pic(E). Hence, Kg has 2-complements C;: 2(Ks+ C;) ~ 0 but Ks+ C; £ 0
but no 1-complements. The sections are nonsingular curves of genus 1. Moreover, Ry is contractible with
contg, : S — P! having 4-sections also nonsingular and of genus 1 as generic fibers. The curves C; are the
only multiple (really, double) fibers of contg,.

Because —Kg+mE is ample for integer m > 0, we have vanishings »*(S,mE) = h{(Ks — Ks+mE) =0
for ¢ > 0 according to Kodaira. Hence, by the Riemann—-Roch,

R%(S,2E) = 2E(2E — Ks)/2 = 3.

Similarly, R°(S,E) = 1. On the other hand, a restriction of |2E| on E is epimorphic and free because
h1(S,E) = 0 and the restriction has degree 2 on E. Therefore, |2E]| is free and defines a finite morphism
g: S — P? of degree 4. According to the restrictions, E goes to a line L = g(E), and a generic fiber F = f*P
of f goes to a conic Q = g(F), which is tangent to L in g(P). Otherwise, |2E — F| # @, and we have a
single double section C = —Ks passing through @ ~ 20 — P. This defines a contraction onto E, which is
impossible by Kodaira’s formula (Theorem 12.1 in Chap. 5 in [5]), because — K is nef. Therefore, Q = g(F)
is a conic, and g embeds F onto @ C P2. Then, by the projection formula, g*(L|g) = (¢*L)|r = 2E|r = 2P
locally over g(P). Therefore, Q is tangent to L in g(P). We note that the same image gives a fiber F' = f*P’
for P’ ~ 20 — P because Fj is invariant for an automorphism (even involution) 7 : S — .S induced by the
involution P — P’ on E. The latter holds by the uniqueness of F3 with the determinant O.

We therefore have a one-dimensional linear system [4F — f*O|, whose generic element is a nonsingular-
4-section of genus 1. This gives g = contp,. Because all nonmultiple fibers of g are isomorphic, g, Kgs/g =
x(Os) = 0. By Kodaira’s formula, we hence have degenerations. (Equivalently, the second symmetrical
product of Fj is not spanned on E; cf. p. 31in [17].) Double fibers are the only possible degenerations because
their components are in R, but are not sections of f. They give double sections C; of f in R;. On the other
hand, 2K5 ~ —4FE + 2f*O ~ —g*P for a generic P € P!. Therefore, K5 ~q —g*P/2. In particular, Ks
has the 2-complement ¢g*P/2. Again, by Kodaira, we have three double fibers: C;, 1 < ¢ < 3. We note that
2C; ~ g*P ~ —2Kg ~ 4FE —2f*(0. We thus obtain all properties of C;, except for §; # 0. This follows from a
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monodromy argument because we have exactly three such 8; € Pic(E) with 26; = 0 and three double sections
C; of f in R,. (The corresponding double cover C;/E is given by 6;.)

2.2. Corollary. Let S/E be an extremal ruling over a nonsingular curve of genus 1. It can be given as a
projectivization S = Pg(F) for a vector bundle F/E of rank 2. Then S/E or F/E has

e a splitting type if and only if K5 has a 1-complement,

e an exception in Ezample 2.1 if and only if Ks has a 2-complement, and

e an exception in Example 1.1 if and only if Ks does not have complements at all.

In addition, the cone NE(S) is closed and generated by two curves or extremal rays:

e the first ray Ry is generated by a fiber F' of the ruling S/E and
o the second ray Ry is given by one of curves G with G2 < 0 given by a splitting in a splitting case,
Ks+ G+ G ~0; other cases are discussed in Ezamples 1.1 and 2.1.

Proof. We only need to consider the splitting case where ' =V @ V' is a direct sum of two line bundles.
We then have two disjoint sections G = Pg(V) and G' = Pg(V’). We can suppose that G2 < 0. By the
adjunction formula, Ks + G + G' = 0 and, moreover, ~0 by the arguments in Example 1.1. Therefore, K
has a l-complement, and G generates R,. The latter holds for some C' with C2? < 0. We assume that the
curve C is an irreducible multisection of f. If C? < 0, then C = G. Otherwise, C is disjoint from G and &',
and (K5.C) = (Ks+G +G'.C) = 0= (Ks + G+ G.G). Therefore, C = G. If C? = G? = 0, then R, is
generated by G as well. '

2.3. Inductive Theorem. Let (S/Z,C + B) be a surface log contraction such that

(NK) K + C + B is not Kawamata log terminal, for instance, C # 0, and

(NEF) —(K +C + B) is nef.
Then it has a regular complement locally/Z, i.e., K + C + B has a 1-, 2-, 3-, 4- or 6-complement, under
(WLF) of Conjecture 1.8 or with (M) under any one of the following conditions:

(RPC) NE(S/Z) is rationally polyhedral with contractible faces/Z or

(EEC) there ezists an effective complement, i.e., a boundary B’ > B such that K+ C+ B’ is log canonical
and =0/Z or

(EC)+(SM) or

(ASA) anti log canonical divisor —(K + C + B) semiample/Z or

(NTC) there erists a numerically trivial contraction v : X — Y/Z, i.e., v contracts the curves F C S/Z
with (K +C + B.F) =0.

2.3.1. We can drop (M) in the theorem, but then it states just a boundedness of n-complements. More pre-
cisely, n € {1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,27, 28, 29, 30, 31, 35,
36,40,41,42,43,56,57}.

2.3.2. If there exist an infinite number of exceptional divisors with log discrepancy 0, then we have a 1- or
2-complement. If we drop (M), we have 6-complements in addition.

There exist (formally) nonregular complements in the inductive theorem when (M) is not assumed.
Similarly, we have examples with only 6-complements in 2.3.2.

2.4. Example. Let f : S — P! be an extremal ruling F,, with a negative section C. We take a divisor
B =V + H with a vertical part f*(E), where £ > 0, and a horizontal part H = > d;D; with d; € Z/mn(0, 1)
for some natural number m. The latter can be given, for instance, as generic sections of f.

We suppose that the different Bo = (B)¢ has only the standard multiplicities, V = f*Bc, deg(K¢ +
B¢) =0, and H is disjoint from C. Then K + C + B as K¢ + B¢ has n-complements only for n such that n
is divided by the index of K¢ + B (cf. Monotonicity Lemmas 2.7 and 2.17 below). Then we do not have n
complements for m = (n + 1) when K + C + B = 0 (cf. Monotonicity 2.16.1 below).
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We therefore have a nonregular n(n+ 1)-complement when K¢+ B¢ has only one regular n-complement,
and n(n+1) > 7. Moreover, we can have no regular complements in this case. This holds, for instance, when
n = 6.

In general, nonregular complements in the inductive theorem are similar, as we see in its proof, with the
following modifications. The ruling cannot be extremal, .S can be singular, and By can have nonstanda.rd
multiplicities. To find complements in such cases, we use Lemmas 2.20 and 2.28-29.

If we take V' with the horizontal multiplicities 1/3 and H such that (C, Bc) has just 2-complements,
then K + C + B has 6-complements as the minimal.

The following result clarifies the relations of conditions in the inductive theorem.
2.5. Proposition. If K + C + B is log canonical and nef/Z, then
(WLF) = (RPC) = (NTC) <= (ASA) <= (EEC) < (EC) + (SM)

with the following exceptions: for (WLF) = (RPC),

(EX1) the contraction f: S — Z is birational, and up to a log terminal resolution, C = C + B is a curve
with nodal singularities of arithmetic genus 1, /P, K+C =0/Z, and S has only canonical singularities
outside C;

for (EEC) = (NTC),

(EX2) Z = pt., K + C + B has the numerical dimension one, B' and E are unique, (K +C + B’) has a
log nontorsion singularity of genus 1 and of numerical dimension one, i.e., on a crepant log resolution,
C + B’ = C forms a curve with only nodal singularities, with the connected components of genus 1, and
E|c =0, but not ~q. _

Nonetheless, (WLF) = (NTC) always, and (WLF) == (RPC) always in the analytic category or in the
category of algebraic spaces. In (EX2), there exists a 1-complement.

2.6. Remark-Corollary. In particular, for surfaces, (WLF) always implies (ASA). In other words, if —(K +
C+ B) is log canonical, nef, and big/Z, then it is semiample. This is well known when K+ B+C is Kawamata
log terminal (see Remark 3-1-2 in [14]; cf. arguments in the proof below). For log canonical singularities, it
is an open question in dimensions three and higher. In dimension two, we can replace the last two conditions
with a nonvanishing:

(NV) —(K + C + B) ~g E/Z where E is effective,

and E? > 0. (See Definition 2.5 in [24] for a definition of ~4.) We also note that (EEC) implies (NV)
but not vice versa (cf. Example 1.1). Therefore, in general, nef —(K + C + B)/Z is not semiample if
it is not big and not =0/Z. In the latter case, E = 0, and according to the semiampleness conjecture
for K + C + D/Z, we expect semiampleness (see Conjecture 2.6 in [24]; cf. Remark 6-1-15(2) in [14] and
Remark 1.7). This is the main difficulty in constructing complements: (EC). In dimension two, at least
(NV) holds when —(K + C + B)/Z is nef. However, as in Example 1.1, K + C + B + E may not be log
canonical. Does such a nonvanishing hold in higher dimensions? In any case, it implies a log generalization of
a Campana—Peternell problem in dimension two (see 11.4 in [6] and [17]; cf. [9]): —(K +C + B) is ample/Z if
and only if —(K +C + B) is positive on all curves F' C Y/Z. Indeed, then E? > 0, and —(K +C+ B) is ample
by the Nakai-Moishezon Corollary 5.4 in [5], or we can use the implication (WLF) = (ASA). Therefore,
we have a complement in a weak form (EEC). Again by, Example 1.1, we cannot replace the above positivity
with a weaker version: nef and (K + C + B.F') = 0 only for a finite set of curves. As we can see in a proof of
(NV), the nef property of —(K + C + B) implies (EEC) in most cases and in a linear form. For instance, the
only exception is S of Example 1.1 when S is not rational. Do exceptions exist when S is rational? It appears
that —(K + C + B) satisfies (ASA) in most of these cases as well. The exceptions again are unknown to the
author. For threefolds, similar questions are more difficult, for example, the Campana—Peternell problem.
In dimension two, the most difficult cases are related to nonrational or nonrationally connected surfaces or,
more precisely, to extremal fiberings over curves E of genus 1. They are projectivizations of rank 2 vector
bundles/E. Therefore, similar cases are of prime interest for threefolds: projectivizations X of rank-3 vector
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bundles/E, of rank 2 over Abelian or K3 surfaces. Is their cone NE(X) always closed rationally polyhedral
and generated by curves as for Fanos? What are the complements for K7 (Cf. Corollary 2.2.)

According to the same example, we really need at least a contractibility of extremal faces in (RPC) for
(EEC) or (EC) and, moreover, for regular complements in the theorem. As in (EX1), we sometimes have
just the rational polyhedral property but not contractibility of any face. If —(K + C + B) is only nef, the
cone may not be locally polyhedral near (K + C + B)* (Example 4.6.4 in [8]). The same example gives an
exception of (EX2).

In dimension d > 3, (ASA) is better than (NTC): (ASA) implies (NTC) easily, but the converse is harder,
as we see below. In addition, in the proof of the inductive theorem below, we can see that a semiampleness
of —(K + B) on S is sufficient. Fortunately, this is good for induction in higher dimensions. This will
be developed elsewhere. It appears that the same should hold for (NTC); then it would be best in this
circumstance. The condition (NTC) also implies the Campana~Peternell problem (but not a solution of the

latter).

Proof. We first verify that (WLF) implies (NTC) and, except for (EX1), (RPC). For the former, it is sufficient
to prove (ASA). For the latter, it is sufficient to prove that NE(S/Z) is rationally polyhedral and, except for
(EX1), with the contractible faces near a contracted face NE(S/Z) N (K +C+ B)*. Indeed, the cone satisfies
both properties locally outside the face by the LMMP. A contraction in any face of NE(S/Z) N (K +C + B)*
preserves this outside property.

To prove (ASA) in the Q-factorial case, we can use a modern technique: restrict a Cartier multiple of
—(K + C + B) on the log singularities of K + C' + B. Then a multiple of —(K + C + B) is free in such
singularities because any nef Cartier divisor is free on a point, on a rational curve, and on a curve of arithmetic
genus 1 with at most nodal singularities, assuming in the last case that the divisor is canonical when it is
numerically trivial. We meet only this case after the restriction. We can then apply traditional arguments
to eliminate the base points outside the log singularities.

For surfaces, however, we can use more direct arguments, which work in the positive characteristics.
Because —(K + C + B) is big, we have a finite set of curves £/P with (K + C + B.F) = 0. We verify that
each of them generates an extremal ray and (RPC) or (EX1) hold near them. After a log crepant blowup
(Theorem 3.1 in [24]), we assume that S has only rational singularities whereas K + C + B is log terminal.
In particular, C' has only nodal singularities.

In most cases, we can easily verify (RPC) and derive (ASA) from this as shown below. For instance, if
—(K + C + B) is ample, it follows from the LMMP. Otherwise, we change C + B such that it holds except
for three cases: (EX1);

. C is a chain of rational curves/P, (K + C + B.C + B') = 0 in C + B’ is contractible to a rational
elhptlc singularity, where C + B’/ P is the connected component of C in B; or
4. Z = pt., and there exists a ruling g : S — C with a section C, with C? < 0, which is a nonsmgular
curve of genus 1, and S has only canonical singularities, and outside C' and B, B has no components in
fibers and does not intersect C.

In (EX1), we obviously have the rational polyhedral property, but contractions of some faces may not exist
in general. In the last two cases, we verify (RPC) directly near (K + C + B)'.

According to Lemma 6.17 in [24], we suppose that —(K +C + B) =D =Y d;D; is an effective divisor
with irreducible curves D;. Moreover, we suppose that Supp D contains an ample divisor H. Therefore, if
K + C+ B+ 46D is log canonical for some § > 0, then K + C + B + éD — vH gives a required boundary
C+B: =C+B+6D—+H. For instance, this works when K +C + B is Kawamata log terminal. Therefore,
C # 0 in the exceptional cases considered below. The curve C is connected by Lemma 5.7 and the proof of
Theorem 6.9 in [23] (see also Theorem 17.4 in [16]).

More precisely, K + C + B + 6D is not log canonical when Supp D has a component C; that is in the
reduced part C as well (cf. 1.3.3 in [23]). Moreover, any component C; of C'is /P, in D, (K +C + B.C;) =0,
and C? < 0. If C; is not/P or C;/P with (K + C + B.C;) < 0, we can decrease the boundary multiplicity in
C;. By an induction and the connectedness of C, this gives a reduction to the Kawamata log terminal case.
If C? > 0, we can do the same. Because H and D intersect C;, C; C Supp D.
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In most cases, C is a chain of nonsingular rational curves because C' is connected with nodal singularities
and

degKc < (CK+C)<(CK+C+B)=—-(C.D)<N0.

The only exception arises when deg K¢ = 0, C has the arithmetic genus 1, B =0, and S is nonsingular in a
neighborhood of C.

To verify (RPC) locally, we must verify (in the exceptional cases) that D = —(K + C + B), tha.t each
nef R-divisor D near —(K + C + B) is semiample, and that only curves F/Z with (K +C + B.F) = 0 are
contracted by D. Indeed, D is big as —(K + C + B). Therefore, we can assume that D is effective as above
and D > H. Therefore, D is numerically trivial only on a finite set of curves F and F? < 0. We can also
assume that D is quite close to —(K + C + B), namely, (K +C + B.F) = 0. In other words, we must verify
that any set of curves F with (K + C + B.F) = 0 is contractible in an algebraic category. If the singularities
after the contraction are rational, we can pull down D to a R-Cartier divisor. Therefore, the pull-down of D
is ample according to Nakai-Moishezon (Corollary 5.4 in [5]). Hence, D is semiample. Of course, this applies
directly when D is a Q-divisor. Otherwise, we can represent it as weighted combination of such divisors
(cf. Step 2 in the Proof of Theorem 2.7 in [24]) because a small perturbation of coefficients of D preserves its
positivity on all curves. (Essential ones are components of Supp D.) The cone is rational finite polyhedral
near K + C + B because the set of curves F is finite.

If the curves F' with exceptional curves on a minimal resolution form a tree of rational curves, we could
then contract any set of curves F by Grauert and Artin’s criteria (Theorems 2.1 and 3.2 in [5]). In addition,
the singularities are rational log canonical after contraction. This works in case ¢ when C is a chain of
nonsingular rational curves C;/P. Indeed, we can contract inductively because F? < 0. We do this first
for F not in C. Because the boundary multiplicity in F' is <1, F is a nonsingular rational curve, and by
a classification of the log terminal singularities, F' with the curves of a resolution forms a tree of rational
curves. Therefore, F is contractible (by the LMMP as well). Moreover, this preserves the log terminality
and rationality of singularities. By Lemma 5.7 in [23], C forms a chain of rational curves again. Finally, C
is the whole curve where K + C + B = 0/Z. Because all singularities are log terminal, we have the required
resolution of C'. We can then contract C inductively, too. This effectively gives case i because B = 0 near
C. Otherwise, we can decrease B and replace C + B by a Kawamata log terminal boundary.

We now suppose that C is a curve/P with only nodal singularities of arithmetic genus 1. f K+C+ B =
0/P, then we have the exceptional case (EX1) because ~(K + C + B) is big/P. Because S is nonsingular in
a neighborhood of C, it is easy to verify that other curves/P on a minimal resolution form a chain of rational
curves intersecting simply C. Moreover, they are (—1)- or (—2)-curves. Therefore, we can contract any set of
such curves with any proper subset of C' according to Artin. The only problem here is to contract the whole
C. Alas, this is not always true in the algebraic category, e.g., after a monoidal transform in the generic
point of C. The cone in this case is rational polyhedral, but contractions may not be defined for some faces,
including the components of C. Nonetheless, —(K + C + B) is semiample because K + C + B is semiample
in this case.

We now suppose that K+ C + B # 0/Z. Then C is nounsingular, and we have case ii. Indeed, we have an
extremal contraction S — Y/Z negative with respect to K + B. It is not to a point or onto a curve because
(K+C+ B.C) = (K + C.C) =0, and, accordingly, C cannot be a section if C is singular. Therefore, the
contraction is birational. By a classification of such contractions, it contracts a curve that does not intersect
C. Then, we again have K + C + B # 0/Z. Induction on the Picard number/Z gives a contradiction. If C
is nonsingular, the only possible case is where, after a finite number of birational contractions, we have an
extremal ruling that induces a ruling g as in case # with section C. Then, in particular, Z = pt.

The object S has only canonical singularities outside C. There are also no components of Supp B in
fibers of g and intersecting C. In other words, K +C + B is canonical in points, and there are no components
of B in fibers of g. Indeed, as we know, there are no components of B in fibers of g that intersect C.
After extremal contractions/C, this holds for any component in fibers of g. Therefore, after a blowup in a
noncanonical point, we obtain a contradiction. This implies that it is really case %i.

We now verify (RPC) near (K +C+ B)*. As above in case i, we must verify that any set of curves F' with
(K+C+B.F) = 0is contractible. Again, as in case 4, any such F' in addition to C is rational. Hence, such an
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F belongs to a fiber of g. Therefore, we have a finite number of them. As above, this implies the polyhedral
property for NE(S). In addition, a required contraction corresponds to a face in NE(S)N (K 4+ C + B)%, and
the latter is generated by curves in fibers of g and, perhaps, C.

We only want to verify the existence of the contraction in this face. If C' does not belong to such a
face, it follows from the relative statement/C. Otherwise, after contracting the curves of the face in fibers,
we suppose that F' is generated by C. Any birational contractions with disjoint contracted loci commute.
Therefore, it is sufficient to establish a contraction of C, after contractions of the curves in fibers of g, which
does not intersect C. Equivalently, we can assume that the fibers of g are irreducible. Then S is nonsingular,
g is extremal, and p(S) = 2, where p(S) denotes the Picard number. Because C? < 0, we contract C by
h: S — S’ to a point at least in the category of normal algebraic spaces. However, we can pull down K+C+B
to a R-Cartier divisor —D’ = Kg + h(C + B) because (K + C + B)|¢ is semiample over a neighborhood of
h(C). This follows from the existence of a 1-complement locally (cf. Corollary 5.10 in [23]) and even globally,
as we see later in the big case of the inductive theorem.

Because D' is nef and big and p(S’) = 1, D' is ample and —(K + C + B) = h*D’ is semiample. This
completes the proof of (WLF) = (RPC).

By definition, (RPC) implies (NTC).

Because any semiample divisor D defines a contraction that contracts the curves F' with (D.F) = 0,
(ASA) implies (NTC). The converse and other arguments in this proof are related to the semiampleness
of log canonical divisors, Theorem 11.1.3 in [16] (it assumes Q-boundaries that can be improved up to R-
boundaries as in Theorem 2.7 in [24]). Therefore, let v : X — Y/Z be a numerical contraction. Then, by the
semiampleness/Z, K + C + B = v*D for a R-divisor on Y that is numerically positive on each curve of Y/Z.
It is then easy to see that D is ample/Z and hence semiample/Z, except for the case where v is birational
and Z = pt. However, this case is also known because for complete surfaces, —(K + C + B) is ample when
(K +C+ B.F) <0 on each curve F C S, which follows from (NV) as explained in Remark-Corollary 2.6.

In the corollary, we only need to verify (NV) when —(K + C + B) is nef/Z. We do this now. After a
crepant resolution, we assume that K + C + B is log terminal. When —(K + C + B) is numerically big, then
(NV) follows from Lemma 6.17 in [23]. On the other hand, if the numerical dimension of —(K + C + B) is
0/Z, then —(K + C + B) ~p 0/Z by Theorem 2.7 in [24]. In other cases, Z = pt., and D = —(K + C + B)
has numerical dimension one, i.e., D is nef, D # 0, and D? = 0. We assume that (NTC) and (ASA) do
not hold. Otherwise, —(K + C + B) is semiample, as we already know, and (NV) holds. We now reduce
(NV) to the case where D is a Q-divisor or, equivalently, B is a Q-divisor (cf. proof in the big case of the
Inductive Theorem). If C'+ B has a big prime component F, then —(K + C + B — ¢F) satisfies (WLF),
and —(K + C + B) is not assumed (NTC). On the other hand, each component F of B with F? < 0 can be
contracted by the LMMP or by Artin. If this contraction is crepant, we preserve the numerical dimension,
the log terminality, and (NV). Otherwise, (K +C+ B.F) < 0, and we can decrease the multiplicity of B in F,
which, as in the above big case, gives (NV) by (WLF). Therefore, we assume that each F' in B with F? < 0
is contracted, i.e., for each prime component F in B, F? = 0. For the same reason, such components F' are
disjoint. Hence, if we slightly decrease each irrational b; to a rational value, we obtain a Q-boundary B’ < B
and a divisor —(K + C + B’) that is nef and has the same numerical dimension. Assuming (NV) but not
(NTC), we have a unique effective D' ~g —(K + C + B’). By the uniqueness, D has positive multiplicities
in components F for any such change. Moreover, they are greater than or equal to the change. Therefore,
D ~g —(K + C + B), and (NV) holds.

We now assume that D is a Q-divisor. After a minimal crepant resolution, we also assume that S is
nonsingular. Then for positive Cartier multiples mD, we have the vanishing A2(S,mD) = h°(S, K ~mD) = 0,
at least for m >> 0, because D has a positive numerical dimension. Therefore, by the Riemann—Roch,

R%(S,mD) > h*(S,mD) + mD(mD — K)/2 + x(Os)
= -mDK/2 + x(0s) = mD(C + B) + x(Os) > x(Os).

In particular, A°(S,mD) > 1 when x(Os) > 1, for instance, when S is rational. Assuming now that S is
nonrational, we verify that after crepant blow-downs, S is an extremal or minimal ruling over a nonsingular
curve of genus 1. Indeed, we have a ruling g : S — E over a nonsingular curve of genus 1 or higher because
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D=K+C+B#0and D #0/E. If g is not extremal, we have a divisorial contraction in a fiber of g,
which is positive with respect to D. Hence, after a contraction, we have (WLF). Because S is not rationally
connected, this is only possible when C # 0 by Theorem 9 in [27]. If C # 0, a classification of log canonical
singularities and Corollary 7 in [27] imply that we have a connectedness by rational and elliptic curves in C.
Hence, F has genus 1, and C is a section of g. If S is not extremal, then we have a crepant blow-down of a
(—1)-curve in a fiber of g. ' ‘

In addition, x(Os) = 0, and for each F in C+ B, (D.F) = 0 by the above Riemann-~Roch. In particular,
C + B does not have components in fibers. The cone NE(S) = NE(S) is a closed angle with two sides:

e R; is generated by a fiber of the ruling g and
e R, is generated by a multisection F’ with F2 < 0.

We note that (D.R;) > 0 and D = —(K + C + B) is nef. Hence, if F? < 0, we can take F = C as a
section. In this case, we find an effective divisor D = B’ — B by increasing a component of B # 0 or by
taking another disjoint section F otherwise. Then K +C + B+ D = K + C + B’ ~g 0 by Theorem 2.7
on semiampleness in [24], because K + C' + B’ is log canonical (Theorem 6.9 in [23]). Finally, if F2? = 0,
then D = —(K + C + B), and any component of C' + B generates R, as well. Moreover, each curve in R,
is nonsingular and of genus 1. They are disjoint in R,. There exist at most two of them when (NTC) is not
assumed. As above, D = B’ — B for some B’ > B such that K + C'+ B’ = 0. Using [3], it is possible to
verify that K + C + B’ ~ 0 for an appropriate choice or K + C + B’ is log canonical, except for the case in
Example 1.1. In the latter case, we have a single curve E in Ry, C+ B = aFE with a € [0,1], and K ~ —2E.
Hence, D = —(K + C + B) ~ (2 —a)E > 0. This completes the proof of (NV).

We now suppose (EEC): there exists an effective divisor E=B'—B=(K+C+B')—-(K+C+B) =
—(K + C + B)/Z which is nef. If E is numerically big/Z, then E is semiample/Z. This implies (NTC).
In other cases, the numerical dimension of E is 1 or 0/Z. In the latter case, K + C+ B = —-E =0/Z is
semiample. This implies (ASA) and (NTC). Hence, we assume that E has the numerical dimension 1/Z and
Z = pt. We can then reduce this situation to the case where E is an isolated reduced component in C + B’.
Otherwise, E is contractible by the LMMP. Indeed, if K + C + B’ is purely log terminal near a connected
component F of F, we can increase C'+ B’ in F": for small € > 0, a log canonical divisor K+C+B'+cF = ¢F
is log canonical and semiample. This implies (NTC). After a crepant blowup, we can suppose that K+C + B’
is log terminal, and a log singularity is on each connected component F' of E. Then, essentially by Artin,
we can contract the log terminal components in F. Therefore, E is reduced in C' 4+ B’, and each connected
component ¥ of E has the numerical dimension one. We verify that F is semiample when F is not isolated
in C + B’. This implies (NTC). Let D be another component of B’ intersecting F' and having a positive
multiplicity b in B. We can then subtract a nef and big positive linear combination § D +¢F from K+C+ B/,
which gives the nef and big anti-log divisor —(K + B”) = —(K+C+ B’)+ 6D +¢F. That is (WLF), which
implies (RPC) and (NTC).

Hence, we must now consider the case where C'+ B’ has F' = Supp FE as a reduced and isolated component.
We also assume that K + C + B’ is log terminal. Then F has only nodal singularities.

Because F is nef and of numerical dimension one, E|r = 0.

If E|r +g 0, we have (EX2) but not (NTC). Nonetheless, in these cases, K +C+ B’ ~ 0 or, equivalently,
K + C + B has a 1-complement. In particular, C' + B’ is reduced. Indeed, if E|r #g 0, then F is a curve of
arithmetic genus 1. To find the index of K + C + B’, we can replace S with-its terminal resolution when S is
nonsingular. If S is rational, we reduce the problem to a minimal case where F = C = C+ B’ ~ —K. Hence,
K + C + B’ has index 1. Otherwise, S is not rationally connected. Hence, F is a nonsingular curve with at
most two components of genus 1, and S has a ruling g : § — G over a nonsingular curve G of genus 1. If g has
a section G in F, then C has another section G’, whereas C = C+B' = G+G and K+C+B = K+C ~ 0.
Indeed, after contractions of (—1)-curves, which do not intersect a component of F', where E|r = 0 but g 0,
we preserve the last property on an extremal g. It has a section G in F such that E|g #g 0 or, equivalently,
Gle #q 0. According to [3], this is a splitting case, i.e., G generates the extremal ray R,, and it has only two
curves G and another section G'. The latter holds because R; is not contractible. Therefore, we can assume
that F = C + B’ is a double section of g. This is possible only when the ruling g is minimal. Otherwise,
after a contraction of a (—1)-curve in a fiber of g intersecting F', we obtain big F' = —K. By (ASA), this is
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impossible for —K because K has no log singularities and S is hence rationally connected. Therefore, S/G is
extremal with another extremal ray R, generated by F', and F? = 0. According to a classification of minimal
rulings over G, this is a nonsplitting case because (NTC) is not assumed. By Examples 1.1 and 2.1, this is
impossible for the other rulings: either we have no complements or we have (NTC) by Corollary 2.2.

We note that (NTC) does not hold in (EX2), for example, because of the uniqueness of B’ and E. In
these cases, K + C + B’ ~ 0 and not only =0 by Corollary 2.2. In addition, B’ and E are unique in (EX2)
because otherwise a weighted linear combination of different complements B’ gives a complement C'+ B’ that
has no log singularity in a component of F.

In other cases, E|r ~gp 0. Let G be a connected component of £ in a reduced part of C + B’. We prove
that a multiple of G is then movable at least algebraically. This implies (NTC) because K + B+ C’' +£G' is
semiample for small £ > 0 and a divisor G’ disjoint from Supp(C + B’), including F, which is algebraically
equivalent to a multiple of G. This implies = as well. We note that after log terminal contractions for
K +C+ B', the LMMP implies that C + B’ is reduced or (NTC) holds. Indeed, if B’ has a prime component
D with multiplicity 0 < b < 1, then D is in B and disjoint from F. After log terminal contractions of
such divisors with D? < 0, we assume that D? > 0 for others. Because D* > 0 implies (WLF) and (RPC)
for K+ C + B’ — D, D? > 0 implies (NTC) for E. The same holds for D? = 0 by the semiampleness of
K+C+B'+eD. Hence, C+ B’ is reduced after contractions. We can now use a covering trick (Example 2.4.1
in [23]), because K + C + B’ ~g 0. If S is rational, the latter holds for any numerically trivial divisor. If .S
is nonrational, then, as in (EX2) above, we verify that K + C + B’ ~ 0 or ~g 0 of index 2 by Corollary 2.2.
Therefore, after an algebraic covering, which is ramified only in C+B’, we suppose that K+C+ B’ has index 1.
A new reduced boundary is an inverse image of C'+ B’. The same holds for G. After a crepant log resolution,
we assume that S is nonsingular and G is a Cartier divisor. The curve G has only nodal singularities and
genus 1. Contracting the (—1)-curves in G, we assume that each nonsingular rational component of G is a
(—m)-curve with m > 2. Then all such curves are (—2)-curves, and we can take a reduced G. The latter is
obvious in other cases, too. Indeed, after a normalization, we suppose that D is a Q-divisor with multiplicities
<1 and with one component D with multiplicity 1. Then K 4+ C' + B’ — G is log terminal near G, =0 on G,
and has multiplicity 0 in D. Because each such D is not a (—1)-curve, the log divisor K + C + B’ — G is
trivial near G, and G is a reduced Cartier divisor. According to our assumptions and reductions, G|G ~gq 0.
We prove that a multiple mG is linearly movable. First, we suppose that S is rational. Let mG|G ~ 0 for
an integer m > 0. Then by a restriction sequence on G, we have a nonvanishing h!(S, (m — 1)G) # 0 when
G is linearly fixed and the restriction is not epimorphic. Hence, by the Riemann-Roch,

KO(S, (m — 1)G) > hX(S, (m — 1)G) + (m — 1)G((m — 1)G — K)/2 + x(Os)
>14+0+1=2,

and (m —1)G is linearly movable. In other cases, S is not rationally connected. Moreover, F is a nonsingular
curve of genus 1 or a pair of them, and there exists a ruling g : § — G’ to a nonsingular curve G’ of genus 1. If
G is a section of g, then we can suppose that S is extremal/G’ after contractions of (—1)-curves, disjoint from
G, in fibers /G’. By (3], (EEC), and Example 1.1, this is a splitting case, i.e., g has a section G’ in C + B,
and G’ is disjoint from G. Then, as in Example 1.1, we verify that G — G’ ~g 0 because g is extremal and
(G-G")|¢ = Glg ~g 0. This means that a multiple of G is linearly movable. In other cases, C+B' =F =G
is a double section of g. As above, S/G’ is minimal because S is not rationally connected. Then G is again
linearly movable when S has a splitting type. If G is a double section, then C' + B’ = G, and we have (NTC)
by Corollary 2.2. Indeed, we have no such case after the covering trick.

As in Proposition 5.5 in [23], (ASA) implies (EEC).

Finally, (EC)+(SM) implies (EEC) by the monotonicity result below.

2.7. Monotonicity Lemma. Let r = (n —1)/n for a natural number n # 0. Then for any natural number
m#0,

[((m+1)r|/m>r
Moreover, forn > m+1,

[(m+1)r]/m=1.
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Proof. Indeed, because mr has the denominator n and r =1 — 1/n,
[(m+1)r| = [mr+r] > mr

This implies the inequality.
Because | (m + 1)r|/m has the denominator m, and it is always <1, we obtain the equation.

Proof of the Inductive Theorem: Big case. We suppose that —(K + C + B) is big (as in Theorem 5.6
in [23]). (Cf. Theorem 19.6 in [16].)

The proof is based on the Kawamata—Viehweg vanishing and the connectedness of the log singularities
(Lemma 5.7 and Theorem 6.9 in [23]). Kawamata states that the vanishing works even for R-divisors. In
our situation, it is easy to replace B with a new Q-divisor <B with the same regular complements. We can
make a small decrease of each irrational b; in prime D; with (K + B+ C.D;) < 0. Finally, B is rational after
this procedure. Equivalently, each b; in D; with (K + B + C.D;) = 0 is rational. Because —(K + C + B) is
big, each such D; is contractible, and the corresponding b; is rational.

A higher-dimensional version is similar (cf. Proof of Theorem 7.1). Other cases in the inductive theorem
are more subtle and need more preparation. (A higher-dimensional version will be presented elsewhere.) But
we first derive some corollaries.

2.8. Corollary. If (S, B) is a weak log Del Pezzo with (K + B)? > 4, then it has a regular complement.

Proof. We must find B’ > 0 such that (S, B + B') is a weak log Del Pezzo but K -+ B + B’ is not Kawamata
log terminal. By the Riemann-Roch formula and arguments in the proof of Lemma 1.3 in [22], it follows
from the inequality

(N(—K — B).N(~K — B) — K)/2 = N(N +1)(K + B)?/2 +(-K — B.B)/2
' >2N(N +1) >2N(2N +1)/2.

This implies nonvanishings as in Corollaries 1.16-18, in particular, the following nonvanishing.

2.9. Corollary. If (S,0) is a weak Del Pezz0 with log canonical singularities and K2 > 4, then |-12K| # 0
or KX, —12K) # 0.

2.10. Corollary. A weak log Del Pezzo (S, B) is exceptional only when (K + B)? < 4.

2.11. Definition. Let D be a divisor of a complete algebraic variety X. We say that D has a type of
numerical dimension m if m is the maximum of the numerical dimensions for effective R-divisors D’ with
Supp D’ C Supp D. Similarly, we define a type of linear dimension where we replace the numerical dimension
of D' with the litaka dimension of D'. We note that both 0 < m < dimX. A big type is a type with
m = dim X.

Here are the basic properties.

o The linear type m is the Iitaka dimension of D when D is an effective R-divisor.

e Such D is movable if and only if D has the linear type m > 1.

o The linear type is a birational invariant for log isomorphisms, i.e., we add exceptional divisors for
extractions and contract only divisors in D. In particular, this holds for the extractions and flips.

o For an arbitrary extraction, the numerical type does not decrease.

o For an arbitrary log transform, the linear type does not decrease.

We can prove more for surfaces.
2.12. Proposition-Definition. Let X = S be a complete surface and D be a divisor. Then the numerical

type of D is not higher than that of the linear type.
Moreover, if (S,C + B) is a log surface such that

e K + C + B log terminal,
e K+(C+ B =0,and
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.o Supp D is divisorially disjoint from LCS(S, C + B), i.e, they have no divisorial components in common,

then the numerical type of D is the same as the linear one. In addition to the big type, we have a fiber type
for a type of dimension one and an ezceptional type for a type of dimension zero.

More precisely, D is a fiber geometrically, i.e., there exists a fiber contraction g : § — Y with an algebraic
fiber D' = ¢g*P for P in a nonsingular curve Y/, havmg Supp D' C Supp D, if and only if D has a fiber type.
In addition, D is supported in fibers of g, and g is defined uniquely by D.

Respectively, D is exceptional geometrically, i.e., there exists a birational contraction of D to a zero-
dimensional locus if and only if D has an exceptional type.

The condition K + C + B = 0 can be replaced by (ASA).

Proof. We use the semiampleness (Theorem 2.7 in [24]) for K + C+ B+eD' ~gp D' with small £ > 0. We
note that K +C + B ~g 0.

If D has a fiber type, we have a fibering g : S — Y with a required fiber D' = g*P. If D has a horizontal
irreducible component D”, then D’ + D" has a big type for small £ > 0. Horizontal means not in fibers;
vertical, in fibers.

If D is of an exceptional type, we can contract D by Artin or by the LMMP (cf. with the proof of
Proposition 2.5).

Finally, if K + C + B satisfies (ASA), we e have a numerical complement K+C+5' =0 w1th the required
properties.

Proof of the Inductive Theorem: Strategy. In this section, we assume that Z = pt. We discuss the
local cases where dim Z > 1 in Sec. 3, where we obtain better results.

Using a log terminal blowup (Lemma 5.4 in [23] and Example 1.6), we reduce the problem to the case
where K + C + B is log terminal. By our assumption, it has a nontrivial reduced component C' # 0. We
want to induce complements from lower dimensions (in most cases, from C).

First, we prove the theorem in

Case I: C is not a chain of rational curves.

We then assume that C is a chain of rational curves.

By Proposition 2.5, we can assume (NTC) or, equivalently, (ASA). Therefore, we have a numerical
contraction v : S — Y for —(K + C + B), where Y is a nonsingular curve or a point, the latter for a while.
We have regular complements in the exceptional cases. Let x* be the numerical dimension of —(K + C + B)
or, equivalently, dim Y. We construct complements in different cases according to the configuration of C'+ B
with respect to v. For x* = 1, we distinguish two cases:

Case II: v has a multisection in C}

Case III: C is in a fiber of v.

For k* = 0, most of the cases are inserted in the above cases. A pair (S,K + C + B) with «* =0 is
considered as Case II, where D = Supp B has a big type. As we see in the proof below, v naturally arises
when we need it, and such a v is a contraction to a curve. Such a pair is considered as Case II, where D has
a fiber type and C + D is of a big type. Equivalently, C' has a multisection for v = g with g of Proposition
2.12. Moreover, C then has a double section of ¢g. In this case, we have a complement by Lemma 2.21. Such
a pair is considered as Case III, where D has a fiber type but now C + B and D sit only in fibersof v = ¢
One component of D gives a (geometric) fiber of v. The contraction » = g: S — Y here plays the same role
as v in Case III with «* = 1. Finally,

Case IV: D has an exceptional type.

We then contract the boundary B to points.

Case I could be distributed in the other cases, but we prefer to simplify the geometry of C, which slightly
simplifies the proofs of Cases II-IV.

We try to reduce each case to the big case for K + C + B or for K+ C + B with B’ = [(n 4+ 1)B]/n
when a complement index n is suggested. There are two obstacles here. First, we cannot change B or B in
such a way, for instance, in Case III with curves of genus 1 in fibers. This leads to a separation into cases.
Second, we cannot preserve complements of some indices, for instance, when decreasing B, as Lemma 2.16
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shows. Here is a situation as in Example 2.4, and it is a main difficulty in Case II, when we try to induce
a (regular) complement from C. We use Lemmas 2.20 and 2.21 below to resolve this difficulty. In the cases
where we cannot induce regular complements, we find others by Lemmas 2.27-29. This occurs only when
(M) is not assumed. ’

In Case III, the most difficult situation, where v has curves of genus 1 in fibers, is quite concrete. We
then use the Kodaira classification of degenerate fibers. We also indirectly use a Kodaira formula (p. 161
in [5]) for the canonical divisor K.

A possible alternative approach to Cases II-III is to directly use an analogue of Kodaira’s formula,

K+C+ B ~p v'(Ky +v((K+ C+ B)g/y) + By), (1)

for a certain boundary By, which can be found locally/Y. We assume that K + C + B = 0/Y. Therefore,
this is a fibering of genus-1 log curves. In an arbitrary dimension n = dim S, formula (1) with a boundary D
instead of v.((K + C + B)g/y) + By was proposed, but not proved, in the first draft of the paper. Formula
(1) also plays an important role in a proof of an adjunction in codimension n. In this context, a similar
formula was proved in our surface case by Kawamata [13], where By corresponds to a divisorial part and
f«((K + C + B)g/y) to a moduli part. However, we have three difficulties in its application. First, a relative
log canonical divisor (K +C'+ B)g/y is nowhere defined, and its properties are nowhere to be found. Second,
the divisorial part is given, but not very explicitly. Third, we have ~gr or ~g for Q-boundaries. Therefore,
we must control indices for a complement on (Y, By) and for ~g in (1) for an induced complement.

Finally, in Case IV, we decrease C (cf. proof of Corollary 1.8) and use a covering trick. In this case, we
have trivial regular complements. -

A modification of a log model may change types, i.e., possible indices, of complements. Nonetheless, for
blow-down, we can always induce a complement of the same index from above by Lemma 5.4 in [23]. The
converse does not hold in general. For instance, there are no complements after many blowups in generic
points. Lemmas 2.13 and 4.4 give certain sufficient conditions for when we can induce complements from
below.

2.13. Lemma (Cf. Lemma 5.4 in [23]). In the notation of Definition 5.1 in [23], let f: X — Y be a bira-
tional contraction such that Kx + S + |(n + 1)D|/n is numerically nonnegative on a sufficiently general
curve/Y in each exceptional divisor of f. Then

Ky + f(S + D) n-complementary = Kx + S + D n-complementary.

By a sufficiently general curve in a variety Z, we mean a curve that belongs to a covering family of
curves in Z (cf. Conjecture in [25]). We note that for such a curve C and any effective R-Cartier divisor D,
(D.C) = 0.

2.14. Example-Corollary. If S+ D = S is in a neighborhood of exceptional locus for f and Kx + S5+ D
is nef/Y’, then we can pull back the complements, i.e., for any integer n > 0,

Ky + f(S + D) n-complementary => Kx + S + D n-complementary.

2.15. Negativity of a proper modification (Cf. Negativity 1.1 in [23]). Let f : X — S be a proper mod-
ification morphism and D be a R-Cartier divisor. If
i. f contracts all components E; of D with negative multiplicities, i.e., such components are exceptional
for f, and
ii. D is numerically nonpositive on a sufficiently general curve/S in each exceptional divisor E; in i,

then D is effective.

Proof. First, it is a local problem/S.

Second, according to Hironaka, we can assume that f is projective/S and X is nonsingular, in particular,
Q-factorial. The pullback of D satisfies the assumptions. The proper inverse image of a sufficiently general
curve is again sufficiently general.

Third, there exists an effective Cartier divisor H in S such that
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iti. the support of f*H contains the components of D with negative multiplicities and
w. f~1H is positive on the sufficiently general curves in i (this is meaningful because f~'H is Cartier).

For example, we can take H as a general hyperplane through the direct image of an effective and relatively
very ample divisor/S and through the images of the components of D with negative multiplicities.

According to #ii-iv, Cartier divisor £ = f*H — f~!H is effective Wlth positive mult1p11c1t1es for the
components of D having negative multiplicities and

v. negative on the sufficiently general curves in 4.

Therefore, there exists a positive real r such that D+rE > 0 and has an exceptional component F; with
0 multiplicity unless D > 0. However, then (D + 7E.C) > 0 for a general curve C in E;, which contradicts
it and v.

Proof of Lemma 2.13. We take a crepant pullback:
Kx + DX = f*(Ky + D+)

It satisfies 5.1.2-3 in [23] as Ky + D™, and we must verify 5.1.1 in [23] only for the exceptional divisors. For
them, it follows from our assumption and Negativity 2.15.

2.16. Monotonicity Lemma. Let r be real and n be a natural number. Then
[(n+1)(r —e)]/n=[(n+1)r]/n
for any smalle > 0 if and only if r € Z/(n + 1).

2.16.1. We note that forr = k/(n+ 1) > 0, we have [(n+ 1)r|/n = k/n > r. Therefore, r > 0 is not in
Z/n+1)if [(n+ Lr|/n=k/n<r.

Proof of the Inductive Theorem: Case I. By (ASA) and Proposition 5.5 in [23], we can assume that
K+C+B = 0. Then by Theorem 6.9 in [23] or by the LMMP and Lemma 5.7 in [23], C has a single connected
component, except for the case where C' consists of two nonsingular disjoint irreducible components C; and
C, such that S has a ruling g : § — C; = C3/Y with sections C; and C (cf. Theorem 6.1 below). By
Lemma 5.7 in [23], the existence of the ruling follows from the LMMP applied to K + C; + B. A terminal
model cannot be a log Del Pezzo surface, because C; is always disjoint and nonexceptional during the LMMP
(cf. Theorem 6.7).

In this case, we can construct complements to K + C + B with a given C = C; + C,. (Cf. Lemma 2.20
and 2.21 below.) Making a blowup of a generic point of C; and then contracting the complement component
of the fiber, we reduce to the case where C; is big. Then for small rational € > 0, —(K + C + B — () =
—(K+C+ B)+¢eC% is nef and big, which gives the required complement by the big case above. More precisely,
we have the same complement as K¢, +(B)c, on C}, where (B)¢, denotes a different (Adjunction 3.1 in [23]).
The blowups preserve complements by Lemma 5.4 in [23]. For contractions, we can use Example 2.14. In
this case, it is easily verified directly as well.

We therefore assume that C' is connected. We also assume that each component of C is a nonsingular
rational curve.

Otherwise, C is a (nonsingular, if we Want) irreducible curve of genus 1 with B = 0 and nonsingular
S in a neighborhood of C (Properties 3.2 and Proposition 3.9 in [93]) In this case, we suppose that S is
nonsingular everywhere after a minimal resolution. We chose a B that is crepant for the resolution. Then
the LMMP and a classification of contractions in a two-dimensional minimal model program gives a ruling
f: 8 = C' with a surjection C — C’ or S = P? with a cubic C + B = C. Because a blowup in any
point of P? gives a ruling, P? is the only possible case, where S = P? and C = C + B ~ —Kpz. Hence,
K+C+B=K+C~0onS =P? and we have a 1-complement. Similarly, a 1- or 2-complement holds
in the case with the ruling f and double covering C — C’ (cf. Lemma 2.21). We want to verify only that
B=0and 2(K +C + B) =2(K + C) ~ 0 but not only =0. After contractions of exceptional curves of the
first kind intersecting C in fibers of f, we can suppose that f is extremal, i.e., with irreducible fibers. This
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preserves all types of complements by Example 2.14. We also note that the same reduction holds for the
ruling f: S — C’ = C having a section C.

Because K + C + B = 0 and the covering C — C"' is double we have no boundary components in fibers
of f and B = 0. Therefore, if C is rational, then f is a rational ruling F,, and K +C+ B =K+ C ~ 0.
Otherwise, C” has genus 1, and (K + C) is 1- or 2-complementary by Corollary 2.2. If S is a surface of
Example 2.1, then C = C; and we have a 2-complement. The surface S of Example 1.1 is impossible by
(ASA). If f is a splitting case, ~Kg ~ G + G'. Therefore, C = G+ G, as well as C ~ 2G and 2G’ because
CNG=CNG =GNG = 0. Therefore, 2C ~ 2(G + G') ~ —2Kg, which gives a 2-complement (but not a
1-complement).

Next, we consider the case where C' = C’ is a nonsingular curve of genus 1 and a section of f. The
boundary B = > bD; # 0 has only horizontal components D;. The curves D; are nonrational. Hence,
D} > 0 by the LMMP. On the other hand, we have a trivial n-complement for (K + C + B)|c = K¢ ~ 0
for any natural number n. Therefore, we have an n-complement when we have D? > 0 with multiplicity
b; ¢ Z/(n + 1). Indeed, we can then construct an n-complement, as in the big case, for (K + C + B — eD);)
with small € > 0. For (K + B + C), we have the same complement by Monotonicity Lemma 2.16. Because
Z/2NZ/3 = 0 in the unit interval (0,1), K4+ C+ B is 1- or 2-complementary when some D? > 0. Otherwise,
all D? = 0. By Corollary 2.2, the curves D; and C’ are in Rp, and are all disjoint nonsingular curves (of
genus 1). Hence, it is sufficient to find an n-complement in the generic fiber/Z, which we have forn =1 or

2 by Example 5.2.1 in [23].

Finally, we suppose that C is a (connected) wheel of a rational curve. Then, by the arguments in the
case where C is a nonsingular curve of genus 1, we see that S is a rational ruling S — C’ with a double
covering C' — C” or S = P? with a cubic C + B = C. In both cases, we have a 1-complement.

2.17. Monotonicity Lemma. Let r < 1 be a rational number with a positive integer denominator n and
m be a positive integer such that nlm. Then

[m+Dr)/m <.
Moreover, the eguality holds if and only if r > 0.

Proof. Let 7 = k/n. Then
[m+r]/m=|(m+1k/n]/m=(km/n+ |k/n])/m=r+|r]/m <,
and the equality holds if and only if » > 0.
2.18. Corollary. Let m be a natural number and D be a subboundary of indezx m in codimension one and
without a reduced part, i.e., mD is integral with multiplicities < m. Then
mD > |(m+1)D],
and the equality holds if and only if D is a boundary.

2.19. Lemma. Let C = |C+ B] be the reduced component in a boundary C + B on a surface S and C' C C
be a complete curve such that

i. K+ C + B is (formally) log terminal in a neighborhood of C’,

it. (K + C + B)|¢ has an n-complement, and

. —(K +C + B) is nef on C'.
Then (C;.K + C + D) < 0 on each component C; C C' with D = |(n + 1)B]/n, and K + C + D is log
canonical in a netghborhood of C'.

In 4, formally means locally in an analytic or etale topology. This can be defined formally as well.

Proof. First, we can suppose that C’ is connected.
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Second, by the proof of Theorem 5.6 in [23] (cf. Proof of the big case in the Inductive Theorem and that
of the local case in Sec. 3), the lemma holds when C’ is contractible because then we have an n-complement
in a neighborhood of C'.

Third, it is sufficient for an analytic contraction because under our assumptions in most cases, it is
algebraic by Artin or by the LMMP. It works, and we obtain a rational singularity after the contraction when
C'’ is not isolated in C + B. Otherwise, B=0and C+ B = C + D = (’. Then the lemma. follows from i
and .

Finally, the contraction exists when a certain numerical condition on the intersection form on C’ is
satisfied. This is negative after sufficiently many monoidal transforms in generic points of C’. Such a crepant
pullback of K + C + D preserves the assumptions i-# and the statements.

2.20. Lemma. Let (S,C + B) be a complete log surface with a ruling f: S — Z such that

i. there exists a section C1 — S of f which is in the reduced part C,

ii. (K + C + B)|c has an n-complement for some natural n > 0,

iii. C+ D = C + |(n+ 1)B)]/n gives an n-complement near the generic fiber of f, i.e., K +C + D is
numerically trivial on it,

iv. —=(K + C + B) is nef, and

v. K+ C + B is (formally) log termmal in a neighborhood of C if we do not assume that K +C + B is
log canonical everywhere but just C + B > 0 outside C.

Then K +C + B has an n-complement.

Proof. The above numerical property iv and Theorem 6.9 in [23] imply that K + C + B is log canonical
everywhere (cf. the proof of Theorem 5.6 in [23]).

Making a crepant log blowup, we can assume that K 4 C + B is log terminal everywhere, essentially by
Lemma 5.4 in [23]. Because f is a ruling, NE(S/Z) is rational polyhedral and generated by curves in fibers
of f (cf. (EX1) in 2.5). We note that any contraction of a curve £ € C in fibers of f preserves i-v: i by
Lemma 5.3 in [23] because the boundary coefficients of (K + C + B)|¢ are not increasing. This implies v as
well.

We simultaneously consider the boundary C + D as in . After contractions of curve £ & C in fibers
of f with (E.K + C + D) > 0, we can suppose that —(K + C + D) is nef. Indeed, this is true for the fibers
and on section C;. Because K +C + D = 0/Z, applying the LMMP to f, we can suppose that f is extremal.
Then NE(S) is generated by a fiber and a section. We note that (C;.K + C + D) < 0 for the curves C; C C
by Lemma 2.19.

It is sufficient to construct an n-complement after such contractions by Lemma 2.13.

The boundary coeflicients of D belong to Z/n. In addition, by i

vi. K+ C + D is numerically trivial/Z.

Therefore, again by Lemma, 2.13, we can assume that the fibers of f are irreducible or in C. Because C] is
a section, we increase C + D in fibers to B such that (K + C + B*)|c, is given by an n-complement in .
We contend that K + B™ gives an n-complement of K + C + B, too.

First, we note that 5.1.1 in [23] holds by construction.

Second, as above, K + BT = 0 because this is true for the fibers and section C}.

Third, K + B™ is log canonical in a neighborhood of C; by inverse adjunction (Corollary 9.5 in [23]).
Therefore, as above, K + B™ is log canonical everywhere, i.e., 5.1.2 in [23].

Finally, we must verify that n(K + B*) ~ 0. In particular, this means that nB* is integral. Because
the log terminal singularities are rational as well as any contractions of curves in fibers of f, we can replace
(S/Z,C + B*) by any other crepant birational model. For instance, we can suppose that .S is nonsingular
and all fibers of f are irreducible. Then S is a nonsingular minimal ruling/Z with the section C;. In that
case, n(K + B?) is integral and ~0 by the contraction theorem because these hold for n(K + B™)|¢,. The
latter is preserved after any crepant modification above.

2.21. Lemma. Lemma 2.20 holds even if we drop iii and simultaneously change i in it to
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e there exists a curve Cy in C with a covering C, — Z of degree d > 2,
except for the case C + B = C; in Ezxample 2.1, when n is odd. Moreover, then d = 2 always. In the
exceptional case, we have a 2n-complement for any natural number n.

2.22. Lemma. Let f: X — Y be a conic bundle contraction with a double section C. If a divisor D =0
over its generic points of codimension two in'Y and for any component C; of C, C; € D, then the different
De¢v is invariant under the involution I given by the double covering C* — Y on the normalization C*.

2.22.1. The same holds for C, assuming that K+ C is log canonical in codimension two (cf. Theorem 12.3.4
in [16]).

Proof-Commentary. First, taking hyperplane sections, we reduce the lemma to the case of a surface ruling
X — Y with a double curve C” over Y.

Second, we can drop D, because it is pulled back from Y.

Finally, according to the numerical definition of the different [23] and because K + C' = 0/Y, we can
replace X by any crepant model (X, D). In particular, we can suppose that X is nonsingular with an extremal
ruling f. According to M. Noether, we can assume that C is nonsingular as well. Then D = 0/Y because it
is supported in fibers of f. Therefore, we can drop D again.

In this case, the different is 0 and invariant.

The same works for 2.22.1. We need the log canonical condition on K'+C+D only to define (K+C+D)|c.

2.23. Lemma. Let C; be a component of a seminormal curve C with a finite Galois covering f: C; — C' of
a main type A, and let B be a Weil R-boundary supporting in the normal part of C and Galois invariant on
C,. Then K + B has an n-complement that is Galois invariant on Cy if and only if it has an n-complement.

Proof-Commentary. The type A means that we have branchings at most over two points @ and Q2 € ¢’

in each irreducible component of C".
According to Example 5.2.2 in [23], K + B has an n-complement if and only if

K+ |B]+ [(n+1){B}]/n
is nonpositive on all components of C. This is a numerical condition that can be preserved if we first replace
C with C; and even with any irreducible component with the Galois covering f : C' = C, — C' given by
the stabilizer of this component. We include intersections with other components into the boundary with
multiplicity 1. We also assume that f is not an isomorphism.

If C is singular, B* = 0 is invariant. If C is nonsingular, by Monotonicity Lemma 2.17, we suppose
that nB is integral. If K + B = 0, then we have the required complement by the above criterion, and it is
invariant by our conditions.

Otherwise, deg(K + B) < 0, and C is rational. Then under our conditions on the branchings, we have
them only over two points Q; and @, € C’. In addition, we have unique points P,/Q, and P,/Q; with
maximal ramification indices deg f — 1. Indeed,

-2 =deg K¢ = (deg f)(Kcr +(————)Q +(2 )Qz) = —(degf)(“ ),

where 7;| deg f is the ramification multiplicity in P,~ /Qi. Therefore, we can maximally extend Bin P, and P,
preserving the following properties:

e B is Galois invariant,

e nB is integral, and

e deg(K + B) <0.
Then deg(K + B) = 0, because deg K = —2. By the numerical condition, we are done.

2.24. Example. For other types of Galois action, we can lose Lemma 2.23.‘
We consider, for example, a type D. In this case, we have a Galois covering f: C' — C’ such that
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e the curves C and C' are isomorphic to P!,

e f is branching over three points @, 2, and Qs,

e f has two branching points P, ; and P, 2/G with multiplicities d, where deg f = 2d > 4, and

e f has d simple branching points P, 1, ..., P, 4/Q; with ¢ =2 and 3.
Therefore, if d = 2m + 1 is odd and n = d, then for

m 1
B = E—(Pl’l + P1,2) + C—l (Z Pg,i) ;

deg(K + B) = —2+2m/d+d/d = —1/d, whereas B is invariant.. However, any d-complement is B+ (1/d)P,
which is not invariant for any choice of the point P.

Proof of Lemma 2.21. By v in 2.20, we have d = 2. Therefore, D = 0 near a generic fiber of f, and i
in 2.20 is satisfied. Hence, by Lemma 2.20, we can assume that () is irreducible.

By vin 2.20 and Lemma 3.6 in [23], C, = CY is nonsingular, except for the case where C is a Cartesian
leaf, i.e., an irreducible curve of arithmetic genus 1 with a single nodal singularity. In such a case, C + B =
C+D = Cy, and K +C+ B = 0 by the LMMP. This gives an n-complement for any n because S is rational.

The double covering C; — Z is given by an involution I: C; — C. By #iin 2.20, K+ C + B = 0/Z.
Therefore, any contraction in fibers/Z is crepant. They preserve the different (C' — C} + B)¢,. Therefore, we
can suppose that S/Z is extremal. Then D =C-C,+B = (K+C+B)—(K+C) = —(K+C,) =0/Z and
according to Lemma 2.22, (C' — C} + B)c, is invariant under I. Therefore, it has an invariant n-complement
by Lemma 2.23 when C is rational.

Otherwise, C; = C + B is a nonsingular curve of genus 1, and we again have an invariant n-complement
for any n: 0.

We can then construct B* as in the proof of Lemma 2.20 and, after a reduction to extremal f, verify
that B* gives an n-complement, except for the case where S is nonrational and, by Corollary 2.2, n is odd.
In the latter case, by the same corollary, we are in the situation of Example 2.1. Indeed, in a splitting case,
n(K+C+D)=n(K+C+ B)=n(K+CC)=n(Ks+ G+ G') ~ 0 for any n. On the other hand, in the
exceptional case, 2n(K + C + D) = 2n(K + C + B) = 2n(K + C1) = 2n(Ks + C;) ~ 0 for any n.

2.25. Lemma. If, in a surface neighborhood S of a point P, we have a boundary B = C + > b;D; with
distinct prime divisors D; such that
i. C is a reduced and irreducible curve through P,
ii. each b; = (m —1)/m for some integer m > 0, and
iii. K + B is log terminal,
then
n—1

(K +B)lc = 2=2P

for some integer n > 0, and m | n.

2.25.1. Formally, at most one component D; with b; > O passes through P. If we replace iii with
iv. K + B is log canonical but not formally log terminal in P,
then
"(K+B)lc=P,
and, formally, at most two components D; with b; > 0 pass through P. Moreover, both have multiplicities
b; = 1/2 when we have two of them.

Proof. By Theorem 5.6 in [23] and i, K + B has a 1-complement X + C'+ Y D; in a neighborhood of P.
Therefore, K + C + Y D; is log canonical there.

Therefore, by Corollary 3.10 in [23] in a neighborhood of P, a single divisor D; passes through P, and
D;|c = 1/1, where [ is the index of P. Therefore,

-1 -1 -1
(K+B)o=(——+2——)p="""p
l ml n
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with n = Im (cf. the proof of Lemma 4.2 in [23]).
Statement 2.25.1 follows from the above calculations and Corollary 9.5 in [23].

2.26. Corollary. If a pair (X, B) is log canonical and B satisfies (M) or (SM), then for any reduced divisor
C in the reduced part | B|, the different (B — C)¢ respectively satisfies (M) or (SM).

Proof. Hyperplane sections reduce the proof to the surface case X = S. It is sufficient to consider the log
terminal case locally. For (M), we note that ({7 — 1)/I7 > 6/7 for any natural number [ = n/7.

2.27. Lemma. Let b; € (0,1) and n be a natural number. Then the pairs i, ii and iii, iv of the conditions
below are equivalent:

i Yb <1,

5 S [(n + 1)b]/n> 1,
ili. b; € Z/(n+1), and
iv. Zb, =1.

Proof. The inequality 7 holds if and only if for natural numbers ki, b; > k;/(n+1) and 3" k; > n+1. Hence,
by i we have %% and @v: 1 > > b; > 3" k;/(n+ 1) > 1. The converse follows from the same computation.

2.28. Corollary. In the notation of Example 5.2.2 in [23], let X = C be a chain of rational curves with the
boundary B. Then (X, B) is 1-complementary but not 2-complementary only when

e allb, € Z/3 anddegB' =1, or

o allb] € Z/3 and degB"” =1.
In either of these cases, we have 4- and 6-complements.

Proof. The proof is as in Example 5.2.2 in {23].

2.29. Lemma. In the notation of Example 5.2.1 in [23], let X = C be an irreducible rational curve with
the boundary B and n € N, be the minimal complementary index for (X,B). Then (X,B) is (n+1)m-
complementary for a bounded m. More precisely, if deg B < 2, then

forn=1, me{1,23,4,5,6,7,89,11};
forn=2,me{1,2,3,4,5,6,7,8,10};
forn =23, me€ {1,3,4,5,6};

forn=4, m € {2,3,4,5,6,8}; and
forn=6, m € {3,4,5,6,8}.

Proof-Remark. The proof is as in Example 5.2.2 in [23]. But it is better to use a computer. There exists
a program by Anton Shokurov for deg B < 2, which can be easily modified for deg B = 2.

On the other hand, we can decrease B. Then by Lemma 2.16, we have the same complementary indices
(n+1)m as in the case with deg B < 2, except for the case where deg B = 2 and B has the index (n+1)m+1.
Then we have an ((n + 1)m + 1)-complement.

From a theoretical standpoint, under the assumption that the number of elements in Supp B is bounded,
we can prove this result for any n, if we verify that for any B, there exists an (n+1)m-complement. Of
course, here is the difficult case for deg B = 2 and B having irrational multiplicities, which has been done in
Example 1.11.

Finally, we expect that the lemma holds for arbitrary n and without. the assumption that n is the minimal
complementary index. For the latter, if deg B < 2, a computer check shows that

forn=2,me€{1,2,3,...,15,16,18} and
forn=23,me{l,2,3,...,24,25,27}.
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Addition in a proof of 2.3.1. To obtain the indices in 2.3.1, we unify (n + 1)m and (n+1)m + 1 for n
and m in Lemma, 2.29.

Addition in a proof of 2.3.2. To obtain the indices in 2.3.2, we add a 6-complement of Lenima 2.28,
which follows from the proof below. '

Proof of the Inductive Theorem: Case II. Here, we assume that C has a multisection C; of v. If C} is
not a section, we have a regular complement from C; by Lemma 2.21 and Examples 5.1.1-2 in [23]. In the
exceptional cases, we take n = 1 or 2, which gives regular complements again. '

Hence, we can assume that C has a single section C;. We note that C is then connected by Theorem
6.9 in [23], and by our assumptions, C' is a chain of rational curves. We also assume that B has a big type
when «* = 0.

We also note that B # 0: B has horizontal components for any contraction on a curve when x* = 0.
Otherwise, C is a double section.

Let Bc = (B)c¢ be the different for the adjunction (K + C + B)|¢c = K¢ + Bg. According to our
construction, the numerical dimension of —(K + C + B) is then equal to that of —(K¢ + Bc), i.e., equal to
K*, at least on C. \ .

We suppose that K¢ + Bc is n-complementary and &* = 1. Let b; be a multiplicity of B in a horizontal
component D; such that b; € Z/(n + 1). Then —(K + C + B) +eD; = —(K + C + B — €D);) is big and has
the same n-complements by Monotonicity Lemma 2.16. Therefore, K + C + B is n-complementary unless
all horizontal b; € Z/(n + 1) N (0,1). In this case, we find a complement for another index m € (n+ 1)N by
Lemmas 2.17 and 2.20. We have an m-complement for such m by Corollary 2.28 and Lemma 2.29. If C is
not irreducible, we have just regular complements. Example 2.4 shows that we need nonregular complements
as well. '

In addition, for multiplicities under (M) or (SM), we have only regular complements. Indeed, then
b; = 1/2 because K + C + B = 0/Z. By Example 5.2.2 in [23], we have a (formally) regular complement for
K + C + B, except for the case with n = 1, when K¢ + Bc is 1-complementary but not n-complementary for
all other regular indices n. We note that B¢ also satisfies (M) and (SM) by Corollary 2.26. Therefore, it is
possible only when C is irreducible (otherwise we have a 2-complement) and B is reduced. Additionally, by
Example 5.2.1 in [23] and in its notation, b; > by > 1/2 and all other b; = 0. Hence, we have a 2-complement,
which concludes the case under (M) and (SM).

The same holds for an appropriate v when * = 0. Indeed, we have (RPC) by Proposition 2.5 because
(K+B+C)—eD’ satisfies (WLF) for some D’ with Supp D’ = Supp B and small ¢ > 0. We then use arguments
in the proof of Lemma 2.20. We mean that we contract exceptional curves E with (K +C+ B'.E) > 0, where
B' = |(n+ 1)B]|/n. This preserves the situation and n-complements for the same reasons. Also, (RPC) is
preserved. For a terminal model, we have either a fiber contraction such that (K + C + B'.E) > 0 for the
generic fiber or —(K + C + B') is nef on the model. In the former case, the contraction induces a contraction
v as for k* = 1. Indeed, C is a section of v. Otherwise, C is in a fiber of v. After the above contractions,
(K +C + B'.C) > 0, which contradicts Lemma 2.19.

In the other cases, we assume that —(K + C + B’) is nef after such contractions. However, K + C + B’
may not be log terminal but just log canonical and only near C. Therefore, if we want to use Lemma 2.20 and
the big case, we need the following preparation. We contract all connected components of the exceptional
type in B’. By Proposition 2.12, we then have a semiample divisor D’ with Supp D’ = Supp B’. We contend
that Lemmas 2.20-21 and the big case can be applied in that situation with C instead of |[C'+ B’]. In the
lemmas, we suppose that C' has a multisection for a given contraction f: S — Z and K+C+B' =0/Z. To
verify the lemmas and the big case, we replace K +C + B’ with K + C' + B’ —¢D'. The condition 7 in 2.20
follows from that for K +C + B and K + C + B’ by Lemma 5.3 in [23]. Because K +C + B’ = 0/Z, we have
#4i in 2.20 by Lemma 2.17. Conditions v and v follow from the construction. For instance, v holds because
we otherwise have a log canonical, but not log terminal, point P ¢ Supp B’. Then P is not log terminal for
K + C and K + C + B. But that is impossible by the LMMP for K + C' + B versus K + C + B'. Finally,
K+C+ B and K +C + B’ —eD’ have the same n-complements for small € > 0 by Monotonicity Lemma 2.16.
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- We continue the case with nef —(K +C + B’). If —(K + C + B') is big, we have an n-complement as in
the big case as well for K + C + B’ and K + C' + B by our construction. If —(K + C + B’) has the numerical
dimension one, we have a numerical contraction f = v : S = Z and K + C + B’ is n-complementary, as in
the above case with k* = 1, when f has a multisection in C. The same holds for the same reasons (cf. the
proof in Case III below) if B’ has a horizontal component. If B’ is in fibers of f, then B (an image of B) is
also in fibers of f, because K +C+B=K+C+ B = K+ C =0/Z. But B has a big type. Therefore, B’
has a horizontal component.

Finally, K + C + B’ = 0. By Monotonicity Lemma 2.16, we have an n-complement when B’ is of a big
type. As above, if B’ has a fiber type and is in fibers, this is only possible when C is a multisection for g
given by B’. Then K + C + B’ and K + C + B are n-complementary by Lemmas 2.20 and 2.21. Because B
has a big type, the case where B' =0 and K + C = K 4+ C + B’ =0 is impossible.

Proof of the Inductive Theorem: Case III. If k* = 1 and we have a horizontal element D; in B, we
can reduce this case to the big case for K + C + B — €D; when D; is chosen properly. As in the proof of
Lemma 2.19, we can find an n-complement, with n € RN,, near C (cf. Proof of the local case in the Inductive
Theorem in Sec. 3). In particular, by 2.16.1, we have a horizontal D; with the multiplicity b; of B such that
b; € Z/(n + 1) (cf. Lemma 2.27). We can then use the above reduction by Lemma 2.16.

If * = 0, we have v given by B, and B has only vertical components.

Therefore, we assume below that B has only vertical components with respect to » : S — Y and v is
a fibering with curve fibers of genus 1. Also, C is vertical, and according to Kodaira, a modification of its
fiber has the type If, II, IT*, III, III*, or IV, IV*. Near such fibers, we have n = 2-, 6-, 4-, or 3-complements
respectively (cf. Classification 3.2). In most cases, this can be extended to an n-complement on S. In other
cases, we have n(n+1)-complements. Under (M) or (SM), in the latter cases, n = 1, and we have regular
n{n+1) = 2.

We can prove it as in the proofs of Lemma 2.20 and Case II. We consider contractions of curves £ € C
with (K + C + B'.E) > 0 for B' = |[(n + 1)B|/n. In particular, B’ has multiplicities in Z/n. Because
K+C+B=K+C+ B =K =0/Y, we can make v extremal outside a fiber C, i.e., all other fibers are
irreducible. Then K + C + B’ is positive on fibers of some fibering f: S — Z or —(K + C + B’) is nef.

Indeed, we can contract components of C' preserving the numerical properties of K + C + B’ because
K+ C+ B’ =0/Y on each component of C. A terminal model is extremal, and its cone has two extremal
rays:

e the first ray, Ry, is generated by a fiber F of v and
o the second ray, R,, is generated by a multisection section E.

If (K+ C+ B'.E) > 0, then E induces the required fibering f. We must verify that if E is contracted
to a point, then we have the required fiber contraction on S. The former contraction induces a birational
contraction f : .S — Z, for a birational inverse image of E. After that, K +C+ B’ is nef and big. Moreover, it
is also positive on each curve E € C. Again, we can find extremal contractions of such E in S by subtracting
C. Finally, they give the required fibering because a terminal model cannot have the Picard number 1 by
Lemma 2.19.

In the case of such a fiber contraction (ruling), we return to the original S. By Lemma 2.19, C has a
section of induced f : S — Z. Therefore, the horizontal multiplicities of B are in Z/(n + 1) by Lemma 2.27.
We then use Lemma 2.20. After contractions in a fiber of C for v, we have a fiber C with the same Bg
because K + C + B = 0/Y. On the other hand, by Corollary 2.26, B¢ satisfies (M) and (SM) whereas
deg(K¢ + Bc) = 0. Therefore, by Monotonicity Lemmas 2.7 and 2.17, K¢ + Bc is n-complementary if and
only if Bc has the index n. Therefore, K¢ + B¢ is mn-complementary for any natural number m. For
n := (n + 1)n, we then have ¢i—iii in Lemma 2.20 on S. Therefore, K + C + B is n{n+1)-complementary.
Under (M) or (SM), n = 1.

In other cases, —(K + C + B’) is nef after the above contractions. We also assume that all fibers of v,
except for the fiber C, are irreducible. By Theorem 6.9 in [23] after a complement (cf. with-the proof of
Case I), K + C + B’ is log terminal, except for the case where C' and C” = | B] are irreducible curves, and
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K+C+B =0. Then K+C + B’ and K + C + B are n-complementary as in the proof of Case I. Therefore,
we suppose that K + C + B’ is log terminal.

If K+ C+ B’ =0, then B’ has a fiber type, and we have an n-complement as in Case II. Indeed, we can
use Lemma 2.20 when there exists a ruling f : S = Y. Otherwise, by the LMMP with K +C+ B —¢D for an
algebraic fiber D = v*(v(C)), we have a birational contraction of a curve £ € C with (K +C + B'.E) = 0.
Because E is a multisection of v and B’ has a fiber type before the contraction, it has a big type afterwards.
Therefore, decreasing B’ after contraction, we have an n-complement as in the big case by Lemmas 2.16 and
2.13.

Finally, if (K + C + B'.E) < 0, we increase B’ by adding vertical components but not in C such that
the new B’ again has multiplicities in Z/n and (K + C + B'.E) = 0. Then K + C + B’ = 0, which is the
above case. To verify K + C + B’ = 0, we note that v is also a numerical contraction for K + C + B’ with
old B’, and the new B’ := B + v*D for an effective divisor D on Y. _

Before increasing B’, we classify and choose an appropriate model for the fiber C. We suppose that C
is minimal: all (—1)-curves of C are contracted when S is nonsingular near C. This is possible only when C
is reducible and the (—1)-curve is not an edge in the chain of C.

Then fiber C has one of the following types (see [5] and Classification 3.2):

I;. A minimal resolution of fiber C' has a graph 134+,,, where b+ 1 > 1 is the number of irreducible

components of C. All curves of the resolved fiber are (—2)-curves. Be = (1/2)(P, + P, + P3 + F,).

Il. Bc =(1/2)P, + (2/3)P> + (5/6) Ps.

IV. Bo = (2/3)P, + (2/3)Py + (2/3)Ps.

Curve C is irreducible exactly in the cases If and II-IV. Moreover, in cases II-IV, C is a (—1)- or (—2)-curve,
which splits our classification into Kodaira’s cases II-IV and II*-IV* respectively (cf. Classification 3.2).
Respectively, for I; and II-IV, n = 2, 6, 4, and 3. Type I, disappeared by our conditions on C.

When C is a (—1)-curve, we transform the fiber C of type II-IV into a standard one Fy of type II-IV in
Kodaira’s classification (p. 158 in [5]). Then S is nonsingular near Fy, Fy has multiplicity 1 for v, and near
Fy, modified C = (5/6) Fy, (3/4)Fy, and (2/3) Fy respectively. The log singularity C is now hidden in a point
on Fy, and the new C' is not reduced. By Lemma 2.13, we preserve the n-complements. During the crepant
modification, all boundary multiplicities have the denominator n.

If C is a (—2)-curve, then for types II-IV, all curves of the resolved fiber are (—2)-curves, too. The fiber
Fy = nC has the respective multiplicities 6, 4, and 3.

In the case I}, Fo = 2C. This is an algebraic fiber.

We now choose E. Because K + C + B’ is not nef, there exists an extremal contraction f : § — Z
negative with respect to K + C + B’. It is not to a point.

First, we suppose that f gives a ruling with a generic fiber E, i.e., E is a 0-curve or (K E) = —2. Then
(C + B'.E) £ 2—1/n because E only crosses C'+ B’ in nonsingular pomts and (K +C + B'.E) < —(1/n)
when <0. If E is a section of v, we can add a few copies of the generic fiber F' of v with multiplicity 1/n to
K+C+B.

Otherwise, E is a double section of v, except for the cases II*-IV*, which we consider later. This follows
from the inequality (C' + B’.E) < 2 — 1/n because v has a multiplicity <2 in Fy and even 1 in cases II-IV.
On the other hand, multy, C > (n — 1)/n > 2/3 in cases II-IV. Therefore, E is a double section, and if
B' #0, then (B".E) < 1/n: incase I}, (B'".F) = (C + B'.E) — (C.E) < 1~1/n=1/2, and in cases II-IV,
(B.E)y=(C+B.E)—(((n—-1)/n)Fy.E) < (2-1/n) —2(n — 1)/n = 1/n. Therefore, such B’ = (1/n)F;,
and (F;.E) = 1 where F} # Fp is an irreducible fiber of v. We then increase B’ to (2/n)F;. If B’ = 0, we
increase B’ by (1/n)F in a generic fiber F/Y.

If f is birational, f contracts a (—1)-curve E ((—1)-curve on a minimal resolution). Again, in cases I}
and II-IV, 0 > (C + K + B'.E) > —(1/n). Moreover, E is a section of v, and we can increase B’ by adding
(1/n)F when K + C + B’ has the index n near E. In case I}, E passes through B,.

In the other cases, K+ C '+ B’ does not have the index n somewhere near section E. It gives a singularity
of S on E outside C. On the above log model, E has another singularity P; of S. (In cases II-IV, section E
crosses Fp only in a (single) nonsingular point of Fy.) Hence, by a classification of surface log contractions,
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there exists just a single singularity outside C, and we increase B’ only in a corresponding fiber F;. We then
only need to verify that K + C + B’ has index n near F]. After a crepant modification, we suppose that S
is minimal/Y and nonsingular near Fj. On the other hand, (K 4+ C + B'.E) = 0, and K + C + B’ has ‘the
index n outside F;. Becatse E is a section, K + C + B has the index n near E or in a point F; N E. Using a
classification of degenerations due to Kodaira, we find that K 4+ C' + B’ has the index n everywhere in fiber
Fyandin S. .

Finally, we consider the cases with II*-IV*. When f is a ruling, there exists a (—1)-curve E in a singular
fiber of f. In this case, we choose E through P;. If f is birational, we again have such a curve E. In both
cases, C passes through a singular point P; € C of S. This time, 0 > (C' + K + B'.E) > —(n — 1)/n. More
precisely, if E passes through the point P; of type A;, then (C+ K+ B'.E) > —i/(i+1). Because E is not of a
big type, on a minimal resolution, it can intersect only (—m)-curves of the resolution with m > i+1, and the
equality holds only when f is a ruling. But then (C+K+B".E) > —i/(i+1)+ (i —1)/(i+1) = -1/(i+1),
and > — i/(i + 1)(i + 2) when F is contractible. In particular, if E is a section, then i +1 = n and
—(n —1)/n(n + 1) > —1/n. Therefore, E has at most two singularities of S with the m.1.d. < 1 (the m.1.d.
is the minimal log discrepancy) and no intersections with B’ in other points in such a case. Therefore, we
can complete B’ as above when FE is a section.

We also note that in the ruling case, E is a section, except for the case where E has only one singularity
P; of type Az and FE intersects the middle curve on a minimal resolution of this point. Then n = 4, E is
double section, B’ intersects E simply in a single branching point Q € E/Y, and (K +C + B'.E) = 1/2
in P; and 1/4 in Q. Such an intersection means the intersection of £ on a minimal crepant resolution with
the boundary. Therefore, we complete B’ in the corresponding fiber. Then (K + C + B'.E) = 1/2 in Q
also for the new B'. We must verify that for such B’, K + B’ has the index n. This can be done on a
Kodaira model C’. If E passes through a singular point on a Kodaira model C” after contractions to the
central curves as in our models I} and II-IV, then for the fiber C’ of type I}, E passes through a simple Du
Val singularity, B’ = (1/2)C’, and K + (1/2)C" has the index 4. Another possible type, assuming that C’
is not reduced in B', is only of type IV* with B’ = (3/4)C’" and E. Again, K + (1/2)C” has the index 4.
If E passes transversally through a nonsingular point of C’, then the multiplicity of C' is 2, B’ = (1/2)C",
and K + (1/2)C" has the index 4. If F does not transversally pass through C’, the multiplicity of C’ is 1,
(C'.E) =2 near ", B' = (1/4)C’, and K + (1/4)C" has the index 4.

In the other cases, F is contractible, and F is an l-section with 2 <! < 4. According to the classification
of such contractions, E has a simple single intersection with the exceptional curve over P;, and it is an edge
curve. Moreover, E has at most two singularities. In the latter case, B’ # 0 only in the two corresponding
fibers C and C’ because —i/(i+1)(i+2) > 1/6 and (K+C+B'.E) < 0. In addition, (K+C+B'".E) = 1/(i+1)
near Pj, and | = n/(i4+1). We increase B’ to the numerically trivial case. Near C', (K+C+B'.E) = i/(i+1)
for the new B’. For such B’, we verify that K + B’ has the index n near C’. lf i =1, n =4, and | = 2, it was
proved above in the ruling case. If i = 1, n = 6, and [ = 3, we can proceed similarly. Because E is a 3-section,
the type I} is only possible when B’ = (1/3)C" with E passing a singular point. Then K + B’ has the index
6. For type I,, B’ = (1/6)C" when C’ has the multiplicity 1, and B’ = (1/2) when C’ has the multiplicity 3.
In both cases, K + B’ has the index 6. The same holds for types II-IV whereas the multiplicity of C’ is 1. In
the case III*, B = (2/3)C’, and K + (2/3)C" has the index 6. In the case IV*, B = (1/2)C", and K + (1/3)C"
has the index 6.

In the other case with two singularities, i = 2, n = 6, and | = 2. For type I,, B’ = (2/3)C’ when the
multiplicity of C” is 2, and B’ = (1/3)C’ when the multiplicity is 1. The same holds for types II-IV, whereas
the multiplicity of C" is 1. For type If, B’ = (1/3)C’, whereas E does not pass through singularities. Types
II*-IV* are impossible in this situation. In all these cases, K + C' + B’ has the index 6.

Finally, P; is the only singularity of S on E. Then it is sufficient to construct B’ near E. Therefore,
it is possible to do this when E has the only (maximally branching) point with simple intersection with a
fiber somewhere over Y. On the other hand, if B’ # 0 is in a fiber C' with a nonbranching point, then near
C', B' > (1/n)C’ and (B'.E) > l/n > 2/n. Therefore, n > 4, and for n =4, (K+C+ B.E) =1/4in
P;, and | = 2 is impossible. Therefore, n = 6, (K +C + B".E) = 1/3 in P;, and we can increase C’ up to
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(1/3)C" when B’ does not have other components. Otherwise, we have a third fiber C” with a simple only
intersection and a 6-complement.

In all other cases, we have two branchings of E/Y in one fiber C’, I = 4, and these branchings are in a
fiber C' with B’ > (1/n)C". (Cf. Lemma 2.23.) Then n =6, P; = P, (K + C + B'.E) = 2/3 in P, and this
case is impossible. ' _

Proof of the Inductive Theorem: Case IV. Here, we suppose that K +C + B = 0 and B has an
exceptional type. Then B¢ satisfies (SM) by Lemma 2.26 after a contraction of B. On the other hand,
deg(K¢ + Bc) = (K + C + B.C) = 0. Therefore, we have an n-complement on C and near C (exactly) for
n such that Be has the index n. We take such an n.

Therefore, K + C + B = K + C + B’ = 0 and has the index n near C' where B’ = |{(n + 1)B|/n: This
follows from Proposition 3.9 in [23] when B is contracted. To establish that K +C+ B gives an n-complement,
we must verify that K + C + B has the index n everywhere in S.

After a contraction of B, we assume that C + B = C. Using the LMMP for K, we reduce the situation
to the case where there exists an extremal fiber contraction f: S — Z.

If F is to a curve Z, we use Lemma 2.21. Perhaps we change n to 2n when n =1 or 3.

Otherwise, Z = pt., S has the Picard number 1, and C is ample. We then use a covering trick with
a cyclic n-covering g : T — S. On T, Kr + D = ¢g*(K + C) has the index 1 near ample D = ¢~!C. By
Proposition 3.9 in [23], D is a nonsingular curve (of genus 1), and T is nonsingular near D. Hence, T is
rational, and Kp + D ~ 0 (cf. proof of Case I). Therefore, K + C' + B has the index n.

Proof of 2.3.2: Global case. The proof is from the proof of the inductive theorem.

3. Local Complements

In the local case, when Z > 1, we can drop most of the assumptions in the main and inductive theorems
and in the other results.

3.1. Theorem. Let (S/Z,C + B) be a surface log contraction such that

o dimZ >1 and
e —(K + C+ B) is nef.
Then it has a regular complement locally/Z, i.e., K + C + B has a 1-, 2-, 3-, 4- or 6-complement.

Proof of Theorem 3.1: Special case. Here, (NK) of the inductive theorem is assumed in the following
strict form:

(MLC) (mazimal log canonical) K + C + B is not Kawamata log terminal in a fiber/P near which we
would like to find a complement, i.e., C has a component in the fiber or an exceptional divisor with log
discrepancy 0 for K + C + B having the center in the fiber.

But as in Theorem 3.1, we drop the other assumptions in the inductive theorem except for (NEF).

After a log terminal blowup, we assume that K + C + B is log terminal, and by our assumption, C # 0.
Moreover, C' has a component in a fiber of f.

According to the big case, we suppose that Z is a nonsingular curve, and K +C + B =0/Z. Hence, f is
a fibering of log curves of genus 1. We note that C is connected near the fiber by the LMMP and Lemma 5.7
in [23].

Let B¢ = (B)¢ be the different for the adjunction (K + C + B)|c = K¢ + Bc. Then K¢ + Be = 0/P.
We take a regular n such that K¢ + B¢ is n-complementary near the fiber. We contend that K + C + B is
n-complementary near the fiber, too.

The divisor —(K + C + B’) is nef on a generic fiber of f where B’ = |(n + 1)B]. Indeed, by the LMMP
and Proposition 2.19, the same holds for the fiber after a contraction of nonreduced components of B in the
fiber/ P. ,

We decrease C + B in a horizontal component when one exists. Then, by Lemma 2.16 and 2.16.1, for
an appropriate choice of the horizontal component, we have the same n-complements and use ‘the big case.
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Therefore, we can assume that C' 4+ B has no horizontal components. Therefore, f is a fibering of curve
of genus 1.

Then, as in Case IV in the proof of the inductive theorem, B has an exceptional type. As there, we can
verify that Bc satisfies (SM), K¢ + Be = 0, and K¢ + Bc has index n. Moreover, K + C + B has the (local)
index n near the fiber/P, and B’ = B.

Therefore, to verify that K + C + B has a (trivial) n-complement near the fiber, we only need to verify
that K + C + B has a global index n, i.e.,

n(K +C + B) ~ 0/P. (2)

The log terminal contractions, i.e., contractions of the components in B, preserve the (formal) log
terminal property of K + C + B and (2) according to 2.9.1 in [22] and 3-2-5 in [14].

Therefore, we assume after contractions that C' + B = C is the fiber/P and K + C is (formally) log
terminal. Such a model of the fiber is its weak log canonical model. It is not unique. For instance, we can
blow up a nodal point of C. However, it is unique if we impose the following minimal property:

e all (—1)-curves of C are contracted when S is nonsingular near C.
Such a model is called log minimal. Its uniqueness follows from the MMP and a classification below (see
Classification 3.2). We also note that it can be non—log terminal, but it is always formally log terminal.

We check (2) for the minimal n such that K¢ + Bc has the index n, i.e., for the index of K¢ + Bc.

This essentially follows from Kodaira’s classification of elliptic fibers (Sec. 7 of Chap. 5 in [5]) and his
formula for a canonical divisor of an elliptic fibering (Theorem 12.1 in Chap. 5 in [5] and [21]; see also
Classification 3.2 below). The latter gives a (nonstandard) classification of the degenerations for a fibering
with the generic curve of genus 1.

First, we add types I, > 0, to the types of log models in the proof of Case III in the inductive
theorem. In the following cases, S is nonsingular near C.
mlg- C is a nonsingular curve of genus 1, and f*P = mC.
mli. C is an irreducible rational curve of genus 1 with one node, and f*P = mC.
mlp. C is a wheel of & > 2 irreducible nonsingular rational curves C;, and f*P = mC. Each C; is a
(—2)-curve.

3.2. Classification of degenerations in genus 1 (Kodaira). Any degeneration of nonsingular curves of
genus 1 has a log minimal model of one of the following types up to a birational transform: ,ly, ,If, 11, II*,
III, IIT*, or IV, IV*. Each of these models has a unique birational transform into a Kodaira model with the
same label.

In addition, for the log model of type mlv, mIf, II, II*, III, III*, or IV, IV*, K 4+ C has the respectiv
index 1, 2, 6, 4, or 3. :

We note that K + C is log terminal, except for the type ,,I; when C is a Cartesian leaf.

Proof. Adding a multiplicity of the fiber, we can suppose (MLC) (cf. below Proof of Theorem 3.1: General
case).

Then, according to the proof of the special case in Theorem 3.1, we have a log minimal model C/P.

According to a classification of formally log terminal singularities, C is a connected curve with only nodal
singularities. On the other hand, (C, B¢) has a log genus 1. Therefore, C' has an arithmetic genus <1.

If the genus is 0, then C' is a chain of rational curves, and the possible types were given in the proof of
Case III in the inductive theorem.

If C is not irreducible, then by (SM) and because K¢ + Bg = 0, B is the same as in the type I}.
Therefore, each P; is a simple double singularity of S, and a minimal resolution gives a graph 54+b. This
fiber has the type I} per Kodaira. In that case, n = 2, f*P = 2C, and K ~ 0/P. Therefore, 2(K+C) ~ 0/P.

The same holds when C is irreducible, and Bc is the same as in type I.

In the other cases with genus 0, C is an irreducible nonsingular rational curve. Then deg B¢ = 2, and
under (SM), we have only B¢ as in types I}, IL, III, or IV as above. We only need to consider the types
II-IV. In all of them, we have three singularities P;. If C is a (—1)-curve, each of them is simple, i.e., has a
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resolution with one irreducible curve. Otherwise, C is a (—2)-curve, and the singularities are Du Val. This
gives the respective Kodaira types II-IV and II*-IV*. For instance, the curves in a minimal resolution of
points P; in type IV are (—3)-curves. We can now easily transform fibers of the types II, III, and IV into
the same per Kodaira because C is a (—1)-curve. In type III, C is transformed into three (—2)-curves with
a simple intersection in a single point. The latter is a blow-down of the old C. (Cf. p. 158 in [5].) After the
transform, C = ((n — 1)/n)Fy, where Fp is the modified fiber (cf. Proof of the Inductive Theorem: Case III).

For types I} and II*-IV*, the transform is a minimal resolution.

Then, for Kodaira types II-IV and II*-IV*, K ~ O/P and Fy ~ 0/P. (More generally, D ~ 0/P for
any integral D such that D = 0/P and for the types I¥, II-IV, and II*-IV*. This follows because Fy does
not have nontrivial unramified coverings.) Hence, on Kodaira’s model, n(K + C) = n(K + ((n - 1)/n)FR) =
nK + (n — 1)Fy ~ 0/P. An alternative approach is discussed at the end of the proof.

In the other cases, Bo = 0, and the genus is 1. Because K + C is formally log terminal, S is nonsingular
near C (3.9.2 in [23]), and C is a curve with only nodal singularities and of arithmetic genus 1. In particular,
n=1.

If C is irreducible, then for some natural number m, f*P = mC, and K ~ (m — 1)C/P by Kodaira’s
formula (p. 158 in [5]; cf. formula (1) with By = P 'in Sec. 2). Therefore, K + C ~ 0/P.

Similarly, we can handle the next case where C is reducible. Because K¢ + Be = 0, the irreducible
components C; of C' form a wheel as in ,,,I. By the minimal property, K/P is nef. On the other hand, K =0
in the generic fiber. Hence, K = 0/P, each C; is a (—2)-curve, and f*P = mC. Therefore, in this case, a log
minimal model C/P coincides with a Kodaira model of the type Iy, K ~ (m —1)C/P, and K + C ~ 0/P.

Finally, we can also use a covering trick (Sec. 2 in [23]) to reduce the proof of (2) to the case withn =1
or to the type ,I,. The latter is a crucial fact: K + C ~ 0/P for the type ,,Is. It can be induced from
dimension one.

Proof of Corollary 1.9: Local case. This is a special case because any local trivial complement satisfies
(MLC). On the other hand, any regular n divides [; = 12.

Proof of 2.3.2: Local case. The proof is from Example 5.2.2 in [23] because the complements are induced
from the one-dimensional case.

Proof of Theorem 3.1: General case. According to the big case in the inductive theorem, we suppose
that Z is a nonsingular curve and K + C + B=0/Z.
By Lemma 5.3 in [23], we can increase B. We do it such that K + C + B + pf*P is mazimally log
canonical for some real p > O:
e K+ C + B+ pf*P is log canonical but
¢ K+ C+ B+ p/'f*P is not so for any p’' > p.
Such a p exists, and (MLC) is equivalent to these conditions.

Proof of Corollary 1.8, Main and Inductive Theorems: Local case. The proof follows from Theo-
rem 3.1.

4. Global Complements

4.1. Theorem. Let (S,C + B) be a complete algebraic log surface such that

(M) of the main theorem holds and
(NEF) —(K + C + B) is nef.
Then its complements are bounded under any one of the following conditions:

(WLF) of Conjecture 1.3,

(RPC) of the inductive theorem,
(EEC) of the inductive theorem,
(EC)+(SM) of Conjecture 1.3,
(ASA) of the inductive theorem, or
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(NTC) of the inductive theorem.

More precisely, for almost all such (S,C + B), we can take a regular indez in RN,. The nonregular
complements are exceptional in the sense of Definition 1.5.

4.2. Lemma. There erists c > 0 such that all b; < 1 —c for any log surface (S, B) under the assumptions of
Theorem 4.1 and such that p(S) =1, S is 1/7-log terminal, and (S, B) does not have regular complements.

Proof. If B =0, any ¢ > 0 fits. Otherwise, S is log Del Pezzo. Such an S is bounded according to Theorem
6.9 in [2]. By (M), the same holds for (.5, Supp B).

Therefore, we can assume that S is fixed, as are the irreducible components of Supp B = UD;. We
consider a domain

D= {D = Zd,-D,- | K + D is log canonical and — (K + B) is nef}.

It is a closed polyhedron by Property 1.3.2 in [23] and by a pdlyhedral property of NE(S). We take ¢ = 1 —d,
where d = max{d;} for D €e DN {D > B}.

Proof: Strategy. We seek the exceptions. We therefore assume that (S, B) does not have 1-, 2-, 3-, 4,
and 6-complements. We prove that (S, C' + B) belongs to a bounded family. Equivalently, (S, Supp(C + B))
is bounded. Moreover, we verify that complements are bounded and exceptional as well.

We suppose (ASA) or (NTC) by Proposition 2.5. For the exceptions in the proposition, we have regular
complements.

According to Theorem 2.3 in [24] and Lemma. 5.4 in [23], we can suppose that (S, C' + B) is log terminal.
In particular, S has only rational singularities. Therefore, S is projective. Moreover, (S,C + B) is then
Kawamata log terminal by the inductive theorem. In particular, C = 0. The change preserves (ASA).

In addition, we suppose that K + B is 1/7-log terminal in the closed points of S. Otherwise, we make a
crepant blowup of the exceptional curves E with a log discrepancy < 1/7. This preserves all our assumptions.
We have a finite set of such E by Corollary 1.7 in [24]. In other words, K + B is now 1/7-log terminal in the
closed points. '

If K + B is 1/7-log terminal everywhere or, equivalently, if B does not have an irreducible component
D; with multp, B > 6/7 and satisfies (SM), then S = (S, B) is bounded according to (M) and Theorem 6.9
in [2], except for the case where B = 0 and S has only canonical singularities. In the former case, we have
a bounded complement. If (S, B) satisfies (WLF), we construct a complement as in Proposition 5.5 in [23].
Similarly, we proceed in the other cases by (ASA). Because (S, B) is bounded in a strict sense, i.e., in an
algebraic moduli sense, the freeness of —(K + B) is bounded. In the case where B = 0 and S has only a
canonical singularity, (S,0) has a regular complement according to (ASA) and the classification of surfaces.
In such a case, we can even suppose that S is nonsingular.

We can now assume that B has an irreducible component D; with multp, B > 6/7. We then reduce all
required boundednesses to the case with the minimal Picard number p = p(S) = 1. We find a birational
contraction g : S — Spin such that Sp;, has all the above properties and p(Spin) = 1. Moreover, g does not
contract the irreducible components D; with multp, B > 6/7, and

(BPR) there exists a boundary B’ > B with Supp B’ in divisors D; having multp, B > 6/7 such that g
contracts only curves E with log discrepancies <1 for K, + By, and —(Kyn + Bly,) is nef, where

Kumin = Ks_,, and B, = g(B’).

In particular, By, = g(B) # 0. This reduction is called a minimization. It uses the inductive theorem and

the main lemma below.

By the LMMP, —(Kmin + Bmin) is nef. Hence, By and —Kpi, are ample because p(Syin) = 1 and
Buin # 0. Therefore, Spin is a log Del Pezzo surface. Because Ky, + Bmin is 1/7-log terminal in the closed
points, Smin does the same by Monotonicity 1.3.3 in [23]. Therefore, according to Alekseev, we have a bounded
family of such Del Pezzo surfaces (Theorem 6.9 in [2]). For Supp Bp,, we have only a bounded family of

possibilities because all b; > 1/2 and p(Spin) = 1.
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The condition (BPR) above guarantees a boundedness for the partial resolution g. First, by the inductive
theorem, K, + Bl,;,, is Kawamata log terminal, and By is reduced because Kpin+ B, does not have regular
complements as Kpin + Bnin. Hence, the multiplicities of By, and B are universally bounded according to
Lemma 4.2 and (M): all < 1 — ¢ for some ¢ > 0. Therefore, (S, Supp B) is bounded because it resolves
only exceptional (for Spi,) divisors E with log discrepancies <1 for Ky + Bl by (BPR) (cf. Second Main
Theorem and Corollary 6.22 in [24)).

This is done more explicitly in Theorem 5.1 below (see the following remark for another approach).

4.3. Remark. In the strategy above, (S, Supp B) is bounded according to Theorem 6.9 in [2] and Lemma 4.2.
Indeed, K + B is e-log terminal for any ¢ > ¢ > 0. However, we prefer the more effective and explicit property
(BPR) (cf. Proof of Theorem 5.1 in Sec. 5).

In the same style as Lemma 2.13, we can prove its improvement.

4.4. Main Lemma. In the notation of Definition 5.1 in [23], let f: X — Y be a birational contraction such
that
i. Kx + S+ D is numerically nonnegative on a sufficiently general curve/Y in each exceptional divisor

of f and _
ii. for each multiplicity d; = multp, D of a prime divisor D; in D, [(n+ 1)d;|/n > d; when a divisor D;
nonezceptional on Y intersects an exceptional divisor of f.
Then ’
Ky + f(S + D) n-complementary = Kx + S+ D n-complementary.

In addition, we can assume that D is just a subboundary.

4.5. Example-Corollary. By Monotonicity Lemma. 2.7, i in 4.4 holds when all coefficients are standard,
i.e., they satisfy (SM).

Respectively, 7 in 4.4 holds when K + S + D is nef/Y.

By the main lemma, we can then pull back the complements, i.e., for any integer n > 0,

Ky + f(S + D) n-complementary =—> Kx + S + D n-complementary.

Proof of the Main Lemma. We take a crepant pullback:
Kx + D% = f*(Ky + D*).

It satisfies 5.1.2-3 in [23] as Ky + D%, and we must verify 5.1.1 in [23] only for the exceptional divisors.
For them, it follows from our assumption and Negativity 2.15. Indeed, on the exceptional prime divisors
D;, D*X > D and has multiplicities in Z/n. Hence, D*X > S+ |(n + 1)D]/n according to Monotonicity
Lemma 2.17 above and Lemma 5.3 in [23]. Indeed, for any multiplicity df < 1 in D*X | we have d} >
l(n+1)df|/n 2 [(n+1)di/n.

Proof of Theorem 4.1: Minimization. Let D denote a boundary with the coefficients

4= 1 if b >6/7,
¢ b; otherwise.

Hence, by Monotonicity Lemma 2.7, for any n € RN,, we have

e |m+1)B]/n=|D]|+ |(n+1){D}|]/n>D > B.
Therefore, K + D is log canonical. Indeed, an n-complement (S, B*) with n € RN, exists locally by
Corollary 5.9 in [23]. In addition, B* > |(n +1)B]/n > D. Hence, by Monotonicity 1.3.3 in [23], K + D is

log canonical.
Because B has a multiplicity b; > 6/7, D has a nontrivial reduced part, and K + D is not Kawamata

log terminal.
By the inductive theorem, —( K + D) does not satisfy (ASA), because K + D, like K + B, does not have
regular complements.
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- Moreover, we contend that if p = p(S) > 1, then for any R-divisor F' such that D > F > B and
—(K + F) is semiample, there exist an exceptional curve £ and a divisor B’ such that

e (K+ D.E) >0 and multg B < 5/6,

e D>B >F,(K+B'.E)=0,and —(K + B') is semiample.
We then contract E to a point, A : S — Z, and replace (S, B) by (Z,h(B)). On the first S, we take
F = B. We then take F' = h(B’). The contraction preserves the properties. In particular, (Z, 2(B)) does
not have regular complements by the main lemma. We contract only curves with (K + B.E) < 0 and, by
the local case and (M), with b; < 5/6. Indeed, near E, we have a regular complement (S, B*), B* > D,
multz BY = multz D =1, and (K + D.E) < (K + B*.E) = 0. Hence, K + B is always 1/7-log terminal, and
we do not contract the curves with b; > 6/7. Contracted E, or any other exceptional divisor of S with a log
discrepancy <1 for K + B’, has the same log discrepancy for Kz +h(B’). By 1.3.3 in [23], these discrepancies
do not increase for K + F' with any F' > h(B’). Therefore, all contracted £ have log discrepancies <1 for
K + B'. Finally, an induction on p gives the required Spmin = S with p = 1.

“We find E case by case with respect to the numerical dimension &* of —(K + B).

First, (WLF) holds when x* = 2. We then have (RPC). In particular, —(K + B) is not nef, because it is
not semiample. Then there exists an exceptional curve E with (E.K + D) > 0. Because p > 1, we otherwise
have a fiber extremal contraction S — Z that is positive with respect to K + D. The latter is impossible by
(M) because —(K + B) is nef. Therefore, we must find B’ and E with above properties. We take a closed
polyhedron

D={B'|D>B >Fand — (K + B') is nef}.
It is polyhedral by (RPC). We take a maximal B’ in D. Then —(K + B’) satisfies (ASA). It is Kawamata
log terminal by the inductive theorem because B’ > B. Therefore, we cannot increase B’ only because
(K + B'.E) = 0 for some extremal curve and is positive when we increase B'. By (M), this is possible only
for birational contractions. The properties (WLF) and (RPC) are preserved.

Second, x* = 1, and we have a numerical contraction v : § — Y for A + B. By (M), the horizontal mul-
tiplicities satisfy (SM), and D = B in the horizontal components. Therefore, —(K + D) = 0/Y. Otherwise,
we have a vertical exceptional curve E with (K + D.E) > 0. As above, we contract E. This time, we can
take B’ = B because K + B = 0/Y. After such contractions, —(K + D) = 0/Y and is not nef, because it is
not semiample. We note that Y is rational because K + B is negative on the horizontal curves. As above,
we have no extremal fiber contractions positive with respect to K + D. Therefore, we have an exceptional
(horizontal) curve E with (E.K + D) > 0. After that contraction, we have (WLF) and do as above.

Third, k* = 0 or K + B = 0. In this case, we take B’ = B and only need to contract some E with
(K + D.E) > 0. If B has a big type, we again have (WLF) and (RPC). If B’ has a fiber type, then
by Proposition 2.12, we have a fibration S — Y of genus 1 curves whereas B’ and D have only vertical
components. As above, after contractions, we suppose that K +D = 0/Y. Because B # 0 and forms a fiber,
we have a horizontal extremal curve E with the required properties. After its contraction, we have (WLF).
Finally, B has an exceptional type. Decreasing B in the nonstandard multiplicities, we can find E, which is
outside | D] but intersects |D|. Therefore, (K + D.E) > 0. If we change the type of B after a contraction
of such E, we return to the corresponding type, big or fiber.

Proof of Theorem 4.1: Bounded complements. We show that complements are bounded. Because
(S, Supp B) is bounded, it is sufficient to establish that complements are bounded for all

B' € D = {Supp B’ = Supp B, —(K + B’) is nef and log canonical}.

We note that each K + B’ is semiample by Proposition 2.12 because K + B is semiample and Kawamata
log terminal and (NV) of Remark 2.6 holds for K + B'. Therefore, for each Q-boundary B’, we have
an n-complement such that nB’ is integral. We therefore have n-complements near B’ by Monotonicity
Lemma 2.16. Hence, we have bounded complements according to Example 1.11. Indeed, we can restrict our
problem on any ample nonsingular curve; as is seen later in Sec. 5, the cases with nonstandard coefficients
are reduced to a case with p(S) = 1.

A more explicit approach is given in Theorem 5.1.
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Proof of Theorem 4.1: Exceptional complements. As in the strategy, we assume (ASA), a log terminal
property for K+ B, and an absence of regular complements. We then have a (nonregular) complement (S, B¥).
Here, we verify that K + B is Kawamata log terminal for any (such) complement.

After a crepant blowup, we suppose that K + Bt has a reduced component and derive a contradlctlon
Let D denote a boundary with the coefficients

1 if bf =1,
d;=46/7 ifl>bf>6/7,
b; otherwise.

Then B* > D and D satisfies (SM). By Monotonicity Lemma 2.7, |[(n + 1)B]/n < |[(n + 1)D]/n in the
nonreduced components of D and B* for any n € RN>. Hence, by Lemmas 5.3-4 in [23], (S, D) does not
have regular complements. Hence, —(K + D) does not satisfy (ASA) by the inductive theorem.

We then contend that p > 1 and we have an exceptional curve E with (K + D.E) > 0 and automatically
multz D < 1. Indeed, if p = 1, then K + B* = 0 and is log canonical, and B+ # 0 and K are ample. Hence,
—(K + D) is nef because Bt > D. This is impossible by the inductive theorem.

Therefore, p > 1. If we have an exceptional curve E with (K +D.E) > 0, we contract this curve. Again,
we have no regular complements by Example 4.5. Such a contraction is to a rational singularity because E
is not in | D].

We prove, case by case, that such an F exists, except for the case where K + B = 0.

Indeed, if we have (WLF) or k* = 2, then we have (RPC), and the latter can be preserved after a crepant
log resolution above. We take a weighted linear combination of B and B*. In addition, —(K + C) is not nef
when (ASA) fails. Therefore, we have an extremal contraction S — Z that is positive with respect to K + D,
anddimZ > 1. If Z is a curve, K + Bt = 0/Z, but K + D is numerically positive/Z, which is impossible
for Bt > D as in the above case. Hence, we have E. An induction on p and contractions of such E give a
contradiction in this case.

We now suppose that x* = 1 and we have a numerical contraction v : § — Y for K + B. By (M), the
horizontal multiplicities satisfy (SM), and B* = D = B in the horizontal components. Therefore, —(K + D)
is nef on the horizontal curves. Moreover, it is nef. Otherwise, we have a vertical exceptional curve E with
(K + D.E) > 0. As above, we contract E. Finally, —(K + D) is nef, and —(K + D) = 0 by the Inductive
Theorem. This is possible only when B* = D. But then we have (ASA), which does not hold in our case
also. Therefore, we obtain s* =0 or K + B =0.

Now, let D denote a support of the nonstandard multiplicities in B. If D has a big type, then we obtain
(WLF) for K + B — D’ for some effective R-divisor D’ with Supp D’ < D by Proposition 2.12. Again, we
do not have regular complements by Monotonicity Lemma 2.16: the nonstandard multiplicities >6/7 under
(M). We do the same when D has a fiber type. Finally, D has an exceptional type, and we contract D to
points. (Cf. Proof of Corollary 1.8: Numerically trivial case in Sec. 1.)

Therefore, K + B = 0, satisfies (SM), but does not have regular complements by Lemma 4.4 and Mono-
tonicity Lemma. 2.7. Then we have only the trivial complements. In that case Bt = B, which contradicts
the Kawamata log terminal property of K + B. This gives a contradiction to our assumption on the existence
of a nonregular nonexceptional complement (S, B*).

Proof of the Main Theorem: Global case. The proof follows from Theorem 4.1.
Now, we slightly improve Proposition 2.5.
4.6. Proposition. If K + C + B is log canonical and nef/Z, then
(EC) = (NTC) < (ASA)

with the exception (EX2) of Proposition 2.5. Nonetheless, there exists a 1-complement in (EX2).
Moreover, we can replace (EC) by its weaker form, i.e., (EC) for S:

(ECY there ezists a boundary B’ such that K + B’ is log canonical and = 0/Z,
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Proof. Let (S, B') be as in (EC)’. If we replace C' + B by a weighted linear combination of C + B and B/,
we can suppose that K + C + B and K + B’ have the same log singularities:

e the exceptional and nonexceptional divisors with log discrepancy 0 and
¢ the exceptional and nonexceptional divisors with log discrepancies <1.

We note that (EX2) means that B’ is unique and B’ > B + C, i.e., (EEC) holds.

After a log terminal resolution, we suppose that K + B’ is log terminal. By the above properties, a
support D of curves, where C' + B > B', is divisorially disjoint from LCS(S, B’). If D has an exceptional
type, we can contract it when K + C' + B =0 on D. Then B’ > B, and we have (EEC), which implies the
proposition by Proposition 2.5. If K + C + B is negative somewhere on D, then (WLF) and (RPC) hold for
K+ C + B — D’ with some € > 0, and D’ having Supp D’ < D.

On the other hand, if D has a big type, (WLF) and (RPC) hold for K+ C + B —¢D' for some € > 0, nef,
and big D’ having Supp D' < D. Here, we can have one exception (EX1) when K + C + B satisfies (NTC).

In addition, the proposition holds when K + C + B = 0 by its semiampleness.

Finally, D has a fiber type, —(K + C'+ B) has a numerical dimension one, and Z = pt. (the global case).
If a fibering given by D does not agree with K + C + B, i.e., (K + C + B.F) < 0 on the generic fiber, then
K 4+ C + B — ¢F" satisfies (WLF) for a divisor F” with Supp F’ < D, which defines the fibering. Otherwise,
the fibering gives a numerical contraction for K + C + B.

Proof of Corollary 1.8: Global case. The proof follows from Theorem 4.1 and Proposition 4.6.

Proof of Corollary 1.16. Again in the global case, the proof follows from Theorem 4.1 and Proposition 4.6.
In the local case, we use Theorem 3.1.

4.7. Remark-Corollary. We can improve most of the above results as well.
4.7.1. In the main and inductive theorems, we can replace (WLF) with (EC)’ of Proposition 4.6.
We expect that the main theorem and Corollary 1.8 hold without (M), as does the inductive theorem.
Of course, exceptional complements may then be unbounded (cf. Example 2.4). .
4.7.2. By Monotonicity Lemma 2.7, we can replace (SM) in Corollaries 1.9-10 with

(M)’ the multiplicities b; of B are standard, i.e., b; = (m—1)/m for a natural number m or b; > I/(I+1),
where I is the maximal among the indexes under (SM): I|I,.

(Cf. Classification 7.1.1 below.)

5. Exceptional Complements

In this section, we begin a classification of the exceptional complements. By the main and inductive
theorems, they arise only in the global case (S, B) when K + B is Kawamata log terminal. By Remark 4.7.1,
we can assume just (EC)" and (M) as additional conditions. In a classification, we describe such (S, B),
which are also called exceptional, and their minimal complements. Here, we do this completely in a few
cases. The importance of a complete classification of the exceptions is illustrated in Sec. 7. We will continue
the classification elsewhere. '

Because the exceptional complements are bounded, the invariant

8(S, B) = #{F | E is an exceptional or nonexceptional divisor
with log discrepancy a(E) < 1/7 for K + B}

is also bounded. It is independent of crepant modifications.
5.1. Theorem. The invariant § < 2.

5.1.1. If§ =0, then (K, B) is 1/7-log terminal, and B has only multiplicities in {0,1/2,2/3,3/4,4/5,5/6}.
However, the m.l.d. of K + B 1is only >1/7.
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A minimum of such m.l.d.’s exists, but it is not yet known explicitly.

In the other cases, where § > 1, the m.1.d. of K + B is >1/7, and after a crepant resolution, we assume
that K + B is 1/7-log terminal in the closed points. To classify the original (.S, B), we must find crepant
birational contractions of the 1/7-log terminal pairs (S, B). To classify the latter pairs, we consider their
minimizations g : S — Suiy as in the strategy of the proof of Theorem 4.1. In this section, some results on
(Smin, Bmin) and their classification are given. According to the strategy, it is sufficient to prove Theorem 5.1
for (Smin, Bmin). Therefore, we assume in this section that

e p(S) =1,

e K + B is 1/7-log terminal in the closed points,

e B has a multiplicity b; > 6/7,

e —(K + B) is nef, but

e K + D is ample for D = |(n + 1)B|/n for any n € RN,.

To find all such 1/7-log terminal pairs (S, B) with p(S) > 1, we must find K + B’ = 0 with B’ > B and
o(S) = 1. The former pairs are crepant partial resolutions of (S, B') (see the strategy and (BPR) in Sec. 4).

Let C = | D] denote a support of the curves C; with multe, B > 6/7 and D be the same as in the
Minimization of Sec. 4. Let F' be the rest of B or, equivalently, be the fractional part of D: F' = {D} =Y _b;D;
for D; with b; = multp, B < 5/6. By the inductive theorem, K + D is ample for such D.

5.1.2. For § = 1, a curve C 1is irreducible and has only nodal singularities and at most one node. The
arithmetic genus of C is <1. The divisor F' does not pass the node.

Abe found a classification in the elliptic case where C has the arithmetic genus 1 [1].

5.1.3. For § = 2, C = C) + C, where C, and C, are irreducible curves with only normal crossings in
nonsingular points of S. The divisor F' does not pass Cy N Ca, and by +by < 13/7, where b; = multc, B. The
constant ¢ below is as in Lemma 4.2.

For C, we have only the configurations

(L) C = Cy + Cy and the curves C; form a wheel and
(A2) C = Cy + C; and the curves C; form a chain.

Moreover, the curves C; are nonsingular rational my > may > 0-curves, except for the case (AS) below. In the
case (Az), the only possible cases are the following:

(A}) S =P? and C, and C, are straight lines. F =3 d;D;, and1 < }_ d;deg D; < 3—b; — by, assuming
that K + B is log terminal.

(A2) S is a quadratic cone, C; is its section, and Cs is its generator, 2b; + by < 8/3. F = (2/3)D;, where
D, is another section not passing the vertex. The constant ¢ = 1/21.

(A3) S is a normal rational cubic cone, Cy is its section, and C; is its generator, 3b; + by < T/2.
F = (1/2)D,, where D, is also a section. Both the sections Cy and D, do not pass the vertez, and
#Cy N Dy > 2. The constant ¢ = 1/14.

(A2) S has B = (6/7)(C1 + C2) + (1/2)Dy, my = 1, and mgo = 0. S has only two singularities, P, € C,
and Py € Cy, and D, is a nonsingular rational 1-curve with a single simple intersection with Cs, a single
simple intersection with Cy, and another single intersection with Cy in P,. The singularity P, is Du Val
of type A,;. ]

(A3) S has B =(6/7)(C1+ C2) + (1/2)Dy, my = 1, and my = 0. S has only two singularities, P € C
and Py € Cy, and D, is a nonsingular rational 1-curve with a single simple intersection with Cs, a single
simple intersection with C1, and another single intersection with C; in P,. The singularity P, is simple
with a (—3)-curve in a minimal resolution, and the singularity P> is Du Val of type As. The constant
c=1/7, (S, B) is 14-complementary, and the complement is trivial.

(AS) S has B = (6/7)(C1 + C2) and only two singularities, P, and P, € Cs. The curve Cy has the
arithmetic genus 1 and has only nodal singularities, at most one. The curve Cy is a rational non-
singular (—1)-curve. The singularities P; are Du Val of type A;. The constant ¢ = 1/7, (S,B) is
7-complementary, and the complement is trivial.

In the case (L), the only possible cases are the following:
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(13) S is a quadratic cone, and C and C; are its two distinct sections, by +b; < 7/4. F = (1/2)L, where
L is a generator of cone S. The constant c = 3/28.

(IZ) S has B = (6/7)(C1 + C2), my = 1, mg = 2, and S has only two singularities P, € C;. The
singularities P, are Du Val of type A;. The constant ¢ = 1/7, (S, B) is T-complementary, and the
complement is trivial.

5.2. Proposition. Under the assumptions in this section, K + D is formally log terminal, except for the
case where P is nonsingular and near P, and D = C +(1/2)C" with nonsingular irreducible curves C and C'
having a simple tangency; multc B < 13/14.

We note that the latter log singularity appears only on cones: the cases (A}~3) when D; is tangent to C.

Proof. By the proof of the minimization in Sec. 4, K 4 D is log canonical and (1/7-)log terminal outside
C. Therefore, we must verify a log terminal property formally (locally in an analytic topology) in the points
PeC.

First, we suppose that C' # D in a neighborhood (even Zariski) of P. Then K + C is purely log
terminal, and C is nonsingular by Lemma 3.6 in {23]. But S can have a singularity of index m in P
(Proposition 3.9 in [23]). If we formally have two distinct prime divisors (two branches) D; and D; through
P in Supp(D — C), then by 2.25.1, K + D is log canonical in C only when b, = b, = 1/2, and in a
neighborhood of P, K + D = K + C + (1/2)(Dy + D). (We recall that all nonreduced b; = (n — 1)/n with
n=1,2,3,4,5, or 6.) Therefore, if P is singular, then by a classification of surface log canonical singularities,
the curves E of a minimal resolution form a chain, whereas a birational transform of C intersects one end
of the chain simply and that of D; intersects another end simply. The intersection points are outside the
intersections of the curves E. Therefore, the log discrepancy a = (E, K + B) in any E for K + B is the same
as a(E, K + bC + D) for K + bC + Dy, where b = multc B > 6/7 near P. Therefore, by Corollary 2.26,
a=a(E,K+ B) =1-multp(bC)p, <1 - multp((6/7)C)p, <1—6/7=1/7 for an exceptional divisor E.
This is impossible by our assumptions. Hence, P is nonsingular. Then the monoidal transform in P gives £
with the same property.

Hence, we can formally have at most one irreducible component (or a single branch) C’ of Supp(D — C)
through P. By the form of it and a classification of log canonical singularities {12], K + D is log terminal in
P, except for the case where C’ has multiplicity 1/2 in D, and B intersects only an end curve in a minimal
resolution of P or D = C near P. Again, as in the above case, we have a contradiction with the assumptions,
except for the case where P is nonsingular and C’ has a simple tangency with C in P. Such a singularity is
1/7-log terminal for K + B = bC + (1/2)C’ only when b < 13/14.

Finally, we suppose that C = D near P. By Theorem 9.6 (6) in [12], P has the type D,, with m > 3
when C is formally irreducible in P. Then it has an exceptional divisor E on a minimal resolution with
o(E,K + B) < 1—-b < 1/7, which is again impossible. Indeed, a(E,K + C) = 0, a(E,K) < 1, and
a(E,K+B)=a(E,K+bC)=a(E,K+C)+ (1 -b)multgC = (1 - b)a(E,K) < 1/7.

Otherwise, by Theorem 9.6 (7) in [12], C has two branches in P, and by the 1/7 log terminal property
in P, P is again nonsingular. Hence, K + B = K + C is formally log terminal here.

5.3. Corollary. The curve C has only nodal singularities and only in nonsingular points of S. Also, C is
connected. Moreover, each irreducible component of C intersects all other such components.

Proof. The first statement follows from Proposition 5.2. Because p = 1, each curve on S is ample, which
proves the rest.

Let g be the arithmetic genus of C.
5.4. Proposition. The arithmetic genus g < 1.

In the proof of this proposition and in the proof of Theorem 5.1 below, we use the following construction.
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We reconstruct S as a nonsingular minimal rational model S’. We make a minimal resolution S™* — S
of S and then contract (—1)-curves: S™® — S§’, where S’ is minimal. Then S’ = P? or S’ = F,,, because S
and S’ are rational.

By Corollary 5.3, the resolution Smin _ G preserves C' up to an isomorphism. A birational transform of
a curve C; or another one on S’ is denoted again by C; or as the other one respectively. According to the
LMMP, (', B') is log canonical, and —(Kg + B’) is nef because the same holds for K + B and its crepant
blowup K™ + B= where K™* = K™ and B' is the i 1mage of B™®, An image of B™" is not less than a
birational image of B. Therefore, —(Ks + B) is nef for §' =

5.4.1. Moreover, on a minimal rational model S’, g(C) < 1, and g(C") = 0 for each (proper) C' C C, except
for the case (AS) in 5.1.3.

Proof. We suppose that g > 2.

Because it has to be a tree of nonsingular rational curves, S™* — S’ cannot contract all C. However,
we can increase g after contraction of some components of C' and other curves on S™.

If §' = P?, then —(Kg + B) and —(Kg + (6/7)C) are nef, and degC' < 3, which is only possible for
g< 1

Therefore S’ = F,, with m > 2. Indeed, the original S’ 2 F,, because p = 1. Therefore, if the final
S’ = Fy, we had a contraction of a (—1)-curve before. We can then reconstruct S as S’ = F; and therefore
as P2

By Corollary 5.3, we have at most one fiber F' of F,, in C. If a unique negative section X is not in C,
then o =multy B’ <2—2x (6/7) = 2/7 < 1/3 because C is not a section of F,, over the generic point of

¥. (Otherwise, C is rational with only double smgularltles and g = 0.) By the nef property of —(K + B),
we have the inequality 0 > (Kg + B'.Z) > (Kgs + (2/7)Z.X). This implies that ¥ is a (—2)-curve and

= 2. If we had a contraction of a (— )—curve before, we can reconstruct S’ as the above S = P2. Hence,
(S' Smin B/ = Bmin) is the minimal resolution of S, and CNE = @ (cf. Lemma 5.6 below). Because
p(S) =1, S is a quadratic cone (or a quadric of rank 3 in P%) with a double section C' = D (~ —K) not
passing through its vertex. Therefore, by the adjunction, g = 1.

Finally, £ is a component of C; we then have another component ¥’ in C, which is also a section/X. If
C = T+ has g > 2, then (£.X') > 3. This is impossible because 0 > (Kg+B'.X) > (Kg+XZ+(6/7)Z'.Z) =
deg(Kz + (6/7)(Z'|s)) = =2+ 3(6/7) = 4/7. One last case is C = X + £’ + F; C has g > 2 only when
(' + F.X) > 3 because TN L' N F = () by the log canonical property: 3 x (6/7) > 2. We can then act as
above replacing &' + F by ¥'.

We now prove 5.4.1. If C has a component of the arithmetic genus g > 1, for example, Cj, then according
to the above, g = 1, C = C; + Cs, where C; is nonsingular rational (ms)-curve, and C; intersects C; in one
point. Moreover, if m, > 0, then C; is not exceptional on &', and C in §' has genus >2, which is impossible,
as we know. On the other hand, (Kx.C2) < 0 because p(S) = 1. Therefore, my; = —1. However, this is only
possible for the case (A$S) by the following lemma.

5.5. Lemma. Each nonsingular irreducible rational (proper) component C; C C is movable on a minimal
resolution of S, i.e., C; is an m-curve with m > 0, ezcept for the case (A§) in 5.1.3.

5.6. Lemma. Let P be a log singularity (S, B) such that

i. B>bC > 0, where C is an irreducible curve through P,

ii. B is a boundary, and

iii. P is a singularity of S.
Let E be a curve on a minimal resolution of P intersecting the proper inverse image of C, and let d =
1 —a(E, K + B) be the multiplicity of the boundary on the resolution for the crepant pullback.

Then d > ((m—1)/m)b where m = —E?. Moreover, d > (1/2)b always, and the equality holds only when
P is simple Du Val, B = bC near P, and K + C is log terminal in P. Otherwise, d > (2/3)b. In addition,
d > ((m—1)/m)b when P is log terminal for K +C of index m. In this case, components of B with standard
maultiplicities can also be included in C (cf. Lemma 2.25).
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Proof. Let C be the inverse image of C in S™®. Because the resolution is minimal, all multiplicities of B™®
are nonnegative. Therefore, we can consider a contraction of only £ and suppose that B = 6C. We can then
find d from the equation (K + bC + dE.E) = 0. If E is singular or nonrational, d > 1 > (1/2)b and even
d > (2/3)b because b < 1 by ii.

Otherwise, E is a (—m)-curve with m > 2. Hence, d = (m — 2)/m + (C.E)(1/m)b > ((m — 2)/m +
(1/m))b = ((m — 1)/m)b > (1/2)b because 0 < b < 1. Moreover, the equality holds only for m = 2; B = bC
near P, and (C.E) =1 in P when b > 0. The next calculation shows that P is a simple Du Val singularity
when b > 0 and d = (1/2)b.

If m > 3, then d > (2/3)b. The same holds if we replace E with a pair of intersected (—2)-curves.

Finally, d(b) = 1 — a(E,K + B) is a linear function of b. Therefore, it is sufficient to verify the last
inequality for b=0and 1. For 5=0, a < 1 and d > 0 by i This gives the required inequality. For b =1,
o(E,K + B) < a(E,K +C) =1/m by 3.9.1 in [23]. Hence, d > (m — 1)/m > ((m — 1)/m)b.

Components with standard coefficients can also be included in C' by Lemma 2.25.

Proof of Lemma 5.5. Because —K is ample on .S, we should only eliminate the case where C; is a
(—=1)-curve.

By the inequality C? > 0 on S and by Proposition 5.2, C; has at least two singularities P, and P,. They
are distinct from the intersection points P = (C \ C;) N C;. Such an intersection point P exists because of
C; # C and by Corollary 5.3. v

Therefore, we can calculate (C;.K + B) on a minimal resolution S™®/S. Again, let C’' and C; denote
the respective proper inverse images of C' = C'\ C; and C;. Over P; and P, we have the respective single
(nonsingular rational) curves E; and E; intersecting C; in Smin Let b, d, and b; < by be the multiplicities of
Bmin in ¢’ (in any component through P), C;, Eq, and E; respectively. Then by our assumptions, b,d > 6/7.
On the other hand, b; > (1/2)d bécause P is singular, and b = d/2 holds only for a simple Du Val singularity
in P,. Because C? > 0, P, is not such a singularity, and b, > (2/3)d by Lemma 5.6. Otherwise, we have a
third singularity P; of S in Cj, and b3 = multg, B™® > (1/2)d, where Ej intersects C; in S™",

For three or more points, (K+B.C;) > —1+b—d+b;+ba+bs > —1+b+d/2 > —-1+6/7+3/7=2/7 > 0.
Therefore, we have only two singularities and 0 > (K + B.C;) = (K™ + B™n.C;)) > (K™ + bC’ + dC; +
b1 Ey+b3F5.C;) > —1+b—d+by+by > —=1+b—d+(1/2)d+(2/3)d= —1+b+(1/6)d > -1+6/7+1/7=0.
Hence, we have the equality; C; = Cy, C' = Cy, B = (6/7)(C1+C5), P, is a simple Du Val singularity, and P»
is a Du Val singularity of type A,. Otherwise, it is a simple singularity with (—3)-exceptional curve because
by = (2/3)d and C2 > 0. However, this is impossible for m, = —1.

Therefore, we can resolve singularities P, and P; by the (—2)-curves E; and E,, E; respectively, where E»
intersects C on the resolution. If we successively contract C;, Eq, and Ej3, we transform E) into a (1)-curve
that is tangent to the transform of C; of order 3. Hence, S’ = P?, and C) is a cubic in it. Finally, K + B =0,
and we have a trivial 7-complement according to the computation.

Proof of Theorem 5.1. C has at most § = 3 irreducible components C; by Proposition 5.4. Otherwise,
g > 2, and the equality holds when C has four nonsingular rational components with one intersection point
for each pair of components by Corollary 5.3.

Therefore, we prove 5.1.1-2 and can assume that C has at least § > 2 components C;,1 <7 < 4.

The 1/7-log terminal property of K + B implies that F’ does not pass C; N Cy and b, + by < 13/7.

By Proposition 5.2, F does not pass the nodes of C: 2 x (6/7) +1/2 > 2. In particular, F' does not pass
CiNGC;jfori # j.

Except for the case (A$S), each component C; is nonsingular and rational. By 5.4.1, this holds on S’. For
S, it is then implied by Lemma 5.5.

Therefore, excluding the case (AS) in what follows, we have only the following three configurations of
nonsingular rational curves Cj:

(I3) C = Cy + C2 + C; and the curves C; form a wheel,
(I;) C = Cy + C- and the curves C; form a wheel, and
(Ag) C = C} + C3, and the curves C; form a chain.
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This follows from Corollary 5.3 and Proposition 5.4.

To eliminate some of these cases, we prove that each C; with two nodes P, and P, in C is an m;-curve
with m; > 1. We know (or can suppose) that C; is nonsingular and rational or an m;-curve. Moreover, by
Lemma 5.5, m; > 0. We suppose that m; = 0 and derive a contradiction.

Because C? > 0 on S, C; has at least one singularity P of S, P # P; and P;.

As above, we can calculate (K + B.C;) on a minimal resolution S™2/S. Let C' and C” denote the
respective branches of C'\ C; in P; and P,. We identify them with their proper inverse images on S™=. Over
P in 5™ we have one (nonsingular rational) curve E intersecting C;. Let ¥/, 8", d, and b be the multiplicities
of B™= in ', C", C;, and E. Then by our assumptions, ¥',b",d > 6/7. On the other hand, b > (1/2)d by
Lemma 5.6.

We therefore obtain a contradiction: 0 > (K + B.C;) = (K™2 + B™*.C;) > (K™ + ¥/'C' +b"C" +dC; +
bEC) > -2+ +8"+b> —2+V +b0'+(1/2)d> -24+6/7+6/7+3/7T=1/7.

We are now ready to verify that g(C) = 0 and we have the case (Az), except for the two cases (I})
and (I2) in 5.1.3 with the configuration (I). We want to eliminate the case (I3) and the other cases in (Ip).
According to what was proved above and the construction, S’ again has the same curves C; as components
of C: mi-curves with m; > m; > 1.

First, we consider S’ == P2. Because 4x(6/7) > 3, they are all 1-curves in the case (I3). Hence, there are no
contractions of (—1)-curves onto C C S’ for ™ — §’. In particular, we preserve curve E over any singularity
P e C of S or a curve E with a standard multiplicity 0 < multg B < 1. Either has a multiplicity b > 3/7.
Therefore, we obtain 0 > deg(Kg +b1C1 +b2C2+b3C3+bE) > —34by +by+b3+b > —3+3%x(6/7)+3/7=0.
Hence, b = 3/7 and at most one of curves Cj, for example, C, has a singularity. This is impossible when
S # S’ because S is then a rational cone by the condition p(S) = 1 and because S™* = F; when §' = P2
Therefore, S = S’ = P? and F = 0. But (S, B) is then 1-complementary to Bt = C, which contradicts our
assumptions.

We can do the same in the case (I5), when the (1)-curve C; does not have singularities of S, because
then S = §’ = P? with F = 0 and 1-complement B* = C. The case where C; and C; are both (1)-curves on
S’ is only possible when g(C) = 0. Therefore, we have a (1)-curve, for example, Cy, on S and on 5" with a
single simple Du Val singularity P, of S. This is only possible in the case (I3). More precisely, m; =m} =1,
my = 2, mh = 4, B' = (6/7)(Cy + C2) + (3/7)E1, and the line E; is tangent to the conic C; at a point
P ¢ CiNCyon S. The inverse transform S'— — S can be done as follows. The surface S™® is obtained
by successive monoidal transforms: first, in P which gives the (—1)-curve E,, then in E; N E;, which gives
the (=1)-curve Ej, and then in F; N Ej3, which gives the (—1)-curve E,;. The curves E;, E», and Ej5 are
(—2)-curves on S™® and B™® = (6/7)(Cy + C2) + (3/7)E1 + (2/7)E2 + (4/7)E3. To obtain S, we contract
El to P1 and E2 and E3 to P2.

We now suppose that S’ = F,, with m > 2 but never = P2. Because C; are m;-curves with m; > 1, they
are sections of F,,/Z, C; # X, and only in the case (I3). '

Indeed, as in the proof of Proposition 5.4, ¢ < 2/7, and T is an exceptional (—2)-curve in S. Hence,
Smin = G’ — F,, and S is a quadric of rank 3 having just one singularity. Moreover, because o < 2/7, this
is only possible in the case (I3) with two conic sections (not through the singularity) C; and C,. However,
deg B < 4 with respect to C; ~ Cs. Therefore, F' = (1/2)L, where L is a generator of the quadric, ¢ = 3/28,
and by + by < 7/4. Because Fy # 5™, we reduce S’ = F to one of the above cases.

In particular, we have proved that § < 2. In our assumptions, § = 2. We also know that C; and C5 are
my and me-curves and, for example, m; > my > 0. Excluding the case (I2) in what follows, we suppose (Asz):
#01 M 02 =1

First, we consider cases with S’ = F,,, but never = P2, in particular, m > 2.

As above, §' = F,, is possible only when C is a section and C; is a fiber of F,,,/E. If both C; and C; are
sections of §' = F,,, and m > 2, then m = 2,5™® = S’ = F,, and & # C) and C,. Therefore, (C;.Cz) > 2,
which is impossible under (A,). By the same reason, C is a section but not a multisection.

Because C; C S’ is a O-curve, my = mj = 0, and there are no contractions on Cs. Therefore, by
Proposition 5.2, K + D is log terminal near C> on S. Otherwise, F = {D} > (1/2)D;, where the curve
D, is tangent to Cs. Because (K + D.C,) > 0, we have a singular point of S or one more (nontangency)
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intersection point with F' on C5. This gives one more curve D; on S’ with dy = multp, B' > (1/2)b, > 3/7

by Lemma 5.6. But this is impossible: 0 > (K + B.C2) > —2+b; +2(1/2) +d; > -2 +6/7+1+3/7 = 2/7.
Because K + D is log terminal near C; on S and (K + D.C;) > 0, in total, we have at least two

singularities of S on C, or intersection points P, and P, with F. Moreover, one of them is neither

(Kl) a simple Du Val singularity of S near the singularity F = 0 nor
(A?) a simple (in a nonsingular point of S) intersection point with a component D; of F with multp, F =
1/2 near the point F' = (1/2)D;.

Otherwise, in total, we have three singularities or intersection points with F, which is impossible because
then 0 > (Ks + B'.C2) > =2 +6/7+3 x (3/7) = 1/7 > 0 by Lemma 5.6.

We assume that P, is neither (A;) nor (A}). Therefore, if P is a nonsingular point of S, then F has
a component D, passing through P, with multp, FF = (i — 1)/i5 and i, > 3. Moreover, near P,, D, has
a simple intersection with Cy and F = ((iz — 1)/iz)D. In addition, P, has type (A,) or (A?). Otherwise,
some S’ = P2, Indeed, 0 > (K + B.Cy) > -2+ 6/7+2x (4/7) = 0. Then K + B, K™= + Bm® and
Ky +B' =0, by = b; = 6/7, and the modifications are crepant. By Lemma 5.6, K + D has the index 3 in
each F;. Moreover, B' = (6/7)(C1 + C2) + (4/7)(E1 + E») for the divisors E; and E, on S™® and S’ over
P, and P,. Hence, each P, is a singularity, and p(S™®) > 3. Therefore, we can suppose that S’ = F,, and
m > 3. Then X = E; for some E;. This gives a contradiction: 4/7 =0 >1/3+(1/3)by =1/3+2/7.

Assuming that P; has type (A,) and this is the only singularity of S on Cy, we verify then that (S, B) has
type (A2). Indeed, a fractional component F of D with multiplicity (I —1)/l, I > 3, intersects C,. Because
p(S) = 1, S is a quadric cone, S™® = 5§ =TF,, and 0 > (K + B.Cy) > =2+ b; + (1/2)by + (I — 1)/1 >
~2+6/7+3/7+ (I —1)/l. Hence, (I — 1)/l < 5/7, and | = 3, which gives the case (A%). In particular,
F = (2/3)D; for a section D; not passing Pp.

The next case, where P, has type (A;) and P; is a singularity of S, is reduced to P2. Indeed, p(S™*) > 3,
and we can suppose that m > 3. Then T # E;, where E; is the exceptional curve/ P, on S™= or ', because
E, is a section of §' = F,,, with E? > —2 and even > m on $’. On the other hand, 0 > (K + B.Cy) >
~2+b+0+(1/2)bg > -2+ 6/7+ 0 +3/7, and ¢ < 5/7. But because (K + B'.Z) < 0, 5/7 > o >
(m—=2)/m+ba/m > (m—2)/m+(1/m)(6/7), which gives m < 4. As above, after a modification, we assume
that m < 3. Therefore, m = 3. The curves €} and £ do not intersect X simultaneously. Otherwise, we have
a contradiction: 5/7 > o > 1/3 + (by + ba +d1)/3 > 1/3+5/7, where d; = multg, B’ = (1/2)b,. Therefore,
(E1.C1) > 3, and the intersection points £y N C; are outside of £. We need to make at least three blowups
in E; to disjoint E; and C; on Smi’i._ Hence, we can obtain S’ = P2,

In the next case, P, has type (A}). Then P, is a singularity of S because CZ > 0 and my = m}, = 0. We
suppose that P has an index ! > 3 for K + D. Then we obtain type (A3). We have no other singularities
on C, or, equivalently, B = b;C> and S is nonsingular near each other point. Therefore, ¥ is a curve in
a resolution of P intersecting Cs. It is a (—m)-curve on S’ = F,, with m > 2. The singularity P, gives
a fractional component: F' > (1/2)D,, where D, is a section of S’ = F,,. As above, 0 > (K + B.C,) >
~24+bi+0+1/2 > —246/7+0+1/2,and o < 9/14. By Lemma 5.6, 9/14 > o > ((I-1)/1)b, > ((I-1)/1)6/7.
Therefore, | < 4. Moreover, for | = 4, we have the equations b, = 6/7 and o = 9/14. As in the last part of
the proof of Lemma 5.6, this is possible only when F' = 0 near P, and P; is a Du Val singularity of type A;.
But then m = 2, and we can reconstruct S’ as P2,

Therefore [ = 3. Moreover, for the same reasons, this is not a Du Val singularity of type A,. Therefore,
P, is a simple singularity that can be resolved by a (—3)-curve. Therefore, m =1 = 3, and S is a cubic cone.
This is the case (A3). Moreover, F' = (1/2)D;, and both sections C; and D; do not pass the vertex. Because
K + B is log terminal, #C1 N D; > 2. Because K + B has a nonpositive degree, 36, +b, < 7/2and ¢ = 1/14.

Finally, we consider the case where some S’ = P2. We suppose that C; and C; are respectively m;- and
mg-curves on S with m; > my > 0, and m}- and mj-curves on S’ = P? with mj,m} > 1 and m}| > m}, when
mip = My.

We note that K + D is log terminal in this case. By Proposition 5.2, if K + D is not log terminal, then
F > (1/2)D, where the curve D, is tangent to C, as it is for C and D; in §' = P2. If D, is a line in P?,
then 3 x (6/7) +1/2 > 3, and K + B’ is ample. Therefore, mj} = mj = 1, and D, is a conic in P2. It was
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verified above that D; on S is not tangent to the O-curves C;. In other words, D; is tangent to C; with
m; = m, = 1. In addition, we have a singular point of S or one more (nontangency) intersection point with
F on C;. This gives one more curve D, with dy = multp, B’ > (1/2)b; > 3/7 by Lemma 5.6. But this is
impossible: 0 > deg(Ks + B') > deg(Kg + 01C1 + b2C2 + (1/2)Dy + doD2) > =3 + by + by + 2(1/2) + dy >
-3+2x(6/7)+1+3/7=1/7.

If my = mg = 0, we have the contraction S™® — §' = Fy = P! x P! given by the linear system |C; + Cs|
on S™2, We consider such cases later. In other cases, m; > 1. We verify that the latter is possible only for
types (Al), (A4) or (A3). Therefore, first we verify that m; = 1. Otherwise, mj =4>m; >2,and C; is a
conic on S’ = P?; mj, = 1, and C; is a line on S’ = P? because 4 x (6/7) > 3. Because K + B’ is log terminal,
C: and C, have two intersection points R; and R,. Moreover, my; = 0 because C] + C; has the configuration
(Ag) on S by our assumptions.

As we know, in total, Cy has two singularities of .S or intersections with F. On the other hand, we have
contractions of curves onto Cy for S™® — S’ only over one of the points R;. Therefore, there _exists point
P, # R, and R, on C; that is singular on S or belongs to F. Moreover, P; on S has type (A;) or (A*)
Otherwise, by Lemma 5.6, P, gives a curve D; # C} and C; with d; = multg, B’ > (2/3)b > 4/70on S’ =
Then K + B’ is ample because 3 x (6/7) +4/7 > 3. This is impossible.

For the same reasons, d; = 3/7, P, has type (A,), D; is a (—2)-curve on S™® b = by, = 6/7, F =0,
K + B, K™ 4 B@2 and K¢ + B’ = 0, and the modifications are crepant. If #D; N C) = 2, then we should
make at least two blowups in this intersection to disjoint D; and C; on S™®. According to (Az) for C; + C;
on S and S™2, we must make at least one blowup in R; or R;. Therefore, m; < 1. This contradicts our
assumptions. Therefore, D, is tangent to C;. But to disjoint D; and C1, we again need two blowups. That
leads to the same contradiction. As is seen later, the latter case is possible for m; = 1 in type (I3) or for
p =2 and my; = my =0, as is discussed below.

Therefore, my = 1, and we have the contraction S™* — S’ = P? given by the linear system |C}| on S™=;
mi =mj=1. Therefore C; and C; are lines on minimal S’ = P2

If my = 1, we have no contractions onto C for S™® — S’ = P? and no singularities of S on C. Then
S = P2, and th1s is the first exception (A}). Indeed, if, for example, C; has a singularity, it gives rise to a
curve E; C S™i and S’ = P?, which intersects Cs on both S’ and S™®. This is impossible.

Therefore, mo = 0. Moreover, by the same arguments, Cs has at most one singularity P, of S, and C}
has a singularity P of S (except for (A})). Really, S has a singularity P, € C; because my = 0; P, is a single
singularity of S on C,. It corresponds to the point P; € Cy C S’ = P? into which we contract a (—1)-curve
only once.

Therefore, F > (1/2)D; for some curve D; # C; and C; on S. Moreover, D; is a curve on S’ = P2
On the other hand, P, gives another curve F; on §' = P? with d; = multg, B’ > ((m — 1)/m)b;, where
m > 2 is the index of K + D in P;. Moreover, by construction, E; is a line on S’ = P2, The curve D,
is also a line.on §' = P2 Otherwise, 0 > deg(Kg + B') > deg(Kg + b1Cy + boCy + (1/2)Dy + d1 Ey) >
—34+b +ba+2(1/2)+dy > -3+2x%x(6/7)+1+3/7 =1/7. For the same reasons, other components of
F are contracted on S’ = P2. In other words, Supp B’ = C; + C; + D; + E;. Equivalently, D; is the only
component of F' that passes a nonsingular point of S on C;. Moreover, the lines C, Cs, Dy, and E; arein a
general position in §' = P? because the intersection point P; of E; and D; does not belong to C.

The curve D; crosses C; in a single nonsingular point of S. We contend that D; passes P, on S also.
Indeed, we can increase B to B” in D; such that K + B” =0. Then K™ + (B")™" and Kg + B" = 0, and
the modifications are crepant, where B” = b;Cy + bsC> + d"D; + d}E; with d} = multg, (B”)™ and with
d’ = multp, B”, and (B”)™" corresponds to the crepant resolution S™® — S. By the above arguments or
the inductive theorem, d; and d” < 1. However, § = d} +d" —1 > 0 if we assume that D; and E, are disjoint
on S™i®. Moreover, we have contractions of curves for S™® — S’ onto D; only over the intersection point
P; because their multiplicities in (B”)™® are nonnegative. The curves on S™®/P; form a chain with D; and
E,. Therefore, D; is a rational n-curve with n < 0 on S with a single singularity P of type A;. Moreover,
n = 0 because D? > 0 on S. Also, [ > 2 because S is not a cone: it has too many singularities. In addition,
by Lemma 5.6 a.nd our description of the modification near Dy, § > dy = multg,(B")™* > (2/3)d" >
(2/3)(1/2) > 1/3, where E3/P; in S™ intersects D;. This gives a contradiction: 0 = deg(Kgs + B”) =
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deg(Ks +01C1 +b2Co +d"Dy +d1Ey) > =3+ by + by +d" +dy > =3+2 % (6/7)+1+1/3 =1/21. We note
another contradiction: the (—1)-curve/P;, which is nonexceptional on S, does not intersect C, on S.

Therefore, Dy passes P, and because D, intersects E; on S™®, P, is a simple singularity with a single
(=l)-curve E; on S™®/P; by the log terminal property of K + D. In addition, Supp F = D;. Arguing
as above, we can verify that P is a Du Val singularity of type A; or S™® — S’ contracts only (—2)-
curves and one (—1)-curve, successive blowups of P, € S’ = P2, In addition, F = 0 near P,. Hence,
P, has the index { + 1 for K + D, and | > 2 because S is not a cone (except for (Al)). This gives
de = multg, B’ = ({/(Il + 1))by > (l/(l +1))(6/7) by Lemma 5.6 in divisor Ey/P, on S™* intersecting Cj.
Therefore, in this case, 0 > (K +B.Cy) > —2+by +multp, F+d; > —2+6/7+1/2+(I/(1+1))(6/7). Hence,
l/(I+1) < 3/4and ! < 3. This gives types (A3) and (A3) for I = 2 and | = 3 respectively. The same inequality
with | = 2 gives multp, F' < 4/7, and therefore F' = (1/2)D;. If l = 3, K + (6/7)(Cy + C2) + (1/2)D; = 0.

Finally, we prove that the cases with m; = my = 0 are impossible. First, we verify that each C; has
at least two singularities of S. Otherwise, F' > (1/2)D; where the curve D; # C; and C, intersects one of
these curves, for example, Ci, in a nonsingular point and only in this point. The curve C has a singular
point Q; of S, and C, does so for P, because C2 > 0. Let F;/Q; and E, /P; be the respective curves on
S™i2 that intersect Cy and Cs. They give different generators F; and E; of ' = P! x P! with multiplicities
fi = multy B’ > (1/2)b; and e; = multg, B’ > (1/2)b,. Moreover, if Supp F passes @, or, equivalently,
a component D; of F passes @1, then fi > (1/2)b; + (1/2) multp, B > 3/7+ 1/4, but 0 > (K + B.C;) >
—2+by+ fi+multp, B > —246/74+3/7+1/4+1/2 = 1/28. For the same reasons, D, intersects C; in only one
point. Therefore, Supp F' = D; does not pass @,. If D; does not intersect C5 in a nonsingular point of .S, then
D, is also a generator D; ~ F;. However, D; intersects another generator E; on S’ = P! x P! transversally
in one point P, and Supp B’ = D; + E; near P. On S™®, D; and E; cannot be disjoint by a chain of rational
curves/ P, because we can assume, as above, that K + B = 0 and the modifications are crepant. Then a
(—1)-curve/P is a curve on S not intersecting Cy. This is impossible. Hence, either D; passes each singular
point of S on (3, and we have two of them, or D, intersects C, in a nonsingular point of S. The former case
is impossible: 0 > (K + B.C3) > —2+b; +2 x ((1/4) + (1/2)bs) > —2+6/7+1/2 + 6/7 = 3/4 as above
with fi. Therefore, D, intersects C' on S in two nonsingular points: one on each C;. Then D; ~ F| + F;
or has bi-degree (1,1) on §' = P! x P'. Moreover, B’ = e;E; + f1F; + (multp, F)D;, and D; passes the
intersection point P of E; and F; because D; does not pass singular points of C. Assuming, as above, that
K + B = 0 and the modifications are crepant, we can verify that S™® — S’ contracts only curves over P.
Because p(S) = 1, all but one of these curves are contracted on S to singularities P;, @Q;, and maybe one
on D;. However, this is only possible when we contract F, and F after the first monoidal transform in P
that does not produce singularities.of S at all. Otherwise, as above, a (—1)-curve/P is a curve on S not
intersecting some C;.

Therefore, F' intersects C' only in singular points of S. Hence, we have at least four singularities of S:
@1,Q2 € C; and P, P, € Cy. They give the respective different generators F; ~ F, and E; ~ E, with
multiplicities f; = multz, B’ > (1/2)b; and e; = multg, B’ > (1/2)be. If for two of these multiplicities, for
example, e; and fi, e; + f1 < 1, then we cannot disjoint E; and F; on S™® under the assumption K +B = 0.
Therefore, we can suppose that e; and e; > 1/2. Then by Lemma 5.6, e; and e, > (2/3)b; > 4/7. This gives
an equation in the inequality 0 > (K + B.C3) > -2+ by + e +e2 > —~1+6/7+ 2 x (4/7) = 0. Moreover,
e1=e =4/7,B=(6/7)(C1+C), F =0, K+ B = 0, and the modifications are crepant. Indeed, because
1/44(1/2)(6/7) = 19/28 > 4/7, C; has exactly two singularities P, and P; of index 3 for K + D or K + C,.
Therefore, they are Du Val of type A,.

On the other hand, S has two singularities Q); and Q, € C;. We can assume that @, is not simple Du
Val. If @, is also not simple Du Val, then both are again Du Val of type A,. Therefore, B’ = (6/7)(C; +
Cs) + (4/7)(Ey + E; + F) + F,), where F; are curves with d = 4/7 over Q;. All curves C, ~ E; ~ E, and
Cy ~ Fy ~ F, are generators of corresponding rulings of ' = P! x P!. On S™, there exists a curve E’
with multg B™® = 2/7, for instance, the second curve in a minimal resolution of P,. Such curves could only
be over the intersection of P = E; N F;, which is impossible because they have only one curve E”/P with
a(E",Kg + B') < 1. It is a blowup of P with a(E", K¢ + B') = 6/7.
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Therefore, @y is simple Du Val, fy = (1/2)b, = 3/7, o =2—-by— f1 = 2-6/7~3/7 = 5/7, and
B' = (6/7)(Cy + C2) + (4/7)(Ey + E») + (3/7)F1 + (5/7)F,. However, this is possible only for a surface S
with p(S) = 2. Indeed, to disjoint F; and Ej, we should make two successive monoidal transformations:. first
in F> N Ey, which gives Ej, and then in F; N E3, which gives E,. Both the curves E; and Ej are (—2)-curves
on S™®: gver points F} N F;, and the contraction $™® — S’ is just one monoidal transform. On the other
hand, F; is a (—4)-curve, and E, is a contractible (—1)-curve passing Q» and P,. Hence, p(S) > 2. It can be
verified that p(S) = 2, and after a contraction of £, on S, we obtain the case (I2) in 5.1.3.

We can now find minimal complements in 5.1.3 as in Example 5.2.1 in [23]; however, we did it in only
a few trivial cases. Indeed, by Proposition 5.2, we should care about only the numerical property, not
singularities.

6. Classification of Surface Complements

We take r € N,. A classification of r-complements or of complements of index r means a classification
of surface log canonical pairs (S/Z, B) with r(K + B) ~ 0/Z. We assume that S/Z is a contraction, in the
local case, according to the main theorem, such that there exists a log canonical center/P (cf. Example 1.7
and Sec. 3). This classification implies a classification of log surfaces (S/Z, B’) with such complements. For
instance, the minimal complementary index r is an important invariant of (S/Z, B).

Moreover, for exceptional r € EN; = {7,...}, K + B is assumed to be Kawamata log terminal, and S
is complete with Z = pt. Such cases are bounded. They have been partially described in Sec. 5. Here, we
focus on basic invariants for regular complements with r € RN, = {1,2, 3,4, 6}. .

For indices 1, 2, 3, 4, and 6, types of complements are respectively denoted by A?, D7 E37, E4" and
E67,, where o

o n is the number of reduced (and formally) irreducible components in B (over a neighborhood of a given
P € Z in the local case) and ’

e m is the number of reduced exceptional divisors of B™® on a crepant minimal formally log terminal
resolution (in most cases, this is a minimal resolution; cf. Example 6.2 below) (S™® B™i®) — (S, B)
(over a neighborhood of P € Z) or, equivalently, the number of exceptional divisors on the minimal
resolution with log discrepancy 0.

We also assume that for the types A? and D7, Supp B™" is a connected singular curve; otherwise they are
respectively denoted by E1%, and E2. Equivalently, exactly in types E1 — 27 among types A7 and D7, the
number of exceptional divisors with log discrepancy 0 is finite. The same numerical invariants can be defined
in any dimension up to the LMMP. But, as is seen in the next section, a simplicial space associated with
reduced components is a more important invariant. '

6.1. Theorem. If m = n = 0, then Z = pt., and K + B is Kawamata log terminal of a regular index
r € RN,. This is possible only for types Er. The complements of this type are bounded when B # 0 or S
has a non-log terminal point [2]. Otherwise, B =0, and S is a complete surface with canonical singularities
and rK ~ 0 (their classification is well known up to a minimal resolution and can be found in any textbook
on algebraic surfaces, e.g., [5] and [21]).

In the other types, we suppose that m +n > 1. Then they have a nonempty locus of the log canonical
singularities LCS(S, B). It is the image of LCS(S™®, B™) = Supp|B™®| and has at most two components:
two only for exceptional types Er? with n 4+ m = 2 and in the global case.

If LCS(S, B) is connected, it is a point if and only if n = 0. Otherwise, it is a connected curve C =
Supp|B] with at most nodal singularities and of arithmetic genus g < 1 for any subcurve C' C C/P.
Moreover, if g = 1, then C' = C; this case is only possible for types E1J and A? withn > 1; C = C' is
respectively ‘a nonsingular curve of genus 1 or a Cartesian leaf when n = 1, and C is a wheel of n rational
curves when n > 2. In all other cases, C is a chain of n rational curves.

The singularities of (S, B) outside LCS(S, B) are log terminal of index r. In particular, they are only
canonical when r = 1; moreover, they are only of type A; whenm+n > 1,

If B=0, then n =0, and LCS(S, B) is the set of elliptic singularities of S.
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For types A7, and D7, any natural numbers m and n are possible. If n = 0, then we have a global case
with B=0, K ~0, and S has a single elliptic singularity.

In the exceptional types Er},, n+m < 2, and any m and n are possible under this condition; n +m = 2
is only possible in the global case. The number of connected components of LCS(S, B) is m+n. Equivalently,
each such component is irreducible. Moreover, when C/P, it is a point or a nonsmgular curve respectwely of
genus 1 for types E17, and of genus O for the other types.

Proof. The most difficult part is related to connectedness (Theorem 6.9 in [23]). The other statements
follow an adjunction, except for the statement on types of canonical singularities for 1-complements (S/Z, B).
Essentially, this was proved in Sec. 2.

We therefore let (S/Z, B) be a 1-complement. After a formal log resolution, we can then assume that
LCS(S,B) = B = C is a reduced curve and S is nonsingular near C. We can also assume that C is minimal,
i.e., does not contain (—1)-curves. We verify that the singularities of S have type A; using an induction on
extremal contractions. By the LMMP, we have an extremal contraction g : S — T/Z with respect to K if
there exists a curve/P not in C. If this is a contraction of a curve C’ to a point, then it is to a nonsingular
point, and S has only singularities of type A; near C’ because S has only canonical singularities. If this is
a contraction of a fiber type, then it is a ruling that can have singularities only when C has an irreducible
component C' as a double section. Then the only possible singularities are simple double. If T = pt., then
components of C are ample, and S = P2. We note that if we have no contractions, we have no singularities
because the latter ones are outside C.

Of course, our notation is similar to the classical one (however, with some twists).

6.2. Example. For instance, a singularity P € (S/S, H) of type A,, with a generic hyperplane through P
has type A2, in our notation.. But type D, corresponds to D},_, with some reduced and irreducible H.
We have more differences for elliptic fiberings (S/S, E). For instance, the Kodaira type ,,I;, is our Aj.
Let (S/S, L1 + (1/2)(L2 + L3)) be a singularity as in the plane S = P2 in the intersection of three lines
L;. Then it has type D} because its minimal log resolution is a monoidal transform in this point.

6.3. Example. Each toric variety X has a natural 1-complement structure (X, D), where D = 3 D; with
the orbit closures D;. Therefore, the number of elements in this sum 7 is the number of edges in the fan.
A toric surface S with n edges has type A%,. In addition, n = p(.S) +2. This characterizes toric surfaces.

6.4. Theorem. Let (S/Z, B) have a log canonical K + B and nef/Z divisor —(K + B). Then p(S/Z) >
> b; — 2, where p(S/Z) is the rank of the Weil group modulo the algebraic equivalence/Z or just the Picard
number when the singularities of S are rational. Moreover, the equality holds if and only if K + B = 0 and
S/Z is formally toric with C = |B| C D.

In addition, in the case with the equality and reduced B = C, (S/Z,C) is formally toric with C = D (see
Example 5.3).

Formally toric/Z means formally equivalent to a toric contraction, or locally/Z in an analytic topelogy,
when the base field is C.

Proof. First, we can assume that LCS(S,C) 75 0. In the local case, we can do this by adding pullback
divisors as in the proof of the general case in Theorem 3.1. In the global case, after contractions, we can
assume that p(S) = 1. If LCS(.S, C) = 0, the inequality is improved after contractions. If B has at most one
component C; with b = multg, B > 0, then p(S) = 1 > b; — 2. Otherwise, we have at least two curves C;
and C; with b; and b; > 0. We can also assume that K + B =0. If LCS(S, B) = @, we can change b; and b;
such that K + B = 0 and b; + b; is nondecreasing. Indeed, K + B = 0 gives a linear equation on b; and b;.
We then obtain LCS(S, B) # 0 or b; or b; = 0. An induction on the number of curves in Supp B gives the
log singularity or the inequality.

Second, we can replace (S, C) by its log terminal minimal resolution (S, C!) over C = LCS(S, B) # 0.
We preserve all the statements. The contraction is toric because it contracts curves of D.
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If every curve C'/P is in C, we have the local case, and by the adjunction and Corollary 3.10 in {23}, we
reduce our inequality to a one-dimensional case on C”/P. In addition, for the equality, S/P is nonsingular
and toric, which is possible to verify case by case. Here, we use the monotonicity (m —1)/m+3_ kidi/m > d;
when k; > 1 and even > d; when m > 2, k; > 1, and 1 > d; (cf. Corollary 3.10 in [23]).

Third, we could assume that K + B = 0 on C/P after birational contractions. This improves the
inequality. If we return to a Kawamata log terminal case, we can find a complement K + B’ = 0/Z with
B’ > B. This again improves the inequality.

By Theorem 6.9 in [23], we assume that C/P is connected. Otherwise, Z = pt., C' = C; + Cj, and after
contractions, we can assume that each fractional component, i.e., each component of B — C, intersects some
C; (cf. the arguments for the connected case). We then reduce the problem to a one-dimensional case on C;.

Therefore, we assume that there exists a curve C'/P not in C. We then have an extremal contraction
g : § — T that is numerically nonnegative for a divisor H with Supp H = C, and g is numerically negative for
K + B — ¢H with some € > 0. If C has an exceptional type, we take an H that is negative on C. Otherwise,
we assume that H is nef on C and even ample in the big case. Therefore, such a g preserves C birationally
when birational, or H is ample, and we consider this case as a contraction to Z = pt. below. After birational
contractions, f has a fiber type. If it is to a point, then Z = pt., and C has at most two components that are
intersected by other components of B. We can choose them and reduce the problem to a one-dimensional
case as above. If g is a ruling, we can do similarly when C has an ample component. Otherwise, C' is in a
fiber of g. As in the first step, we can assume that we have at most one other fiber component. This implies
the inequality. Otherwise, we obtain a case where C is not connected. We note that we preserve inequality
only when we contract a curve C;/P with (K + B.C) = 0 and b; = 1. Such a transform preserves the formally
toric property. Therefore, D always contains C.

We hope that in general p(X/Z) > —dim X + }_ b;, where p is the Weil-Picard number, i.e., the rank
of the Weil divisors modulo the algebraic equivalence. Moreover, the equality holds exactly for formally
toric varieties and |B] C D. For instance, this implies that locally ) b; < dim X when the singularity is
Q-factorial and p = 0. If the singularity is not Q-factorial, we have the stronger inequality > b; < dimX —1
for B = Y_ b;D; with Q-Cartier D; (cf. Theorem 18.22 in [16]).

6.5. Corollary. Let (S/Z,C) be as in Theorem 6.4. The following statements are equivalent:

e (S/Z,C) is a surface 1-complement of type A7, with n = p(S/Z) + 2.
e 0(S/Z) =n — 2, where n is the number of (formally) irreducible components in C.
e (S/Z,C) is formally toric.

For instance, if p(S) = 1 and Z = pt., then a 1-complement (S, C) of type A}, is toric with D = C if
and only if n = 3. In the other cases, n < 2.
Most of the above results work over non—algebraically closed fields of characteristic 0.

6.6. Example. If C is a nonsingular curve of genus 0, it always has a 1-complement. But it has type A2
only when it has a k-point. Otherwise, it has type Aj, and its Fano index is 1.

A complement with a connected LCS(.S, B) can be called a monopoly. Other complements are dipoles.

6.7. Theorem. Any exceptional complement (S/ pt., B) of type Er3 has a ruling g : S — Z with a normal
curve Z and with two sections in LCS(S, B); the genus of Z is 1 for (r = 1)-complements and 0 in the other
cases.

Proof. We obtain the ruling after birational contractions with respect to a curve C; in LCS(S, B), C? <0
(cf. Proof of the Inductive Theorem: Case I).
In addition, if g(Z) > 1, then B = 0, and we have a 1-complement (S, B).

6.8. Corollary. Let (S,B) — (S, B) be a normalization of a connected seminormal log pair (S’, B') with
B’ under (M). Then (S’, B') has an r-complement if (S, B) has a complement of type Erl,.
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Proof. The divisors BT in the normal part of S belong to fibers of the contraction g on components of the
normalization of S after a log terminal resolution. The latter has the same r for each component of § because
they are induced from curves of nonnormal singularities on S

For the other dipoles, LCS(S, B) is a pair of points or a point and a curve.

6.9. Remark. The ruling induces a pencil {C;} of rational curves through the points. Similarly, in the other
cases, we can find
(PEN) a log proper pencil {C;} of log genus-1 curves, i.e., C; does not intersect LCS(X, B), when its
normalization has genus 1, and for the corresponding map g; : (P*,0 + c0) — (X, B) onto C, g:(Q) §E
LCS(X, B) when C; has genus 0, ¢ is generic, and Q) # oo and @ # 0.
Thls implies easy cases in the Keel-McKernan theorem on the log rational covering family (Theorem 1.1
in [15]). The difficult cases are exceptional and bounded. Perhaps it can be generalized in a weighted form
for fractional boundaries or m.1.d.’s.

7. Classification of Threefold Log Canonical Singularities

7.1. Theorem. Let (X/Z, B) be a birational contraction f : X — Z of a log threefold X

o with boundary B under (SM) and
e nef —(K + B).

Then it has an n-complement (X /Z B™*) over a neighborhood of any point P € Z such that

e n & N, and
o K + B™ is not Kawamata log terminal over P.

7.1.1. We can replace (SM) by -
(M)” the multiplicities b; of B are standard, i.e., b; = (m—1)/m for a natural number m or b; > 1/(1+1)
where | = max{r € N,}.

7.2. Lemma. Let (§/Z, B) be a surface log pair and (S™=, B™") be its crepant minimal resolution. If B
satisfies (SM), then

K + B n-complementary => K™+ B™" n-complementary.

Moreover, we could replace S™® by any resolution S’ — S with the subboundary B = B,
For any n € N, we can replace (SM) by (M)".

Proof. The proof follows from the Main Lemma 4.4 or it can be done in the same style. The last statement
follows from Monotonicity Lemma 2.7.

Sketch of proof of Theorem 7.1. First, we can assume that K + B is strictly log terminal/Z and B has the
reduced part S = | B] # 0/ P. For this, we add a multiple of an effective divisor D = f*(H) for a hyperplane
section H of Z through P € Z. However, B +dD may contradict (SM) in D. We drop D after a log terminal
resolution of (S, B + dD). In turn, this can spoil the nef condition for —(K + B). This is preserved when
D or even a.divisor D’ > D below is nef/P. If not, we can do this after modifications in extremal rays on
which D’ = B+ — B > D is negative, where B* is a complement for B + dD, i.e., K + Bt = 0/P. We then
drop D’. To do the log flops with respect to D', we use the LSEPD trick (10.5 in [23]). Finally, if K + B is
not strictly log terminal, it holds after a log terminal resolution of (S, B).

Second, (S/Z, Bs) is a seminormal connected surface over a neighborhood of P where By is nonsingular
in codimension one and again under (SM) or under (M)” for 7.1.1. This follows from the LMMP or Theorem
17.4 in [16] and Corollary 2.26. Adjunctions (K + B)|s; on each component are log terminal (3.2.3 in [23]).

We have a complement (S/Z, BY) on S/Z and hence on each S;. This gives (EC)'.

Third, we can glue complements from the irreducible components of S. If one of them has no regular
complements, then S is normal, and there is nothing to verify. In the other cases, we have r-complements
with 7 € RN,. Moreover, if we have a complement of type Er?, on some component .S;, then m = 0 by the log
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terminality of the adjunction (K + B)|s,, and S is a wheel or a chain of its irreducible components. We can
then glue complements by Corollary 6.8. Finally, we have the complements of type D7, with » = 2. They are
induced from a one-dimensional nonirreducible case where we always have a 2-complement (cf. Example 5.2.2
in [23]). (However, if we have nonstandard coefficients b; < 2/3, we must use higher complements; cf. Lemma
2.29.)

Finally, we can act as in the proof of Theorem 5.6 in [23] (cf. Theorem 19.6 in [16]). Therefore, an
r-complement of (X/Z, B) is induced from the r-complement of (S/Z, Bg). We can lift the r-complement on
any log resolution by Lemma 7.2.

In particular, we divide threefold birational contractions into two types: exceptional and regular. By
Mori’s results, all small contractions in the terminal case are formally regular.
This time the exceptions are not bounded, for instance, if (X, S) is a simple compound Du Val singularity:

4+ + 22+ ui=0

with a quadratic cone surface S given by z% + y? + 22 = 0. It is (not formally) an exceptional complement.
Such singularities are not isomorphic for different d, even formally. However, they have many common finite
invariants: the m.1.d., the index of complement, the index of K, etc. They are bounded up to an isomorphism
of a certain degree or order.

7.3. Corollary. Under the assumptions of Theorem 7.1, for any ¢ > 0, the exceptional contractions (X/Z, B)
and their complements (X/Z, B*) are bounded with respect to the m.l.d. and discrepancies when K + B is
e-log terminal: over a neighborhood of P € Z, the set of m.l.d.’s a(n, B, X) for points n and the discrepancies
a(E,B*,X), a(E,B,X) < ¢ for any § > 0, is finite.

This also holds under (M)”" if the contraction is not divisorial. Otherwise, we should assume that the set
of b; < 1 —¢ is finite.

Proof. According to our assumptions, b; belongs to a finite set, indeed, if b; < (1 — ¢). Therefore, it is
sufficient to verify the finiteness for discrepancies in exceptional divisors E of X. Indeed, the latter implies
that we can consider the m.l.d.’s > 3. Such do not exist.

We note that a = a(E, Bt, X) = a(E, B*,Y) form a finite set because K + B™ has a finite set of indices
ne Ng.

The index N of S-is bounded/P as well because it is bounded locally on Y. Therefore, we assume
that N is the universal index. To verify the local case, after a Q-factorialization, we can suppose that X is
Q-factorial. We assume this below always. Then the boundedness follows from the boundedness of quotient
singularities on S by the exceptional property. In particular, for any point @ € S, the local fundamental
groups of S\ @ are bounded. Along curves in S, the index is bounded (<6) according to Proposition 3.9
in [23]. After a covering branching over such curves, S does not pass through codimension-two singularities
of Y. We can then argue as in the proof of Corollary 3.7 in [23] (cf. Lemma 1.1.5 in [19]). The index in such
singularities is bounded by orders of cyclic quotients of the fundamental groups.

This also implies that any divisor near S has a bounded index.

We now consider discrepancies a(E, B, X), especially, for E = S/P. If it is not exceptional, the finiteness
follows from (SM) and the e-log terminal property. The same holds for the other nonexceptional E on
X. For exceptional E = S and for any other exceptional E, to compute discrepancies, we choose an
appropriate strictly log terminal model g : ¥ — X on which S is the only exceptional divisor/X. Then
BY = g7 !B+ (1-4a(S,B,X))S = Bf —a(S,B,B)S — D, where D = g~!(B* — B) is effective. Moreover,
the multiplicities of D and B* — B form a finite set.

We take a rather generic curve C C S/X/P. Then

0= (Ky + BY.C) = (Ky + B}.C) —a(S, B, X)(5.C) — (D.C)
= —a(S, B, X)(5.C) — (D.C)
implies

a=a(S, B, X) = —(D.C)/(5.C).

3925



Because a > £ > 0 and (D.C) = (D|s.C) belongs to a finite set, (S.C) is bounded from below. On the other
hand, (S.C) < 0. Therefore, (S.C) and a(S, B, X) belong to a finite set. This implies the statement for the
discrepancies a(E, B, X) = a(E, B¥,Y) = a(E, B*,Y) + a(S5, B, X) multg S + mult 5 D with centers near S
or intersecting S.

For the other centers, it is sufficient to verify that the index of D is also bounded there. By Theorem 3.2
in [24], we must verify that the set of exceptional divisors with discrepancies a(E, By,Y) < 1+ 1/l is
bounded (cf. the proof of Proposition 4.4 in [24]). Because D is effective and Ky + B* has an index <,
a(E,Bf,Y) < 1. We must verify that such E with centers not intersecting S are bounded. We can see that
this bound has the form <A(1/¢).

We take a terminal resolution W/Y of the above exceptional divisors for Ky + Bf. It does not change
the intersection (S.C) for any curve C C S/Z/P. (This time C may be not/X.) As above, we have the
inequality

0> (K + B.g(C)) = (Ky + B*.C) = —a(S, B, X)(S.C) — (D.C)
or (S.C) > —(D.C)/a(S, B,X) > —(D.C)/e. Therefore, (S,C) belongs to a finite set even if we assume that
C is ample on C and on its other such models of S.

We then apply the LMMP to Ky + B;j; —S. More precisely, we make flops for Ky + By}, with respect to
—S or in extremal rays R with (S.R) > 0. We thus decrease (Kw + Bjf, — S.C) and increase (S.C), strictly
when the support |R| has a divisorial intersection with S. Therefore, the number of exceptional divisors on
W/X is bounded because we contract all of them during such LMMP.

‘We have proved more.

7.4. Corollary. For the exceptional and ¢-log terminal (X/Z, B), the fibers f~'P are bounded. In particular,
if X/Z is small, the number of curves/P is bounded.

7.5. Corollary. For each £ > 0, there ezists a finite set M(e) in (+00, €| such that (X/Z, B) is not excep-
tional when the m.Ld. of (X, B)/P > € and is not in M(e).

Proof. The set M(¢) is the set of m.1.d.’s for the exceptional complements that are >¢.

7.6. Corollary. There ezists a natural number n such that any smell contraction X/Z of a threefold X with
terminal singularities has a regular complement when it has a singularity Q/P in which K has an indez >n.
A similar bound ezists for the number of curves/P (cf. Corollary 7.4).

Proof. We take n = 1/A, where A = min M(1). We note that any terminal singularity of index n has the
m.ld. =1/n. _

This result is much weaker than Mori’s on the good element in | — K| when X is formally Q-factorial/Z
and has at most one curve/P. Indeed, as Prokhorov remarked to the author, there then exists a good element
D € | — K| according to Mori and Kollar. (It is unknown whether this holds when the number of curves/P
is >1 or when X/Z is not Q-factorial.) Therefore, (X/Z,D) and (X/Z,0) have a regular complement
by Theorem 5.12 in [23]. In general, the corollary shows that exceptional cases are the most difficult in
combinatorics. On the other hand, we expect few exceptions (maybe none) among them in the terminal case.

7.7. Example. Let (X/Z, B) be a divisorial contraction with a surface B = E/P, and let (K + B)g =
Kg + Bg be of type (AS) or (I2) in 5.1.3. Then (X/Z,E) has a trivial 7-complement. In this case, the
singularity P in Z is (maximal) log canonical of index 7, but it is not log terminal.

7.8. Example. Let (X/Z, B) be a divisorial contraction with a surface B = E = P?/P, and let (K + B)g =
Kg -+ Bg be of type (Al) in 5.1.3. Moreover, let Bg = b1 Ly + by Lo +(2/3) L3 + (1/2) L4, where L; are straight
lines in a general position and b;,bs = 6/7. We note that in such a situation, the coefficients b; are always
standard (Proposition 3.9 in [23]), and we have a finite choice of them.

Then (X/Z, E) is not regular; it has a 42-complement. Moreover, in this case, P is a purely log terminal
singularity, but not terminal or canonical, except for the case where X has only Du Val singularities along
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curves L; and K = 0/Z. In particular, P has a crepant desingularization. We do not discuss the existence of
such singularities here.

Indeed, F has index 42. Therefore, for a straight line L in E, (E.L) < 0, and 42(E.L) is an integer. By
the adjunction, (K + E.L) = (Kg + Bg.L) = —5/42 and (E.L) > —5/42 when P is canonical. Moreover,
(E.L) > —5/42 in such cases, except for the above exception with K = 0/Z. For (E.L) = -5/42, X/Z is a
crepant blowup with log canonical singularities along L;.

Hence, in the other cases, (E.C) = —m/42 with some integer m = 1,2,3 or 4. Then (K.L) = —(5—m)/42,
and the discrepancy d = d(E,0,Z) = (5 — m)/m. If P is terminal of index N > 2, it should have at least
all N—1 discrepancies i/N,1 < ¢ < N (Theorem 3.2 in [24]). For instance, if m = 1 and X has only Du Val
singularities, then d = 4 and N > 21. On the other hand, making blowups over lines L;, we can construct
a (minimal log) resolution Y/X with at most 1+ 1+ 2+ 2 x 6 = 16 exceptional divisors. Then all other
divisors have discrepancies >1. (Moreover, the divisors in the resolution give only a discrepancy 1/7 < 1.)
Therefore, it is not a terminal singularity. Similarly, we can exclude other cases. Therefore, P is canonical
or Worse.

Of course, this approach uses a classification of terminal singularities. But it can be replaced by the
following arguments.

Let m = 4; then d = 1/4, and for any exceptional divisor E’/P, the discrepancy d(E’,0,Z) = d(E', K —
(1/4)E,X) = d(E', K, X) + (1/4) multg E. For instance, Ly is a simple Du Val singularity, and for E'/L,
on its minimal resolution, d(£’,0,Z) = d(E', K, X) + (1/4) multz: E = 04 (1/4)(1/2) = 1/8. But if L3 is a
simple singularity, i.e., a divisor E'/L3 is unique on a minimal resolution, then d(E’,0,2) = d(E', K, X) +
(1/4) multzr E = —1/3 + (1/4)(1/3) = —1/4. In this case, P is not canonical. Otherwise, Ls is a Du
Val singularity of type A;. The same works for other singularities L; when d < 1; they are Du Val also.
Otherwise, they have a discrepancy <0. This can be verified by induction on the number of divisors on a
minimal resolution. But then on a minimal resolution g: Y — X,

~4/42=(E.L)= (¢*E.g"'L) = (¢"'E.g"'L) + (mult E.L)
=T+ (1/2)+(2/3)+2x (6/7) =1+ 3 —5/42,
where I = (g71E.g7'L) is an integer. This is iﬁpossible. We can treat the other cases similarly.

7.9. Proposition-Definition. Let (X, B) be a log terminal pair. Then we can define a simplicial space
R(X, B):
e its [-simplex is an irreducible component A, in an intersection of ! + 1 distinct irreducible components
D;,,... Dy,
A CDiN---NDy;
o Ay isaface of Ayif Ay D Ay; and
e the intersection of two simplices A; and Ay consists of a finite set of simplices A;» such that

Ap D AU Ap.

The simplices A; give a triangulation of R(X, B) or a simplicial complex if and only if we have real global
normal crossings in the generic points: all the intersections D;, N ---N D;, are irreducible. The latter can be
obtained for an appropriate log terminal resolution (S'/S, B').

If (X, B) has a log terminal resolution (Y/X, By), then the topological type of R(Y, By) is independent
of such a resolution. Therefore, it is denoted by R(X, B). The topology of R(X, B) reflects the complexity
of log singularities for (X, B) and, in particular, of LCS(X, B) = | B| when (X, B) is log terminal.

We set reg(X, B) = dimR(X, B).

When X/Z is a contraction, we assume that the components A; are irreducible formally or in the analytic
topology on Z, i.e., we consider irreducible branches over a neighborhood of P € Z.

Proof. According to Hironaka, it is sufficient to verify that a monoidal transform in A; C X gives a barycen-
tric triangulation of A; in R(X, B).
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7.10. Example. If (S, B) is a surface singularity, then R(S, B) is a graph of LCS(S’, B’) for a log terminal
resolution (S’, B") — (S, B).

Moreover, R(S, B) is homeomorphic to a circle S, to a segment [0, 1], to a point, or to an empty set
when (S, B) is log canonical. Additionally, the case S* is only possible when B = 0 near the singularity and
it is elliptic with a wheel of rational curves for a minimal resolution.

Now let (S/Z, B) be an r-complement. Then

e reg(S, B) = 11if (S/Z, B) has type A?, or D7,

o reg(S, B) = 0 when (S/Z, B) has type Er?, with (2 >)m+n > 1, and

e reg(S, B) = —oo when (S/Z, B) has type Er}, with m +n = 0, i.e., when K + B is Kawamata log
terminal.

If (S,B) = (P?,L), where L = 5_ L; with n lines L; in a generic position, then R(P?, L) is a complete
graph with n points. Therefore, it is a manifold with a boundary only when n < 3 or —(K + L) is nef.

We have something similar in dimension three.

7.11. Proposition-Definition. Let (X/Z, B) be an n-fold contraction. Then the space R(X, B) has the
property

(DIM) R(X, B) is a compact topological space of real dimension reg(X,B) <n—1=dimX — 1.

We now suppose that
o —(K + B) is nef/Z and
e (X, B) is log canonical.
Then locally/Z

(CN) R(X, B) is connected when —(K + B) is big/Z or consists of two points for n < 3; moreover, the

latter is possible only if dim Z < dim X — 1 = 2 and there exists a (birationally unique) conic bundle

structure on X/Z with two reduced disjoint sections D; and D in B’ for a log terminal resolution

(X', B') = (X, B); R(X, B) = {Dy, Da};

(MB) R(X, B) is a manifold with a boundary; in addition, it is a manifold when (X, B) is a 1-complement

and B is over a given point P € Z.

In particular, with each birational contraction (X/Z, B), or a singularity when X — Z is an isomorphism,
we associate a connected manifold R(X, B) locally over a point P € Z, which is called a type of (X/Z, B).
The regularity reg(X, B) characterizes its topological difficulty.

If (X/Z,B) is an n-complement that is not Kawamata log terminal over P as in Theorem 7.1, then
R(X,B) # 0 and reg(X,B) > 0. If (X/Z,B) is an arbitrary log canonical singularity, we associate a
topological manifold of the maximal dimension (and maximal for inclusions) for some complements R(X, B*)
with it, and its complete regularity is reg(X, B*).

Proof. By the very definition, (DIM) holds in any dimension.

For n = threefolds, (CN) follows from the LMMP and proofs of Connectedness Lemma 5.7 and Theo-
rem 6.9 in [23]. The connectedness when —(K + B) is big/Z was proved in Theorem 17.4 in [16].

Near each point A¢ = D;,, (MB) is a local question on R(X, B). That R(Y, By) satisfies (MB), however,
is a global question on Y = D;;. More precisely, a neighborhood of A is a cone over R(Y, By). But we can
assume (MB) for R(Y, By) by the adjunction and an induction on dim X.

7.12. Corollary. Under the assumptions of Theorem 7.1, let (X/Z, Bt) be an n-complement with the min-
imal index n. Then
o reg(X,B*) = 2, and R(X,B™) is a real compact surface with a boundary only when n = 1 or 2;
R(X, B*) is closed only for n = 1;
o reg(X,B*) =1, and R(X, BY) is a real curve with a boundary only whenn =1,2,3,4 or 6; and
o reg(X,B*) = 0, and R(X, B*) is a point only when n € Np; such complements and contractions are
exceptional.
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Proof. The proof follows from the proof of Theorem 7.1.

A topology of log singularities can be quite difficult when reg(X, B*) = 2. Below, by a real surface, we
mean a connected compact manifold with a boundary of dimension two. It is closed when the boundary is
empty.

7.13. Example. For any closed real surface S, there exists a threefold 1-complement (X, B) such that
R(X, B) is homeomorphic to S.

First, we take a triangulation {A;} of S.

Second, we immerse its dual into P® such that each point A is represented by a plane L; in a generic
position.

Third, we make a blowup in such intersections L; N L; that does not correspond to a segment A; =
L; N L;. We then obtain an algebraic surface B = ) L; such that K + B is log terminal and R(X, B) is
the triangulation. Therefore, R(X, B) is homeomorphic to S. Moreover, K + B is numerically trivial on the
one-dimensional skeleton or on each curve C;; = A; = L; N L; because we have exactly two triple-points on
each A; or each A; belongs to exactly two simplices of the triangulation.

Fourth, we contract all C; ; and something else from B and X to a point that gives the required singularity.
Indeed, after the LMMP for K + B, we can use the semiampleness of K + B when it has a general type.
We note that the birational contractions or flips do not touch Cj;. This can be verified on each L; by the
adjunction. For the same reason, we have no surface contraction on L; or flips intersecting B but not in B.
However, terminal singularities and flips are possible outside B or inside B, which preserves our assumptions
on B. To secure the big property for K + B, we can similarly add B’ on which K + B is big. Then K + B has
the log Kodaira dimension three when B’ has more than two connected components; otherwise (K + B+ B')|p
is not big on some of the components.

The same holds for 2-complements with an arbitrary real nonclosed surface S with a boundary. We do
not need to contract birationally some L; and replace them with (1/2)D for generic D € |2L;|. This can be
done by the above combinatorics when (K + B + B')y, is big.

7.14. Corollary. Let P € (X, B) be a log canonical singularity such that

o X is Q-factorial, and even formally or locally in the analytic topology of X, when there exists a non-
normal curve in P as a center of log canonical discrepancy 0 for K + B;
e {B}#0in P, i.e., B has a fractional component through P; and
o K+ |B| is purely log terminal near P.
Then R(X, B) has type B", where B" is a ball of dimension r =reg(X, B).
Moreover, we can drop the conditions when r < 0, or we can drop the first condition when

e B has a fractional R-Cartier component F, i.e., 0 < F < {B}.

Proof. According to our assumptions, K + | B| is purely log terminal in P. Then X is the only log minimal
model of (X, |B]) over X (1.5.7 in [23]).

We now take a log terminal resolution (Y/X, By) and formally consider the LMMP/X for |By|. Ac-
cording to the above, the final model is (X, | B]) with reg(X, |B]) < 1 and has a trivial homotopy type. On
the other hand, R(X, B) = R(Y, By). Therefore, it is sufficient to verify that contractions and flips preserve
the homotopy type. If the centers of the flip or contraction are not in LCS(X, B) = | By |, then we even have
a homeomorphism. If we have a divisorial contraction of a divisor D; in | By |, it induces a fiber contraction
D; - Z/X. If Z is a curve/ P, then, according to our conditions, it is a curve on another component D; in
| By ] because any contraction of Y/X is divisorial. We note that each exceptional divisor of ¥/X belongs
to | By| and R(Y, By) is a gluing of a cone with the vertex Ag = D; over R(D;, Bp,) and in the latter. It is
homotopy to B™! because —(Ky + | By ]) is nef/X on all double curves A; = D; N D;. The surgery drops
this cone. We have a similar picture when Z = pt. or Z is not over P. In the latter case, Z has at most one
curve/ P formally. (If nonformally, algebraically, then it has at most two double curves/ P, which, in addition,
are connected, by our assumptions.) Finally, let Y— — Y*/X be a flip in a curve C;; = A; = D; N D;/P.
Then, according to our assumptions, we have a flip on a third surface Dy, in By with (Dy.C;;) =1onY.
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The surgery deletes the segment A; = C;; and the interior of the triangle A, = D; N D; N Dy. Formally, it
looks like a blowup in A; that is the barycentric triangulation in A;, and we then “contract” the resolution
divisor on a curve on Dj.

If r =1, we can also assume that at the start, { B} = —(Ky + |By])/Z is nef Z (Theorem 5.2 in [24)).
Indeed, we can consider the LMMP for By + e{B}. Because —(Ky + | By]) is big/Z, we have a birational
contraction Y — Z/X; it contracts all surfaces to a curve C by Theorem 6.7. Then any fractional component
of B is positive on C, which contradicts our assumption, because Z/X is small.

If B has the fractional component F, we can apply an induction on the number of irreducible curves
Ci/P on a formal Q-factorialization X'/X. Indeed, if X’/X blows up one such curve C;, it is irreducible
rational and has at most two points in which K + B is not log terminal. Therefore, we glue at most two balls
B" in B"~!. We note that F passes through C; on X’. Finally, we have no such curves when X is formally
Q-factorial in P. This drops the first condition.

In general, we can verify that for 7 = 2, the formal Weil-Picard number in P is not less than ¢ =
R (R(X, B),R) = 2—x(R(X, B)) (the topological genus), where ¥ is the topological Euler characteristic. We
can consider g the genus of the singularity P.

7.15. Corollary. Under the assumptions of Theorem 7.1, let (X/Z, B*) be an n-complement with the min-
imal indez n and P be Q-factorial, formally, when there exists a nonnormal curve in P as a center of log
canonical discrepancy 0 for K + |B*| and purely log terminal K + B. Then R(X, B) has type B" with
r =reg(X, B) or S2. The latter is only possible for n = 1. ’

If P is an isolated singularity, we can drop the formal condition for an appropriate complement with
n > 2. For n =1, we can take a 2-complement as in the proof below. For n > 3, we can even drop the
Q-factorial property.
Proof. We only need to consider the case with n = 1. Then we have a reduced component D through P
in B*. If we replace D by a generic (1/2)D’, where D’ € |2D| is rather generic, we obtain a 2-complement
B’ with R(X, B’) homeomorphic to B?. Then R(X, B*) can be obtained from this by gluing a cone over
R(D, Bp). The latter is [0,1] or S'. That gives respectively B? or S2.
In the investigation of the m.1.d.’s for threefolds, we can assume that the point P in (X, B) is
(T2) Q-factorial (even formally) and terminal in codimensions one and two.
Otherwise, after a crepant resolution, we can reduce the problem to (T2) or to dimension two or one.
7.16. Corollary. The conjecture on discrepancies (Conjecture 4.2 in [24]) holds for threefold log singularities
(X, B) with b; € T' under (M)" and (T2), when reg(X, B*) < 1. Moreover, in such a case, the only clusters
of AT, 3) are
(0) 0, when reg(X, B*) =0, i.e., in the exceptional cases;
(1) 0 and
AT, 2)
whenreg(X, B*) =1, where I" = {0,1/2,2/3,3/4,4/5,5/6} and where we consider only two-dimensional
singularities (S, BY) with the boundary multiplicities in T' and reg(S, B*) = 0, i.e., the exceptional case.
The cluster points are rational, our A(T',3) is closed when 1 € T, and the only cluster of the clusters is 0.

Sketch of Proof. We note that I' satisfies (M)” but may not be the d.c.c. In particular, I' may not be
standard. If reg(X, B) =0, then by Corollary 7.3, we have a finite subset

{a€ A(I",3) |a >¢}

of the corresponding A(T, 3) for any € > 0. Of course, the corollary was proved for the standard T', but in our
case, all b; < (I — 1)/1, where | = max{r € N,}, according to Corollary 2.26 and because of reg(X, B*) = 0.
Therefore, such b; is standard because of (M)”.

If reg(X, B) = 1, we can use the arguments in [26] and Theorem 6.7. The latter almost reduces our
case to the two-dimensional situation. “Almost” means except for the edge components in the chain of the
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reduced part S of B* as in the proof of Theorem 7.1 (cf. the proof of Corollary 7.14). The clusters can be
realized as m.1.d.’s for (X, B) with the reduced part S = | B| and the fractional multiplicities in I".

Therefore, to complete the conjecture on discrepancies for threefolds, the singularities with 2-complements
of type B? by Corollary 7.15 must be considered. This case is related to 1- or 2-complements. The former are
closed to toric complements, where the conjecture was verified by Borisov [4]. We also see that reg(X, BT)
conjecturally may have interpretations in terms of clusters: the first cluster of A(T',n) with r = reg(X, B*)
is A(T',n — 1) with reg(X, Bt) = r — 1; in particular, it is rational when T is standard.

7.17. Remark. We expect that most of the results in this section hold in any dimension and for any
regularity r = reg(X, B) or reg(X, BY).
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