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ON THE CLOSED CONE OF CURVES
OF ALGEBRAIC 3-FOLDS

UDC 512.7

V. V. SHOKUROV

ABSTRACT. In this paper the author establishes, under natural conditions, the local poly-
hedrality of the closed cone of curves of a three-dimensional algebraic variety in the part
that is negative with respect to the canonical class. In particular, it is shown that there
always exists an extremal ray giving a contraction. The results can be used in three-dimen-
sional birational geometry.

Bibliography: 10 titles.

X denotes throughout a normal projective 3-fold defined over an algebraically closed

field k of characteristic 0. We recall the terminology of Mori [4] and Kawamata [3]. There

are two real vector spaces associated with the variety X,

N(X) = ({1-cycleson X}/=) ® R

and

N(X)° = ({Cartier divisors on X }/=) ® R,

where Ξ denotes numerical equivalences; the intersection pairing

{•):N(X)° X N{X) - R

is nondegenerate by definition of s . On N(X) and N(X)° we fix a Euclidean norm || ||.

This defines the closed cone of curves NE(X) c N(X), which is the closure with respect to

|| || of the cone NE(X) of effective 1-cycles on X. This cone is obviously independent of

the choice of || ||.

Κx denotes the canonical Weil divisor of X [5]. By definition &Rcg(X)(K x) = Ω ^ ( Υ ) ,

where Reg( X) = X - Sing( X) is the set of nonsingular points of X.

By a Q-Cartier divisor we mean a linear combination of Cartier divisors with rational

coefficients. We suppose furthermore that X is Q-factorial. This means that every Weil

divisor D on X is a rational multiple of a Cartier divisor; that is, there exists an integer η

such that nD is a Cartier divisor on X. On such a variety each Weil divisor D corresponds

to a Q-Cartier divisor, and has a numerical class (/)) e N(X)°. In particular, we can take

the intersection of Weil divisors with 1-cycles. The Weil divisor Κχ defines a Q-Cartier
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divisor which we continue to denote by Kx. We recall that X is said to have canonical

singularities (respectively terminal singularities) if for some resolution h: X' —> X,

ΚΧ. = Η*ΚΧ+Σ<Ά,
where the Ei are the exceptional divisors of h, and all the at are ;> 0 (respectively > 0). It

is easy to check that this definition is independent of the resolution h. We assume from

now on that A' is a variety with canonical singularities.

We let ~NE{Xy denote the cone { Z e M(X)\Z • Κχ_< 0}.

By an extremal ray of NE(X)~ we mean a ray R c NE( X)~ such that

(i) If Z l 5 Z 2 e ~NE(X) and Zx + Z 2 e R, then Zv Z2 e R.

A ray R is said to be locally polyhedral if there exists a divisor D e Λ^Χ) 0 and a finite

collection of curves C1,...,Cr on X such that ~NE(X) = NE(X, D) + + E[R+(C,) and

D • Ζ < 0 for all Ζ <Ξ Λ - {0}; here JV£(Ar, D) + = ( Z e JV£(AT)|£) · Ζ ^ 0}. In this

case the ray R satisfies Mori's conditions, namely

(ii) R is rational; that is, R = R+(CR) for some curve CR c X.

(iii) R± = {D e Λ^Χ)0]/) · R = 0} contains an open subset of numerically effective

divisors D e # ( X ) ° for which Dx η JV£(Ar) = Λ.

To a locally polyhedral extremal ray R c NE(X)~ we can apply Kawamata's technique

[3], and so R determines a morphism cont^: X —* Υ contracting the extremal ray R.

(Kawamata's preprint in fact assumes that X has terminal singularities, but this condition

is not used in an essential way in his proof; see [7].)

We say that R is a ray of type (a) (respectively of type (b)) if R is a locally polyhedral

extremal ray of NE(X)~ such that the morphism contR: X -* Υ is birational and

contracts a surface £ of I (respectively contracts only a finite seet of curves of X).

Compare [3], Theorem 4.

MAIN THEOREM. Let X be a projective normal Q-factorial 3-fold with canonical singulari-

ties, and suppose that any compact subset of the cone NE(X)~ has at most a finite number of

extremal rays of type (b). Then NE(X) is locally polyhedral in NE(X)~; that is, for any

ample divisor A and any ε > 0 there exists a finite set of curves Cx,...,Cr such that

NE(X) = ΝΕε(Χ,Α)+ Σ R
< = i

where ΝΈ{(Χ, A) = {Z e NE(X)\((KX + ε A) • Ζ) ^ 0}.

COROLLARY. If KX is not numerically effective, then NE(X)~ always contains a locally

polyhedral extremal ray R.

This result was proved independently (but later) by Reid [7], using a closely related

method.*

§2. The main lemma

2.1. LEMMA. Let X be a projective normal Q-factorial 3-fold with canonical singularities,

let A be an ample Cartier divisor, and suppose that for some a e R, D e (A + aK) is a

numerically effective divisor such that

(i) the face of~NE(X) given by R = D± C\ NE(X) satisfies R c JV£( Ar)~, and

(ii) either D3 > 0 or -D2KX > 0.

*Translmor's note. Much progress has been made on this problem in recent months; see [8], [9] and [10]. Both
the Contraction Theorem and the Theorem on the Cone are now known in all dimensions.
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Then either NE{X) is locally polyhedral in a neighborhood of R (that is, there exist a finite

set of curves Cl,..., Cr and an ε > 0 such that

(2.2)
/=!

where NEc(X, D) = {Z e NE(X)\(D + εΚχ • Ζ) > 0}), or there exists a morphism φ:

X —> Υ making X into a conic fibration, such that (C) e R for a general fiber C = <p~l(y).

PROOF. Let a = m/n - δ, where m and η are positive integers and 0 < δ < \/η. Then

D = A + (m/n)Kx- 8KX.

From (i), the divisor Dm/n = A + (m/n)Kx is numerically negative on R. By virtue of the

proof of Theorem 1 in [3], in order to establish the decomposition (2.2) it is enough to

check that, for some integer Ν > 0,

\NDm/n\*0. (2.4)

We will prove this using Riemann-Roch and vanishing; consider a resolution h: X' -» X

which is the standard resolution along the curves of canonical singularities, and is

otherwise arbitrary. Then the exceptional divisors £, which map to curves of X have

discrepancy a, = 0. We also assume that all exceptional divisors of h are nonsingular and

interest transversally. Set

mKx.+ Σ{™-\)α,Ε\ =mKx.- Σ [(« - l)fl,.] £,·,

where [ ] denotes the integral part of a number or a divisor. For η » 0 the divisor

D — (1/n — 8)Kx = A + ((m — \)/n)Kx will satisfy the hypothesis of the Kawamata-

Viehweg vanishing theorem [1], except in the case £>3 = 0 and δ = 1/n. However, in this

case, by (ii), D is a Q-Cartier divisor with D3 = 0 and -D2KX > 0; then D defines a conic

fibration q>\NDy X -* Y. This is proved in [2] and [3] assuming terminal singularities, and

in general using Kawamata's technique in [6] and [7]. The general fiber C = tp~l(y)

obviously has class (C) e R (by the definition of R; see (i)). In this case we have one of

the conclusions of the lemma, so that from now on we can assume that it does not occur.

Then, by Kawamata-Viehweg vanishing,

h'(x\ 0x,(nh*A + h{mKx))) = h'{X', 0x,(-[-nh*A -{m - \)h*Kx] + Κx.)) = 0

for all / > 0. Hence

h°(X', Ox\nh*A + h{mKx))) = x(Vx.(nh*A = hmKx)) = R-R expression.

Now note that

h{mKx) = mKx, - £ ( m - l)aJEJ.- £ { ( m - 1 )*,.£,.}

= mh*Kx+ Z{aj-{(m-\)aj})Ej. (2.5)

Hence

nh*A + h{mKx) = h*(nA + mK x)
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where bf = 0(1) as η » 0. By (2.3), nA = mKx = nD + δηΚ ν. Writing down only the

cubic and quadratic terms in the Riemann-Roch formula, and using the fact that \8n\ < 1.

we get

h°(X\ Gx{nh*A = h{mKx))) = i(nD + δηΚ xf

-\{h*(nD + δηΚχ))2Κχ, + ••· , ( 2 . 6 )

where the dots denote terms bounded by a linear function of n. We now prove that the

right-hand side of (2.6) is strictly positive if η » 0. If Z)3 > 0 this is obvious. Suppose

then that Z)3 = 0 and -D2KX > 0. If α is rational, we have seen above that D defines a

conic fibration of X, and since we are assuming that X is not a conic fibration, a is

irrational. Then letting m/n be a continued fraction approximation of a, we can assume

that δη <; \/n, and then for η :» 0 we get

h°(X\ex,{nh*A +h(mKx))) = -\n2D2Kx+ · · · > 0,

with the dots as before. Thus \nh*A + Jt(mK x)\ Φ 0 for suitable η s> 0, and using (2.5)

we get the required nonemptiness assertion (2.4). •

§3. Proof of the main theorem

3.1. Choice of the curves C(. The cone NE(X)~ can have at most a finite set of extremal

rays of type (a) which "contract to a point", since the exceptional surfaces Ε correspond-

ing to these rays are disjoint in pairs, so that their classes in N(X)° are linearly

independent. We also have outside NEe(X, A) a finite set of extremal rays of type (a)

which "contract onto a curve", since there is a curve C in such rays with CKX = - 1 . So

first of all we assume that {C,} includes a finite set of curves C, giving the extremal rays

R +(C,) of type (a) outside JV£E( X, A).

We can also see that the cone {Z e NE(X)\(KX + ε A • Ζ) ^ 0} can have at most a

finite set of rays of the form R + (C) where C = φ " 1 ^ ) is the general fiber of a conic

fibration φ: X -> Υ. Indeed, then CKX = -2, so that, assuming (Kx + ε A • C) < 0, the

degree (A • C) < 2/ε is bounded, so that such curves belong to a bounded family. We

include in {C,} a finite set of curves which exhausts this set of rays.

By hypothesis, the half-cone { Z e NE(X)\(KX + εΑ • Ζ) < 0} has only a finite num-

ber of rays of type (b), and we add to {C,} the curves corresponding to these.

Now consider the cone

V= NEt{X,A)+ Σ R + (C,)c NE(X).

If V = NE(X) then the theorem is proved. Otherwise NE(X) contains a rational ray

Ζ = R + (C) <t V, and obviously (C · Κx) < 0.

Vz= ΝΕε{Χ,Α)+ Σ R + (C,) + Z c NE(X),
i = l

so that Ζ is an edge of Vz, and take a Cartier divisor D such that the hyperplane D±

passes through this edge, with D± C\VZ = Z. Corresponding to D we have an affine line

[D, Κx] c N(X)°, and this line contains a divisor Z^ such that Lf is a supporting

hyperplane of NE(X), with L1 numerically effective and positive on V; this Lx can be

written as a combination Lx = D + aKx, with a > 0. By construction the cone R = Lx Π

NE(X) is nonempty and is contained strictly inside the half-cone NE(X)~. Moreover, a

suitable small neighborhood of R does not contain any of the rays R+(C,X and the divisor
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mLl - Kx is ample for m » 0. It follows that L\ ^ 0. If L\ > 0 then it follows from the

main lemma that NE(X) is locally polyhedral in a neighborhood of R. Then Ll can be

taken to be Q-rational; but then R contains an extremal ray R' of type (a) or (b), which is

impossible by construction. Hence L\ = 0. Then -L\Kx 2; 0. If -L\KX > 0 then again

using the main lemma we see that either R contains a ray of the form R+(C) where

C = φ1(γ) is the general fiber of a conic fibration, which is impossible by construction,

or NE{X) is locally polyhedral in a neighborhood of R. In this final case we again get

either a ray of type (a) or (b), or a ray corresponding to a conic fibration, any of which are

impossible by construction. Hence -L\KX = 0.

3.2. We have thus arrived at the situation that L\ = L\KX = 0. Using Mori's argument

from [4], §6, we see that L\ = 0. If p(X) 3: 3 then there exists another L2 so that L2 is a

supporting hyperplane of NE(X) similar to L1 ? but L2 are not proportional. Again

L\ = 0. By the numerical effectivity of Lx and L2 we have LlL2 e NE(X). On the other

hand, L\L2 = LXL\ = 0, and hence LXL2 e Rx D R2. If i , n S 2 = 0, then LlL2 = 0,

sot hat by Mori's arguments it follows that L, and L2 are proportional, which is

impossible by assumption. If R1 η R2 Φ 0 then Ll + L2 again satisfies the same condi-

tions as Lx, and then (Ll 4- L2)
2 = 0. Hence LXL2 = 0, which again leads to a contradic-

tion.

3.3. Finally it remains to consider the case L\ = L\KX = 0 and p(X) = 2, the case

p(X) = 1 being trivial. Here the extremality condition is trivial, and according to the

results of [3] we need only the rationality of Lv Indeed, if L1 is rational, then by

Kawamata's results Lx is a supporting hyperplane for a ray R specifying a fibration of del

Pezzo surfaces. But as with the rays giving conic fibrations, there are only a finite number

of such rays outside NEe(X, A). Thus we could have added to {C,} the classes of curves C,

of general del Pezzo's surfaces in such fibrations having -((Γ,Λ^) ^ 9.

Thus Ly is an irrational divisor, so that we can assume that Lx = D + aKx with α

irrational, and D an ample Cartier divisor. The equations L\ = L\KX = 0 give polynomial

equations of degree «ξ 3 and 2 in a. Hence a is a quadratic irrationality. Let a' be the

conjugate irrationality, and L2 = D + a'Kx. Now L 2 must satisfy both the equations,

since they have rational coefficients. It is easy to check that the cycle L1L2 is rational. But

L\L2 = 0. Hence LXL2 = 0, since otherwise by irrationality of a we would have LlL1Kx

= 0; but if ZKX = ZLY = 0 then Ζ = 0. The relation LlL2 = 0 again leads to a

contradiction, since Lx and L2 are not proportional, so that D = $LY + yL2, and hence

D3 = (/8Z-! + yL2Y = 0. This contradiction completes the proof of the main theorem. •
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