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ON THE CLOSED CONE OF CURVES

OF ALGEBRAIC 3-FOLDS
uDC si2.7

V. V. SHOKUROV

ABSTRACT. In this paper the author establishes, under natural conditions, the local poly-
hedrality of the closed cone of curves of a three-dimensional algebraic variety in the part
that is negative with respect to the canonical class. In particular, it is shown that there
always exists an extremal ray giving a contraction. The results can be used in three-dimen-
sional birational geometry.

Bibliography: 10 titles.

X denotes throughout a normal projective 3-fold defined over an algebraically ciosed
field k of characteristic 0. We recall the terminology of Mori [4] and Kawamata [3]. There
are two real vector spaces associated with the variety X,

N(X)=({lcyclesonX}/=)®R
and

0

N(X) = ({Cartier divisorson X } /=) ® R,

where = denotes numerical equivalences; the intersection pairing
(-):N(X)"x N(X) >R

is nondegenerate by definition of = . On N(X) and N( X)" we fix a Euclidean norm || |.
This defines the closed cone of curves NE(X) € N(X), which is the closure with respect o
I || of the cone NE( X) of effective 1-cycles on X. This cone is obviously independent of
the choice of || ||.

Ky denotes the canonical Weil divisor of X [5]. By definition Og (K y) = Qf{cg( ¥)»
where Reg( X') = X — Sing( X) is the set of nonsingular points of X.

By a Q-Cartier divisor we mean a linear combination of Cartier divisors with rational
coefficients. We suppose furthermore that X is Q-facrorial. This means that every Weil
divisor D on X is a rational multiple of a Cartier divisor; that is, there exists an integer n
such that nD is a Cartier divisor on X. On such a variety each Weil divisor D corresponds
to a Q-Cartier divisor, and has a numerical class (D) € N(X)°. In particular, we can take
the intersection of Weil divisors with 1-cycles. The Weil divisor K, defines a Q-Cartier
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divisor which we continue to denote by K ,. We recall that X is said to have canonical
singularities (respectively terminal singularities) if for some resolution 4#: X’ — X,

Ky =h*K,+ Y a,E,
where the E, are the exceptional divisors of #, and all the a, are > O (respectively > 0). It
is easy to check that this definition is independent of the resolution 4. We assume from
now on that X is a variety with canonical singularities.

We let NE( X)~ denote the cone { Z € NE(X)|Z - K, < 0}.

By an extremal ray of NE(X)™ we mean aray R C NE(X)~ such that

W) IfZ,Z, e NE(X)and Z, + Z, € R, then Z,, Z, € R.

A ray R is said to be locally polyhedral if there exists a divisor D € N(X)? and a finite
collection of curves C,,...,C, on X such that NE(X)= NE(X, D)y "+ LR, (C) and
D-Z <0 for all Z€ R — {0}; here NE(X, D)'= {Z € NE(X)|D-Z > 0}. In this
case the ray R satisfies Mori’s conditions, namely

(ii) R is rational; that is, R = R_(Cy) for some curve C, C X.

(iii) R*= {D € N(X)°|D - R = 0} contains an open subset of numerically effective
divisors D € N( X)° for which D* N NE(X) = R.

To a locally polyhedral extremal ray R € NE(X)~ we can apply Kawamata’s technique
[3], and so R determines a morphism contg,: X — Y contracting the extremal ray R.
(Kawamata’s preprint in fact assumes that X has terminal singularities, but this condition
is not used in an essential way in his proof; see [7].)

We say that R is a ray of type (a) (respectively of type (b)) if R is a locally polyhedral
extremal ray of ]TE(X )~ such that the morphism cont,: X — Y is birational and
contracts a surface £ of X (respectively contracts only a finite seet of curves of X).
Compare [3], Theorem 4.

MAIN THEOREM. Let X be a projective normal Q-factorial 3-fold with canonical singulari-
ties, and suppose that any compact subset of the cone NE(X)™ has at most a finite number of
extremal rays of type (b). Then NE(X) is locally polyhedral in NE(X)™; that is, for any
ample divisor A and any & > 0 there exists a finite set of curves C,,. .., C, such that

NE(X) = NE,(X. )+ ¥ R.(C),

where NE (X, A) = {Z € NE(X)((K y + £4) - Z) > 0}.

COROLLARY. If K is not numerically effective, then NE(X)™ always contains a locally
polyhedral extremal ray R.

This result was proved independently (but later) by Reid (7], using a closely related

method.*
§2. The main lemma

2.1. LEMMA. Let X be a projective normal Q-factorial 3-fold with canonical singularities,
let A be an ample Cartier divisor, and suppose that for some « € R, D € (A + aK) is a
numerically effective divisor such that

(i) the face of NE(X) given by R = D* " NE(X) satisfies R € NE(X)~, and

(ii) either D3 > 0 or -D?K ,, > 0.

*Translator’s note. Much progress has been made on this problem in recent months: see {8], [9] and [10]. Both
the Contraction Theorem and the Theorem on the Cone are now known in all dimensions.
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Then either NE( X) is locally polyhedral in a neighborhood of R (that is, there exist a finite
set of curves C,,...,C,and an € > 0 such that

NE(X)=NE/(X,D)+ ¥ R.(C), (2.2)
i=1
where NEE( X,D)y={(Ze W(X)I(D + &K, - Z)> 0}), or there exists a morphism @:
X — Y making X into a conic fibration, such that (C) € R for a general fiber C = ¢™'( y).

PrROOF. Let a = m/n — §, where m and n are positive integers and 0 < § < 1/n. Then
D=A4+(m/n)K, — 8K,.

From (i), the divisor D, ,, = 4 + (m/n)K y is numerically negative on R. By virtue of the
proof of Theorem 1 in [3], in order to establish the decomposition (2.2} it is enough to

check that, for some integer N > 0,

IND,, .| + 2. (2.4)

We will prove this using Riemann-Roch and vanishing; consider a resolution 4: X’ —» X
which is the standard resolution along the curves of canonical singularities, and is
otherwise arbitrary. Then the exceptional divisors E, which map to curves of X have
discrepancy a, = 0. We also assume that all exceptional divisors of h are nonsingular and
interest transversally. Set

h(mK,) = ~[—me, + Y (m- 1)a,.El] =mKy — Y [(m—1)a]E,

where [ ] denotes the integral part of a number or a divisor. For n > 0 the divisor
D—-Q1/n—-8)K,y=A4+ ((m~—1)/n)K, will satisfy the hypothesis of the Kawamata-
Viehweg vanishing theorem [1], except in the case D* = 0 and 8§ = 1/n. However, in this
case, by (ii), D is a Q-Cartier divisor with D* = 0 and -D 2K, > 0; then D defines a conic
fibration @ yp;: X — Y. This is proved in [2] and [3] assuming terminal singularities, and
in general using Kawamata’s technique in [6] and [7). The general fiber C = ¢ !(y)
obviously has class (C) € R (by the definition of R; see (1)). In this case we have one of
the conclusions of the lemma, so that from now on we can assume that it does not occur.
Then, by Kawamata-Viehweg vanishing,

R( X', Ox(nh*4 + h(mK))) = K( X', Oy (~[-nh*4 —(m ~ 1)R*K ] + K,.)) = 0
for all 7/ > 0. Hence
RO( X', Oy (nh*4A + h(mK ))) = x(Oy.(nh*4 = hmK )) = R-R expression.

Now note that

h(mKy)=mKy — Y (m—1)a,E, — Y {(m—1)a,E,}

mh*Ky+ Y (a, = {(m - 1)a,})E,. (2.5)

n

Hence

nh*A + h(mK ) = h*(nd + mK ) + Zb/EJ,
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where b, = O(1) as n > 0. By (2.3), n4 = mK, = nD + §nK . Writing down only the
cubic and quadratic terms in the Riemann-Roch formula, and using the fact that |8x] < 1.
we get

hO( X', 0(nh*4 = h(mK ))) = L(nD + 8nK )’

—)—,(h*(nD+8nKX))2KX,+ (2.6)
where the dots denote terms bounded by a linear function of n. We now prove that the
right-hand side of (2.6) is strictly positive if n > 0. If D* > 0 this is obvious. Suppose
then that D? = 0 and -D?K, > 0. If « is rational, we have seen above that D defines a
conic fibration of X, and since we are assuming that X is not a conic fibration, « is
irrational. Then letting m/n be a continued fraction approximation of a, we can assume
that 8n < 1/n, and then for n > 0 we get

hO( X', 0y (nh*4 + h(mK ))) = ~1n’D2Ky+ - >0,
with the dots as before. Thus |rh*A4 + Z(mKX)I # & for suitable n > 0, and using (2.5)
we get the required nonemptiness assertion (2.4). B
§3. Proof of the main theorem

3.1. Choice of the curves C,. The cone NE(X)~ can have at most a finite set of extremal
rays of type (a) which “contract to a point”, since the exceptional surfaces £ correspond-
ing to these rays are disjoint in pairs, so that their classes in N(X)° are linearly
independent. We also have outside NEF( X, A) a finite set of extremal rays of type (a)
which “contract onto a curve”, since there is a curve C in such rays with CK, = -1. So
first of all we assume that {C,} includes a finite set of curves C, giving the extremal rays
R (C) of type (a) outside We( X, A).

We can also see that the cone {Z € W(X)KKX + &4 - Z) = 0} can have at most a
finite set of rays of the form R_(C) where C = ¢7!(y) is the general fiber of a conic
fibration ¢: X — Y. Indeed, then CK, = -2, so that, assuming (K, + ¢4 - C) <0, the
degree (A - C) < 2 /¢ is bounded, so that such curves belong to a bounded family. We
include in {C,} a finite set of curves which exhausts this set of rays.

By hypothesis, the half-cone {Z € N_E(X)|(KX + €4 - Z) < 0} has only a finite num-
ber of rays of type (b), and we add to { C;} the curves corresponding to these.

Now consider the cone

V= NE,/(X,4)+ ¥ R,(C)c NE(X).
i=1
If ¥V = NE(X) then the theorem is proved. Otherwise NE(X ) contains a rational ray
Z =R (C)« V,and obviously (C - K,) < 0.

V,= NE,(X,A)+ Y R, (C)+Zc NE(X),
i=1
so that Z is an edge of V,, and take a Cartier divisor D such that the hyperplane D+
passes through this edge, with D* NV, = Z. Corresponding to D we have an affine line
[D. K,] < N(X)° and this line contains a divisor L, such that Lj is a supporting
hyperplane of NE(X ), with L, numerically effective and positive on V; this L, can be
written as a combination L; = D + aK y, with a > 0. By construction the cone R = L{ N
NE(X) is nonempty and is contained strictly inside the half-cone NE(X)~. Moreover, a
suitable small neighborhood of R does not contain any of the rays R ,(C,), and the divisor
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mL, — K , is ample for m > 0. It follows that L} > 0. If L} > 0 then it follows from the
main lemma that NE(X) is locally polyhedral in a neighborhood of R. Then L, can be
taken to be Q-rational; but then R contains an extremal ray R’ of type (a) or (b), which is
impossible by construction. Hence L3 = 0. Then -LiK, > 0. If -L2K, > 0 then again
using the main lemma we see that either R contains a ray of the form R,(C) where
C = ¢ !(y) is the general fiber of a conic fibration, which is impossible by construction,
or NE(X) is locally polyhedral in a neighborhood of R. In this final case we again get
either a ray of type (a) or (b), or a ray corresponding to a conic fibration, any of which are
impossible by construction. Hence -L1K , = 0.

3.2. We have thus arrived at the situation that L} = L2K , = 0. Using Mori’s argument
from [4], §6, we see that L{ = 0. If p(X) > 3 then there exists another L, so that L} is a
supporting hyperplane of NE(X) similar to L,, but L, are not proportional. Again
L% = 0. By the numerical effectivity of L, and L, we have L,L, € NE(X). On the other
hand, L}L, = L,L3 =0, and hence L,L, € R, " R,. If Ry R, =0, then L,L, =0,
sot hat by Mori’s arguments it follows that L, and L, are proportional, which is
impossible by assumption. If R, N R, # 0 then L, + L, again satisfies the same condi-
tions as L,, and then (L, + L,)* = 0. Hence L, L, = 0, which again leads to a contradic-
tion.

3.3. Finally it remains to consider the case L3 = L?K, = 0 and p(X) = 2, the case
p(X) =1 being trivial. Here the extremality condition is trivial, and according to the
results of [3] we need only the rationality of L,. Indeed, if L, is rational, then by
Kawamata’s results L is a supporting hyperplane for a ray R specifying a fibration of del
Pezzo surfaces. But as with the rays giving conic fibrations, there are only a finite number
of such rays outside ]_st( X, A). Thus we could have added to { C,} the classes of curves C,
of general del Pezzo’s surfaces in such fibrations having —(C,K ) < 9.

Thus L, is an irrational divisor, so that we can assume that L, = D + aK, with «
irrational, and D an ample Cartier divisor. The equations L} = LK, = 0 give polynomial
equations of degree < 3 and 2 in «. Hence « is a quadratic irrationality. Let o’ be the
conjugate irrationality, and L, = D + o’Ky. Now L, must satisfy both the equations,
since they have rational coefficients. It is easy to check that the cycle L, L, is rational. But
LiL, = 0. Hence L,L, = 0, since otherwise by irrationality of « we would have L,L,K ,
=0; but if ZK,=ZL, =0 then Z =0. The relation L, L, =0 again leads to a
contradiction, since L, and L, are not proportional, so that D = 8L, + yL,, and hence
D? = (BL, + yL,)* = 0. This contradiction completes the proof of the main theorem.
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