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THE NOETHER-ENRIQUES THEOREM ON CANONICAL CURVES
UDC 513.015.7

V.V.SOKUROV

Abstract. The principal result of the present work consists in the proof that
an intersection of quadrics passing through a canonical curve is a reduced variety.
The possible cases when the intersection of quadrics does not coincide with the
curve itself are also examined in this article.

Figures: 1. Bibliography: 8 references.

Max Noether considered in [7] the space Φ ( ζ · Φ " of functions of the form

ω/ω0, where the ω are regular differentials of some curve X and a>0 is a fixed reg-

ular differential; Φ is the space of z-forms of functions from the space Φ with

coefficients in a ground field k. Noether showed that the dimension of the space of

relations of degree i for functions in Φ is equal to

in the nonhyperelliptic case and equal to

in the hyperelliptic case, where g = dim Φ is the genus of the curve X.

Enriques looked at Noether's result from a geometrical point of view (see [6] for

Enriques' results). We shall consider a curve C, the image of X under a canonical

transformation. It is well known that C is isomorphic to \ in the nonhyperelliptic

case. We will assume in what follows that X is not hyperelliptic. A relation of

degree i between regular differentials corresponds to a form of degree i passing

through C. Enriques proved that the number of linearly independent quadrics passing

through C is equal to {g - 2) (g - 3)/2. This corresponds to Noether's result on the

number of independent relations of the second degree for regular differentials.

Enriques then looked at the intersection of the quadrics through C, and showed that

in it will be found only the points of C, or a surface of degree g - 2.
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362 V. V. SOKUROV

In the present article, the results of Noether and Enriques will be examined in

connection with the theory of schemes. The principal portion of the article is devoted

to proving that the intersection of the quadrics through C is a reduced scheme. It

coincides with C, or is an irreducible surface.

The author is grateful to A. N. Tjurin for the use of an unpublished manuscript,

and also to Ju. I. Manin for posing the problem.

§0. Formulation of the problem and some basic results

Let k be some field; all our varieties and schemes will be defined over k. Let

us denote by X a complete nonsingular curve of genus g > 3. The curve will be

assumed nonhyperelliptic. Then it is well known that we have a canonical immersion

where Ω-̂  denotes the sheaf of regular differentials of X over k. Let C = κ(Χ). To

avoid the inhibiting effect of too complicated a notation, we will put P 8 ~ =

Proj (S(H (Χ, Ω^))). The basic properties of the canonical immersion will be recalled

at the start of §2.

Let us denote by Q the closed subscheme of the space P g ~ whose ideal is

generated by the forms of degree 2 in the ideal of the curve C. It is the purpose of

this article to study the basic properties of the scheme Q. The principal results

are contained in the following theorems.

Theorem 1. a. Q is a protective variety; that is, Q is a reduced irreducible

closed subscheme of P g ~ .

b. The dimension of Q is either 1 or 2.

C //dim Q = 1, then Q = C.

d. If dim Q = 2 and g ^ 4, then Q is a smooth surface of degree g — 2. In this

situation, only the following possibilities can arise.

1. Q — Ρ t in which case we have the following exact description of the

immersion of Ρ in P g ~ and of the location of C on Ρ . Let us denote by OQ{1)

the restriction of the sheaf 0 p g _ 1 (l) to Q. Then P8'1 = Q and 0Q{C) = O p 2 (4)

for g - 3; O Q ( 1 ) = 0 i{2) and 0Q{C) = Op2(5) for g = 6; in other words, in this case

the curve C lying on Ρ — Q will be a curve of degree 5, and Q is a Veronese

image of this plan. If g ^ 3, or 6, then Q ψ- Ρ ·

2. Q ~ F ,(l) and the following relation holds:

,g—4J; η = g (mod 2).

As in the previous case, the immersion of F in P g ~ and the locus of C in the

divisor class group of the surface F admits an exact description:

( ^ h
§6 of this article).

definition and elementary properties of F can be found in [l] and [2] (see also
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0Q (C) = 0Q (C) ® QJ1 = 0fn

e. // g - 4y i k n either Q is the surface FQ, immersed in the same way as F

in case d2, or Q is a cone with a nonsingular base curve of degree 2.

Definition. Curves X for which dim Q = 2 will be called special.

Theorem 2. In order that the curve X be special, it is necessary and sufficient

that

a) for g > 7 or g = 5, there exists an effective divisor D of degree 3 such that

dim//°(X, 0 x (D)) = 2;

b) for g - 6, either there exists an effective divisor D of degree 3 for which

dim Η (X, 0x(D)) = 2, or there exists an effective divisor D of degree 5 for which

dimH°{X, 0 x (D)) = 3;

c) for g = 3, 4, every curve X is special.

Theorem 3. a. There exists a special curve of genus 6 for which Q is a Veronese

image of the plane Ρ .

b. // k is infinite and η satisfies the relation (1), then there exists a special

curve X of genus g such that Q — F .

We will assume throughout the sequel that g > 4. The proof of the theorems in

case g = 3 presents no difficulty. We will further assume that k is algebraically

closed. It is clear that the validity of Theorems 1 and 2, and of part a of Theorem 3,

is independent of this assumption. The proof of part b of Theorem 3 is given in §9.

Essentially it relies only on Bertini's theorem for hyperplanar sections, which holds

when k is infinite.

The following propositions lie at the foundation of the proof of Theorem 1.

Proposition 1. dim H 0 ( P g " l , /c(2)) = (g - 2) {g - 3)/2.

Proposition 2. Let Μ be a scheme given as the intersection of (g - 2) (g - 3)/2

independent quadrics in the space Ρ8 , which contains 2g — 2 isolated points

lying in general position. Then Μ d = M, and if # (M) > 2g - 2,(2) then Μ is a

reduced irreducible nonsingular curve of genus 0 and degree g — 2, generating P8~ .

The proof of Proposition 1 is dealt with in S"2, where the dimensions of the

spaces Ητ{Ρ8~ , Icin)) are actually calculated for all i and n.

§3 and 5 are devoted to the proof of Proposition 2. This proof makes use of

a detailed analysis of spaces of sections in suitable bases. The situation described

in Proposition 2 arises if we consider the scheme Q f] Η for the generic hyperplane

# Μ denotes the number of points in the set M.
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Η. The condition on the number of quadrics defining the scheme Q f] Η is realized

in accordance with Proposition 1.

§§4, 6 and 7 are devoted to a detailed derivation of Theorem 1, at the root of

which 4ie the above propositions.

§ 1 . The necessary general information about the techniques

of hyperplanar sections

1. Let / be some sheaf of ideals on the projective space Pn, and Η some hyper-

plane having equation h. Then we have the following exact sequence:

Multiplication by the local equation of Η is injective on /, since it is a subsheaf of

0 . Let Z C P " be the subscheme determined by the ideal /.

Lemma 1.1. // Ass(O z ) f] Η = <A then Ίοτι (0H, 0z) = 0.

Proof. Let X € Pn and let / be the local equation for Η at the point x. Then,

tensoring the exact sequence

with 0 /f . 0 pri -0 ,,, we obtain an exact sequence

Torx(0x p n/f • 0xpn,0x,z)->h - 0X,H->0XiH.

The arrow on the right is injective since / is not a divisor of 0 in Ο ζ (/ is

invertible on all prime ideals associated with 0 _ ) , and we therefore obtain that

Torj (0 H, 0 ) - 0. The lemma is proved.

Tensoring the monomorphism / C* Opn of sheaves with ()„ we obtain a homo-

morphism φ: 1 <8> 0,, —* ()„. In the general case this homomorphism will not be an

immersion, but if it is, then, identifying the sheaf / ® 0H with the image /^ C 0^,

we obtain a quasi-coherent subsheaf 1^, namely, the sheaf of ideals in 0^. The

following lemma indicates a sufficient condition that the above homomorphism be a

monomorphism.

Lemma 1.2. // A s s ( 0 2 ) f] H = 0, then the homomorphism φ will be an immersion

and the subsheaf IH = Im(/ <g> 0^) will be the sheaf of ideals on Η defining the

closed subscheme Ζ f] Η C H.

Proof. Consider the exact sequence

0—/->Op ! I-*Oz-*0

and tensor it with 0 · then with the aid of Lemma 1.1 we obtain that

, 0z) -> / (9) 0H ~* 0pn (g>. 0H -> 0z (x) 0H

Ά
0 > /// ^ 0H-*0znH.H-+ 0.
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The lemma is proved.

In what follows, it will be necessary for us repeatedly to carry out restrictions of

a certain scheme Ζ C Pn to some hyperplane H. It is naturally desirable for us to

consider restrictions to hyperplanes Η for which the sequence (1.2) is exact. Ac-

cording to Lemma 1.2, it is sufficient for this that A s s ( O z ) f] Η = 0.

Lemma 1.3. Let Ζ be a subvariety (that is, a reduced irreducible k-algebraic

scheme) of Pn; then the following assertions are equivalent'.

a) Ass(O z) f ] H / 0 ,

b) ZQH.

The proof is obvious, since Ass(O z ) consists of one point, the generic one.

Corollary. // Ζ is a variety not satisfying one of the conditions of Lemma 1.3,

then the sequence

O-W(m)^/(m + l)->//,(m+ 1)-*0 ( L 3 )

is exact for any integer m, where I is the sheaf of ideals of the variety Ζ f) Η in

0 {the conditions of Lemma 1.3 are usually verified on the isolated points of Z).

In what follows we will use part of the

Proposition on the restriction. I. Let Ζ be a variety in Pn and Η a hyperplane

such that Ζ <jt_ H. Then we have an exact sequence

) . (1.4)

We will make more frequent use of a weaker version of this, namely,

II. // we supplement the above conditions by assuming that Ζ j£ Η for any hyper-

plane, then we have the following immersion for any hyperplane H:

0->//o(P", I(2))-+H°(H,IH(2)). (1.5)

This will be an isomorphism if and only if H°(H, /w(2)) is mapped to 0£Hl{Pn, I(l)),

which will be the case if Hl{Pn, /(l)) = 0 , for example.

Proof. The exact sequence (1.4) is obtained by considering the cohomology

sequence for the exact triple (1.3). The immersion (1.5) is obtained from the exact

sequence (1.4) for m = 1, and from the fact that if Ζ does not lie in any hyperplane,

then H°(Pn, /(l)) = 0.

2. Let Υ be a projective variety lying in Ρ and having the following proper-

ties:

1) Υ does not lie in any hyperplane, and dim V > 1.

2) The ideal of this variety is generated by forms of degree not less than n.

3) The intersection of the forms of degree n, as a topological space, coincides

with y.

We will denote by S the intersection of the forms of degree η of the scheme V.
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Condition 3) means chat S f e d = Υ. The purpose of the present section is to prove the

following lemma, which gives a sufficient condition that 5 = V.

Lemma on reductibility. S = Υ if there exists a hyperplane Η such that S f] Η

is a reduced scheme, or, in other words, S is reduced if S f] Η is reduced for some

hyperplane H.

A refinement of this is Lemma 1.4, which is actually a criterion for the reducibil-

ity of the scheme S.

Lemma 1.4. Υ = S if and only if Υ f) Η = S f| Η for some hyperplane H.

Proof. The assertion in one direction is obvious, so let us assume that there

exists a hyperplane Η such that Υ f] Η = S f] H. Let F be some form on PN such

that F(Y) - 0; then it is evident that deg F > «. We will prove by induction on deg F

that F is generated by forms of degree n. In the case when deg F = n, this is obvious

by hypothesis. Let deg F > n, and let us consider the restriction of F to H. This is

a form / which, since Υ f] Η = S f] H, is expressed by means of forms of smaller

degree restricted to H; that is, we ca'n assume that F = 0 on H. Hence F = F' . h,

where h is the equation of the hyperplane H, a form of degree 1. It follows from

property 1) of the scheme Υ that F'{Y) = 0. Furthermore, deg F' < deg F, whence

F is generated by forms of degree n, by the inductive assumption. Hence the same

is also true for F. This shows that the ideals of the schemes S and Υ coincide;

that is, S •=. Y. The lemma is proved.

3. We will elucidate in this section those problems involved with the choice of

of a hyperplane, in some sense "good" as regards restriction, and also prove that

for a certain class of closed subschemes of pn, general hyperplane will be "good'.'

Definition 1.1. Ν isolated points of pn ate situated in general position in pn

if and only if any k + 1 of these Ν points generate a subspace Ρ C Ρ", where k < n.

Remark. It is easy to show that, for Ν > η + 1, Ν isolated points of Pn are in

general position in Pn if and only if any n+ 1 of these Ν points generate Pn.

Lemma on the choice of a "good" hyperplane. Let C be an irreducible and

reduced curve generating Pn {n > 2). Then for a generic hyperplane Η we have Η · C =

Σ~ε* χ., where the x. are deg C distinct points lying in Η in general position.

Lemma 1.5. There is a hyperplane Η in Pn such that H· C= Σ ^ β ( : χ . , where

the χ. are distinct isolated points of Η among which are η - 1 points such that

(E · C) = η — 1, Ε being the projective subspace of codimension 2 in Pn generated

by these η — 1 points.

Deduction of the lemma on the choice of a "good" hyperplane from Lemma 1.5.

We shall denote by C{n - l) the {n - l)-fold symmetric product of the curve C; then

C{n — l) is a variety, since C is an irreducible reduced curve, with dim C{n - l) =

η - 1. Let us consider the reduced subscheme C C C(n ~ l) χ Ρη, whose isolated
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points are pairs (d, h), where d is an effective divisor of degree η — 1 on the curve

C and h is a hyperplane in Pn such that d C h · C. We shall consider the two

natural projections of the scheme C:

JTj C " 2

/ Ν
C(n— 1) Prt

Let L/(n - l) be an open set in C{n - l) whose isolated points coincide with

those divisors x. + · · · + χ _. on C for which the points x. are (τζ - l) distinct

points in general position in Pn. The proof of the existence of U(n - 1) presents

no difficulty. It is also easy to prove that there is an open set W(n - l) C U(n - l)

such that the isolated points of W(rz - l) are those divisors x. + · · · + χ . for
1 η — 1

which the points x. generate a projective space Ε of codimension 2 in Pn, and

(C ' Ε) ~ η - I. It follows from Lemma 1.5 that W{n - 1 ) ^ 0 , and so the dimension

of the scheme U(n - l)\W(n - l) is not greater than η - 2, since C(n - l) is an

irreducible scheme.

Let us consider a set Κ in Pn which is open in the Zariski topology and whose

isolated points consist of hyperplanes h such that h is transversal to C. The pro-

jection 772 is quasi-finite. It projects open sets of C into open sets of Pn. Hence

there exists a closed subscheme K' of Pn such that its isolated points contain the

images of the isolated points U(n - l)\W(w - 1)) under the transformation 77? ° π7 .

Since the fiber of π^ over the points of U(n - l) has dimension 1, dimK' < η - 2 +

1 = η — 1. Let h be a hyperplane of Κ which is not "good"; then there is a divisor

d 6 U{n - l)\W(w - l) such that {d, h) € C, because the transversal hyperplane cuts

out points of C which generate this hyperplane, since C generates Pn. Thus h € K'

and so the hyperplanes of K\K are *'good". The lemma on the choice of a "good"

hyperplane is proved, since dimK < η — 1 and Κ is open in the Zariski topology on

Pn.

Lemma 1.6. For η > 3 there is an isolated point χ on C such that there are

only finitely many lines I passing through χ (or which (C, I) > 2.

Deduction of Lemma 1.5 from Lemma 1.6. We will prove Lemma 1.5 by induction

on η > 2. For η = 2 the assertion of Lemma 1.5 follows from the fact that, for any

plane reduced curve, there is a line transversal to it.

Let us assume that Lemma 1.5 is proved for η < k, and let C be a reduced ir-

reducible curve generating Ρ , k > 2. By Lemma 1.6 there is a point χ on C such

that there are only finitely many lines passing through χ and having an intersection

with C of index not less than 3. Let us consider the projection π of the curve C

from the point χ onto some hyperplane Η, χ £ Η . Let C be the closure of the

image of C under n. C is a reduced irreducible curve of degree deg C - 1 which

generates H. By the inductive assumption there is a hyperplane £ in Η such that

Ε ' C = Σ-1? ~ y -i where the y. are deg C distinct isolated points of E' among
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which are k - 1 points such that (E" · C1) = k - 1, E" being the projective subspace

of codimension 2 in Η generated by these k — 1 points. Consider the hyperplane Η

passing through χ and Ε . It is easily shown that this hyperplane is of the desired

type. Lemma 1.5 is proved.

Proof of Lemma 1.6. For η > 4 there is a point χ € Pn such that the projection

of C from this point is an isomorphism. If Lemma 1.6 were false for C, it is also

false for its image under projection from the point x. In order to prove Lemma 1.6, it

is thus sufficient to prove it for η = 3. The proof for this case can be found in [8]

(page 289). Lemma 1.6 is proved.

§2. Computation of the cohomology of the twisted sheaves of

the sheaf of ideals of a canonically immersed curve

Let us consider a canonical immersion of a curve X

The mapping κ has the following properties:

i) By the definition of κ, κ*(Ορ(ΐ)) = Ω ,̂ and so deg C = 2g - 2.

ii) C generates the space P g ~ .

We shall denote by / the sheaf of ideals of C.. This section is devoted to com-

puting the cohomology of the twisted sheaf /(«). The result obtained in this connec-

tion yields the following assertion.

Theorem 2.1

dim//°(Pg~\
— Γ for n>2,

for « < 1;

dimH*(Pt-\I(n)) =

0 for n > 2 ,

1 for η — I,

g for rt = 0,

(l-2/z)(g-l) for n < — 1;

0 for η > — g -j- 1,

— η — 1 \ / ^
/or /Ζ - ^ — g;

while Η'(Ρ8~1, /(«)) = 0 for all other values of i.

Proposition 2.1. For any natural number η > 2 we have

-f- /i —
a) dim //°



NOETHER-ENRIQUES THEOREM 369

b ) dim Hl(Pg~l, /(*)) = 0,

c) dim Ζ/2(Ρβ~\ /(«)) = 0.

Lemma 2.1. / Λ Ρ 8 " 1 . /(l)) = / / U P 8 " 1 , /(l)) = 0, anrf dimtf2(Pg- 1 , /(«)) = 1.

Deduction of Theorem 2.1 from Proposition 2.1 and Lemma 2.1. For arbitrary

η € Ζ consider the exact triple

0 - * / (n) _ Op (Λ) -> κφ (Ω|") -> 0

and the cohomology sequence corresponding to it

0 — ff° (Ρ*-1, / (/ι)) — Z/° (Ρ*"\ Op («)) — H* (X,

(2.1)

\ ^ (n)) -> //g~x ( P ^ 1 , OP (n)) -> //g~x (Χ, Ω|rt)

Since RKX, Ω® Π ) - 0 for i > 2 and / / ' ( P 8 " 1 , O p (n)) = 0 for j^O,g-l, we

obtain from this sequence that / / ' ( P 8 " 1 , /(«)) = 0 for ζ ̂  0, 1, 2, g - 1. We also

obtain that

dim Hg~l (Ρ5"1,7 (n)) = dim 77g-x (Ρ5"1, 0Ρ(η) =

Since H H P ^ - 1 , Op(«)) = tf2(P8~\ Op(w)) = 0, we have

0 for A2>— g- f l ,
' — «— 1\

f or Λ c^ — g.
-n — gj

dim 772 (Ρ*"1, 7 («)) = dim 771 (Χ, Ω?) = dim 77° (Χ, Ω?(ι"Λ))

0 for Λ > 2 ,

1 f o r r t = l , (2-2)

g for η — 0,

(1 — 2n)(g— 1) for « < — 1 .

To complete the proof of Theorem 2.1, it remains for us to compute the zeroth and

first cohomology groups, this being the most difficult part of the proof. We remark

that all the other cohomology groups have been calculated without using Proposition

2.1 or Lemma 2.1, with the result that a part of Lemma 2.1 and a part c) of Proposi-

tion 2.1 have been proved in the process.

Let η = 0 in the sequence ^2.1); then

1, 7(0)) =dimHi{?^'\ 7(0))-=0,

whence //HP 8 " 1 , Op(0)) = 0, while

dim H° (P*~\ 0 P (0)) = dim H° (Χ, Ω|°) = 1
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and the mapping H°(Pg~l. O p (0» -> H°(X, Ω®0) is evidently an isomorphism. For

η < 0 we have

//° (Ρ*"1, OP (n)) = //° (X, Ω?'l) = Ζ/1 (Ρ 2 " 1 , OP (n)) = 0,

and we thus obtain from the exact sequence (2.1) that

dim H° (P g ~\ / (n)) = dim H1 (Pe~\ I (n)) = 0.

Lemma 2.1 and Proposition 2.1 in conjunction with what we have proved complete the

proof of Theorem 2.1.

Proof of Lemma 2.1. It follows from property (ii) of the canonical immersion κ

that H°{?s-1. /(l)) = 0 and, since

dimff°(P*-\ Op(l)) = dim H°{Χ, Ωχ) = g and Hl(?g~\ 0P(l)) = 0,

we have dim Η ( P g ~ 1 , /(l)) = 0. The lemma is proved.

Η ( P e , Op(«)) = 0. Taking the alternating sum of the dimensions of the first

four terms of the exact sequence (2.1), we obtain that

dim //° (Ρ*"1)/ (/2))-dim//°(Pg-\ 0 P (n))+dim //° (Χ, Ω?")—dim H1 (Pg~\ I (n))=0.

For η > 2, this equation yields the following identity:

dim//°(Pg-\ /(«))= ^ + n ~ 1N) — (2n— l)(g— 1) + dim//1(Pp"1

f /(n)), ( 2 ' 3 )

because d i m i / ^ P e - 1 . O p ( w )) = ( s + ^ " 1 ) for w > 0, while dimtfO(X,

(g - 1) for η > 2.

With the aid of (2.3) and the following lemma, we will prove Proposition 2.1 by

induction on η > 2.

Lemma 2.2. I. Let Λ1 be a closed subscheme in P8~ which contains 2g — 3

isolated points lying in general position; then

(2.4)

II. Lei Μ be a closed subscheme in P8~ which contains 2g — 2 isolated

points lying in general position; then, for η > 3,

d i m / / « ( Ρ * " 2 , / * ( * ) ) < ( g + ^ 2 ) - ( 2 g - 2 ) . (2.5)

Deduction of Proposition 2.1 from Lemma 2.2. Part c) was proved in Theorem 2.1,

and so it remains to prove parts a) and b); these will be proved simultaneously by

induction on n.

Let η = 2. It follows from the lemma on the choice of a "good" hyperplane

that there exists a hyperplane Η such that Η · C = Σ ,g χ., where the χ .
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are deg C distinct points situated in general position on H. The sheaf of ideals Ιμ

is defined by the Corollary in §1 to be the restriction of the sheaf of ideals /. Let Μ

be the closed subscheme of Η which corresponds to the sheaf of ideals / „ . By the

choice of the hyperplane Η it is clear that the conditions of Lemma 2.2 are fulfilled,

and so inequalities (2.4) and (2.5) hold for η > 3· By the proposition on the restric-

tion in §1 we have the immersion (1.5), and thus

dim tf° (P g~\ / (2)) < dim H° (H, IH (2)).

By inequality (2.4)

dim Ζ/0 (//, iH (2)) = dim ff° (//, I M (2)) < ( g ~ 2 ) ( g ~ 3 ) .

According to (2.3) for η = 2, we obtain that

Hence

= 0 and dim//°(P*"1

f/(2))= -^

This proves the first step of the induction (72 = 2).

Let us assume that parts a) and b) of Proposition 2.1 hold for η < k. By applying

the proposition on the restriction for η = k, we obtain an exact sequence

By the inductive assumption, dim W ( P g ~ , l(k)) = 0. Hence

We remarked earlier that inequality (2.5) is satisfied for η > 3, and since k + 1 > 3 we

can use the inductive assumption for the zeroth cohomology groups and inequality (2.5)

to obtain that

d i m / / ° ( P f i ~ \ I(k + 1)) < (8 + k ~ l)-(2k— \)(g- 1)

The reverse inequality is contained in (2.3) for η = k + 1. This completes the induction,

and the proposition is proved.

Proof of Lemma 2.2. Let X be some reduced scheme which is a closed subscheme

of M; then we have an exact sequence

Ο - * / Λ Ι - > / Χ - > 0 > — 0 ,
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which induces the following immersion:

ff° (Ρ*~\ Ι Μ (η)) C Ho (Ρ*"2, Ιχ {μ)).

This allows us to reduce the lemma in the first case to a reduced scheme X.
2g-3

consisting, as a topological space, of 2g - 3 isolated points lying in general position,

and in the second to X- _-. For any point of X _ there exists a quadric Q which

contains the remaining 2g - 4 points and does not contain this point. (To see this, it

is sufficient to break up the 2g - 4 points arbitrarily into two groups of g - 2 points

and to draw hyperplanes Η and Η through each of these groups, whereupon we obtain

from the fact that the 2g - 3 points of X2 _ are in general position that Q = Η (J H'

is the desired quadric.) This means that for any point χ 6 X there exists among

the global sections Γ(Χ. ,, 0 v (2)) a section / such that / is the image of
2g—3 Λ 2 # — 3 x *

image of some quadric under the restriction isomorphism to X :
2 g - 3

Res :

Then dim Im (Res) > 2g - 3, but clearly, dim Γ(Χ2 _ y 0χ (2)) < 2g - 3. Hence(

It follows from the last equation that

dim Ker (Res) + dim //° (X2g_3, Ox.2g_3 (2)) - dim № (/*-\ 0 P (2)) = -
ύέ

Also, Ker (Res) = Γ(Ρ^~2, / ν (2)), since X_ . is a reduced scheme. Hence
A2 g_3 2g-3

dim Ho (P*~\ IXng_z (2)) = ^=ψ£- - dim //o (X2 g_3, Ox2 g_3 (2))

Inequality (2.5) is proved analogously; to do this it is first of all necessary to show

that the image of the space Γ(Ρ8~2, Ορ{η)) under restriction to X2 coincides

with the space Γ(Χ, ., 0 v («)) for all η > 3. Lemma 2.2 is proved.
Y 2g-2 x2g-2

§3. Some properties of schemes which* are intersections

of (g -2)(g- 3)/2 quadrics in P8~2

Let Μ be a closed subscheme of the projective space P8~ having the following

properties:

ct) There exist 2g - 2 isolated points in Μ which lie in general position in P8~2

β ) The ideal of the scheme Μ is generated by quadratic forms and

dim //°(P«-2, M 2 ) ) ^ (g-2) (g-3)/2,

where /w denotes the sheaf of ideals of Λ1.

In this section we will study the properties of such schemes Μ which contain not

less than 2g - 1 isolated points; the result of this study is expressed in
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Theorem 3.1. // # (M) > 2g - 1, £&e/2 Μ zs a reduced, irreducible, nonsingular,

projective curve of degree g ~ 2 which clearly generates P8~2.

We will denote by G a projective irreducible reduced curve of degree g - 2 which

generates P8~ . To prove Theorem 3.1, we will need certain properties of G contained

in the following lemma.

Lemma 3.1. a) There is one such curve G passing through any g + 1 isolated

points of P8~ lying in general position.

b) G is a smooth curve of genus 0.

c) dim H°{P8~2, /G(2)) = (g - 2)(g - 3)/2 i W G is the intersection of the quad-

rics which pass through it; that is, the ideal of the scheme G is generated by the

(g - 2)(g - 3)/ 2-dimensional space of quadratic forms of this ideal.

Proof, a) Let xQ, · · · , χ be isolated points of P8~2 lying in general position.

We choose homogeneous coordinates X. (/ = 0, 1, · · · , g - 2) in P8~2 in such a way

that x.= (0, ·. . · , 1, · · · , 0) for i < g - 2, xg_ γ = (l, . . · , l) and xg = (aQ, · · · , a _ 2 ) .

ζ

Since the points x. lie in general position, it is clear that α. φ. 0 and α. φ a. for 0 <
1 < ί 5 £ ~'2· Letting /. = Π . . β

ζ · , we will specify the curve G in parametric form. Let

X.(/) = Π . At - t), where 0 < i < g - 2 and t (i k \J j « ! is a parameter. It is easy

to show that for the values £ _ , · · · , / _τ> °° a n d 0 of the parameter we obtain the

points %Q, · · · , χ _ 2 < x and χ respectively. This demonstrates the existence of

a curve G passing through the points xQ, · · · , χ .

Before proving the uniqueness of this G, let us prove part b).

b) Since G is irreducible and generates P g ,

we can define for any hyperplane Η the index of its

intersection with G; (G · H) = deg G = g - 2. Con-

sider an arbitrary point χ € G. It is easy to prove

by induction on k that for any 0 < k < g - 3 there

exists a &-dimens ional projective subspace Η C

P g passing through χ and containing &+ 1 points

of G. Hence there is a hyperplane f/ such that

{H · G) > 1 and (W · G) . > 1 for i = 1, · · · , g - 3,

where the y. are distinct isolated points different igure

from x. It follows from this that (H · G)x = 1; that

is, χ is a simple point. This shows that G is smooth.

The proof of the following property of G presents no difficulty.

(SG) For an arbitrary &-dimensional projective subspace Η C P8~ , it follows

from the fact that k < g - 3 that supp(f/ · G) consists of not more than k + 1 points

which lie in general position in H.

a) (continued). We will carry out the proof of uniqueness by induction on g > 4.

For g = 4, this is a well-known fact from analytic geometry. Assume the assertion



374 V. V. SOKUROV

to be proved for g < k; we will prove uniqueness for g = k + 1. Let us suppose that

there exist two curves G and G passing through k + 2 isolated points and let χ and

y be two of these points. Consider the projections of G and G from χ onto a hyper-

plane Η not passing through x. It is evident from the inductive assumption that the

images of these curves must coincide. Let G Φ G ; then there is an isolated point χ 6

G through which G' does not pass; that is, χ j£ G.' Consider the line through χ and

Xj. Since the images of G and G under projection coincide, there is an isolated point

y^EG f| xxl different from both χ and χl. By property (SG), yl fi G. Drawing the

lines through χ., y and y., y, we obtain isolated points y € G f| χ y and x_ €

6 Π ) Ί > · ^ is clear that x, y, χ , χ lie in one plane and belong to G. Since k -

2 > 2, this contradicts property (SG). The proof of part a) of Lemma 3.1 is complete,

c) The proof of this part is based on the following lemma.

Lemma 3.2. Let Μ be a closed subscheme in Pn which contains η + 1 isolated

points lying in general position and such that dimH°(Pn, 1M>(2)) > n{n + l )/2. Then

Μ is a reduced ^-dimensional scheme coinciding with the η + 1 isolated points, which

are in Λΐ' by hypothesis, and dim H°(Pn, IM*(2)) = n(n + l )/2.

Deduction of part c) of Lemma 3.1 from Lemma 3.2. Consider the exact triple

0 -> Ic (2) — Op (2) -> i, (OQ (2D)) — 0,

where D = Η - G is an effective divisor of degree g - 2 on the curve G. This short

exact sequence induces the following exact cohomology sequence:

0 -+ Ho (P^\ IG (2)) -* //o (P*-\ Op (2)) -> ffo ( G | O G (2D)) -> Z/1 (P 2 " 2 , / 0 (2)) -> 0,

(3.1)

because dim Hl(P8~2, 0p(2)) = 0 for g - 2 > 2. From the exact sequence (3.1) we

obtain that

dim //o (P*-2, / 0 (2))=dim//° (P*~2, OP (2))—dim//°(G, 0 c (2D)) -fdim H^'2, fG(2)).

(3.2)

We know that the genus of G is equal to 0 (this can be proved, for example, from the

property (SG) for hyperplanes). Then, by the Riemann-Roch Theorem,

dim H°(G, OG(2D)) = 2 deg G - O + l = 2 g - 3 . From formula (3.2) we thus obtain the
G

inequality

dimH°

Consider the closed subscheme G' C P8~2 whose ideal is generated by the forms

of degree 2 contained in the ideal of the scheme G. By the lemma on the choice of a
! <good" hyperplane in §1, there exists a hyperplane Η such that Η · G = Σ?^ χ̂  ,
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where the x. are distinct isolated points lying in general position in H. Since G is

irreducible and generates ρ β ~ 2

} i t it clear that

dim tfo ( P £ - 2 ) IG, ( 2 ) ) = dim //o (//, / 0, n

Hence dimtf°(tf, ' G ' n H ^ 2 ^ > (g - 2 ) ( g ~ 3)/2. By Lemma 3.2 G' f| W is the reduced

scheme M', and so G f) Η = G' f| W. From the equality of these schemes we obtain

that

dim//°(ff,/on//(2)) = dim//°(tf,/G,n/i(2)) = ( g ~ 2 )

o

( g ~ 3 ) .

By the proposition on the restriction (see §1), this yields the inequality

dim //o (pg-2 > j Q ( 2 ) ) < ( g - 2 ) ( g - 3 ) ^ ^ ^

It follows from inequalities (3.3) and (3-4) that

dim//*» (P ? ~ 2 , 7O(2)) - < g - 2 ) ( g ~ 3 ) .
2 (3.5)

The next step ·η the proof of part c) will be to prove that G , '= G. Since this is

obvious for g = 4, we can assume that g > 5 for this step. Proceeding by the method

of contradiction, let us assume that there exists an isolated point χ € G with χ f£ G.

We assert first of all that there is a hyperplane W passing through χ which does not

touch G; that is, H^ · G = ̂ J , x-, where the x. are distinct isolated points, lying

in general position by property (SG) Consider the lines passing through χ and a

point of G. Let one of these touch G or intersect G in two points. Then G contains

isolated points of G and this line L. Let us consider then the generic hyperplane, for

which Η fl (G U L) = {*·!·_, ... _ (J {yl, where the x. are isolated points of Η

lying in general position, and y is an isolated point not coinciding with any of the χ..

Consider the scheme G fj Η = G f| H; it consists of g - 2 isolated points, which

leads to a contradiction. We have shown that any line passing through x intersects

G in exactly one point. The projection π of G from χ onto some hyperplane Η is

thus a regular immersion. By the lemma on the choice of a "good" hyperplane there

exists a hyperplane Hj not tangent to TAG). There corresponds to it a hyperplane Η

pas sing'thro ugh χ and not tangent to G. This proves the existence of a hyperplane

Η. transversal to G and passing through x. By Lemma 3.2 the scheme G f| H.

consists of g - 2 isolated points, contradicting the supposition that χ j£ G. Thus

ted

It was shown earlier that there is a hyperplane Η such that G' f] Η = G f] H,

and so G = G' by the lemma on reducibility (see §1). The proof of Lemma 3.1 is

complete.

Deduction of Theorem 3.1 from Lemma 3.1. By hypothesis P8~2 contains 2g - 2

isolated points %.€ Μ (ζ = 1 , 2 , · · · , 2g - 2) lying in general position, and also a
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certain isolated point χ distinct from the χ..

We show first of all that the points \x \ (J \x\ lie in general position in P8~2.

Let us assume the opposite; then there is a hyperplane Η in P8~ which contains

the points Λ̂ . (z = 1, 2, · · · , g - 2) and x. Considering the scheme Μ f] Η and using

Lemma 3.2, we obtain a contradiction since dim//°(//, IMnH(2)) > (g - 2)(g - 3)/2,

and so the restriction of quadrics to this hyperplane has no kernel, by which we mean

that among the quadratic forms of the scheme M. there is no form q for which q\H = 0 .

In fact, if we assume that there is a q € Γ ( Ρ 8 " 2 , IM(2)) such that q\H = 0, then q =

h · h is a splitting quadric, h being the equation of Η and h giving some hyperplane

Η , distinct from Η since Μ $. Η. It is clear that //' contains the points χ . for i >

g - 1; that is,//' contains g points of {x.}, contradicting the fact that the points of

{ΛΓ.| lie in general position. Indeed, it would be sufficient to assume the existence of

2g - 3 points of Μ lying in general position in order to prove that any finite set of

isolated points of Μ lay in general position. In comparison with what is stated above,

the proof of this fact contains no new ideas.

We will denote by J a reduced closed subscheme of the space P8~ which, as

a topological space, consists of 2g - 1 isolated points. These lie in general position

in P8~ , as has been shown. Consider any g - 3 isolated points of T. Denote by

J the reduced subscheme of J containing these g — 3 isolated points, and by J

the "complementary" reduced subscheme. The subscheme j ' determines a projective

subspace W C P8~ of codimension 2, since it consists of g - 3 points lying in gen-

eral position. It is easy to show that the sequence

^ r e s t f l c t i o n t 0 W U H°(WI$-> (2)),

(3.6)

is exact, where by S" {J W we mean the reduced scheme whose points comprise the

set-theoretic union of those of the scheme S" and of W. From Lemma 3.2 we obtain

the inequality dimH°(W. 1^, (2)) < (g - 2){g - 3)/2 - (g - 3). It then follows from the

exact sequence (3=6) that

dim H0(Ps-2,1 ST'UW (2))>g—3;

that is, there are g - 3 linearly independent quadrics Qi, · · · ,Q _ 3such that Q

contains W and 3" as closed subschemes. Let us denote by G' an irreducible com-

ponent of the scheme G" - f| gI\ Q • which contains some point of J . We will prove

in the sequel that G - £\ed' t n a t IS' w e w ^ P r o v e t n a t ^ r e d ^s a n ^ r r e ^ u c ible curve

of degree g - 2 generating P8~ . By definition, G is a reduced irreducible scheme

of dimension not less than 1 not contained in W. Let Η be some hyperplane passing

through W such that red (// f] G") £ W; that is, there is an isolated point χ Ε Η f] G"

lying outside W. It is clear that the restriction of the quadrics Q to Η has no kernel,

as for all quadrics in H°(P8~2, /j (2)). The Q{\H = h . · h are splitting quadrics in

H, h being the equation of the hyperplane W in //, and the h{ being independent
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linear forms since the restriction of quadrics to Η has no kernel. Hence χ € Π 8~γ Η .

and Π ?~γ Η. consists of not more than one point. Summarizing what has been proved

in this paragraph, we have
W

W I I {X) where χ is an isolated point of H,

lying outside W. U ' / ;

On the isolated points of the variety G C G" not lying in W, we define the mapping

φ: G -» Ρ which associates with an isolated point χ £ G lying outside W the hyper-

plane determined by the space W and the point x; that is, φ is a rational morphism.

By property (3.7) of the intersection G" f) Η it is clear that we have dimG < 1; that

is, G is a protective curve lying outside W. For a generic hyperplane passing through

W, Η p| G contains a point lying outside W. Since the dimension of each irreducible

component of G" is not less than 1, red G" = W \J G. Hence G 3 J " and so G generat-

es P8~ and degG > g - 2 .

We will prove that degG = g — 2. Let us assume the contrary; that is, let degG >

g — 1* Applying the lemma on the choice of a "good" hyperplane, it is easy to prove

that there is a hyperplane Η with the following properties: Η does not pass through

W, and Η (~) G contains g — 1 isolated points lying in general position in Η and lying

outside W. Consider a hyperplane Ε in Η which passes through W f] Η and one of

the points χ .. Let this point be χ _l, where xl, · · · , χ _j are the isolated points

of Η f| G. From property (3.7) for the intersection G" f) Η we obtain that red {E f| G")

= (W f) H) \J{x _ι\· It is clear that the quadrics Q .\£ = h . • h are splitting (z = 1,

2, . . . , g — 3). The restriction of the quadrics 0 . to Ε has a kernel, since otherwise

we would have red (E f] G') = W f] H. Hence there is a quadric Q, generated by the

Q ., for which Q\E = 0. The restriction to any hyperplane has no kernel, and so Q\ =

I · /' ^ 0 , where / is the equation of the hyperplane Ε and /' gives the hyperplane E'

in Η. Ε' contains the points χ^, · · · , χ _ 2 , since red (G" f| E) = (W f] H) (J

{x _ji and the points x. f£ W. This contradicts the fact that the x{ lie in general

position in H. Hence degG = g - 2.

We have proved that through any g + 2 = [{2g - I) - {g - 3)] points of J there

passes a reduced irreducible curve G of degree g - 2. By part a) of Lemma 3.1 we

know that there is a curve G passing through 2g - 1 isolated points of J. Since S

is a closed subscheme of G, we have an immersion

^ (3.8)

By Lemma 2.2

dim //o (P ? - 2 , 7 ^ (2)) < (g - 2) (g - 3)/2,

and by Lemma 3.1

dim //ο ( P — , 7C (2)) = (g - 2) (g - 3 ) 2 .
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The immersion (3.8) is thus an isomorphism; that is,

H°(Pg-\ V(2)) = Η«{Ρ8~\ Io (2)) =

By property /3) of the scheme Μ we have Μ = fl Q ,̂ where ρ € H°{P8~2, IM(2)). By

part c) of Lemma 3.1 we thus have that Μ = G is a reduced irreducible nonsingular curve

of degree g — 2 generating P g ~ . The theorem is proved.

Proof of Lemma 3.2. By hypothesis there are isolated points {x.J"*1 lying in gen-

eral position in Pn. We can choose in Pn homogeneous coordinates X. such that the

points x. form a basis; that is, X .(x.) = δ1. Then the quadrics Q defining the scheme

Λ4 pass through the points χ .. Q(x.) is thus the coefficient in χ . = 0 ; that is, Q =

^ti7ti
a~i]X i' X - ^ ^s easy to compute that in this case the number of independent quad-

rics defining M' is not more than (n + 1) η/2. Μ' is thus defined by the (n + 1) n/2

quadrics Q.. = X . . X . ( i / /')·

Let y = (ATJ, . . . , χ ,) be an isolated point of M*. If it has two nonzero coordin-

ates x{ and x., then y £ M, since Qz- (y) = x . · x. ^ 0 . Then, as a topological space,

Μ consists of η + 1 isolated points which represent basis points. We will prove that

Μ is a reduced scheme. To do this it is clearly sufficient to show that any form which

vanishes on the basis points is generated by the quadrics Q ... The verification of this

fact does not present any difficulty. The lemma is proved.

In this section we investigate the structure of the scheme Q ,. The definitive

result is the following.

Theorem 4.1. a) dim<2 < 2.

b) // dimQ = 1 then Qted = C.

c) // dimQ = 2, then Q = Q , is an irreducible reduced surface of degree g — 2

which generates P g " .

The proof of this theorem in the case g - 4 is obvious, and so it will be assumed

in the rest of this section that g >' 5.

Proposition 4.1. Let Q contain, in addition to C, one other isolated point 0 not

lying on C; then there is an irreducible reduced surface S such that Q 35 3 0 (J C

Deduction of Theorem 4.1 from Proposition 4.1. a. By the lemma on the choice of

a "good" hyperplane, there is a hyperplane Η such that Η · C - S._f~ χ., where the

x. are isolated points lying in general position. The scheme Q f] Η thus has the

properties a) and β) indicated at the beginning of §3, since dim Η {Ρ8 , 1Q(2)) =

(g _ 2)(g - 3)/2 and the restriction of quadrics to any hyperplane is without kernel.

We obtain from Theorem 3-1 that dimO f] Η < 1, and so dimQ < 2.

c. If dimQ = 2, then dimQ f| Η = 1 by the above inequality. Hence, by Theorem

3.1, Q Π Η = G 1S a reduced irreducible curve of degree g - 2 generating H. This

holds for a generic hyperplane, and so Qr , has only one component of dimension 2.
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Using Proposition 4.1, it is easy to prove that the curve C lies in the irreducible com-

ponent of dimension 2 and that Q i s a n irreducible surface. Q has degree e - 2,
r ^ red ' r e d 6 6 '

since for the generic hyperplane Q f] Η = G is a curve of degree g - 2. By the

lemma on reducibility, it is evident that Q = Q ,.

b follows immediately from Proposition 4.1. Theorem 4.1 is proved.

Proposition 4.1 will be proved with the aid of the following lemmas.

Lemma 4 . 1 . // Q contains a reduced and irreducible curve L •£ C, then there is an

irreducible surface S such that Q D S D L [j C.

Lemma 4.2. Let Μ be a closed subscheme in Pn which contains k<2n+\ iso-

lated points lying in general position in Pn. Then the following assertions are true.

a) d imtf ° (P", /M(2)) <{n+ l){n + 2)/2 - k.

b) // M f e d = Μ and # (M) = k < In + 1, then d imt f ° (P n , 7^(2)) ={n + l)(n + 2)/2 - k.

Proof of Proposition 4.1. If there exists a line L passing through the point 0

which either touches or intersects C in at least two points, then L C Q (since other-

wise (L · K) > 3 for some quadric Κ D C). It follows then from Lemma 4.1 that the

desired surface S exists; we can therefore assume further that (L · C) < 1 for any line

passing through 0.

Let Η be a hyperplane not passing through 0. We consider the morphism π: C ->

H, where π(χ) - Η f] Ox for isolated points χ of C. It follows from the above agree-

ment that 77 is a biregular morphism. n{C) is thus a nonsingular algebraic curve of

degree 2g - 2 which clearly generates H. By the lemma on the choice of a "good"

hyperplane, the generic hyperplane E' of Η intersects n(C) in 2g - 2 isolated points

which lie in general position in Ε .

Consider the hyperplane Ε in P8~ passing through 0 and the space Ε . We

will prove that dimQ Π E>1. We have Q f\ Ε D {C f) E) {J \0\, and obviously

C Π Ε = {x .\. , τ _, where the x. are isolated points of £ not coinciding with

0. If the points \x \ lay in general position in E, by Theorem 3-1 we would have that

Q f] Ε is a complete, reduced, irreducible, algebraic curve. The proof of the propo-

sition would then follow from Lemma 4.1, and so we will assume in what follows that

the points of C f] Ε do not lie in general position.

We will show first of all that any g - 2 points of C f] Ε lie in general position

in E. In fact, if this were not so, there would exist a projective space E" C P8~

having codimension 2 in Ε and containing g — 2 points of C f] Ε. π{Ε) would thus

contain g — 2 points of n(C) and would have codimension not less than 1 in E, and

this would contradict the generality of the points of n{C) f] E. Similarly, it is easy

to prove that the point 0 and any g - 2 points of C f] Ε lie in general position

in E.

Since, by the assumption made above, the points \x .\ do not lie in general posi-

tion, there are g - 1 points in \x .\ which generate a hyperplane (since g - 2 points
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are already in general position). Let us denote this hyperplane by //'. Hence the

restriction of quadrics cutting Q 3 C to the protective subspace H' C Pg~ 1 has a

kernel (by Lemma 3.2). This means that there is a quadric q € ΓΧΡ*"1, /Q(2)) =

H P * " 1 , / c(2)) for which q\H, = 0. But since q € Γ(Ρβ~ \ /c(2)) and C is an irreduc-

ible curve generating P g , we have q\E £ 0. Then q\E - h" • h' is a splitting quad-

ric, where h is the equation of //' and h" defines a hyperplane Η" ^ //'. The iso-

lated points \x \ and the point 0 lie in the subspaces //' and H" since (Q f] E)

C Η U Η . Denote by Μ the reduced 0-dimensional scheme consisting of the points

xi lying in the hyperplane Η , and by M" the reduced scheme consisting of the remain-

ing points χ . and the point Ο. Μ' is obviously a closed subscheme of //'. Further,

Μ is a closed subscheme of Η since 0 lies in Η , for 0 and any g — 2 points of

C P| Ε lie in general position in E.

By its choice, the hyperplane Ε is not a tangent, and so it is generated by the iso-

lated points {x \ = C η E. Hence # (M") > 2.

The exactness of the sequence

r e s t r i c t l 0 n t 0 f// Γ ( / / \ / ( 2 ) ) (4.1)

where Μ is a reduced scheme whose isolated points are precisely the points of M.' (J

M", is obvious. The exact sequence (4.1) yields the inequality

dim//«(//', /ΛΙ·(2))> dim tf°(£, /* (2)) — dim//0 (£,7^(1)). (4.2)

Consider the case when # (M") = 2 and # (M1) = 2g - 3. Then

and

dim //° (£, I M (2))>dim //«(£, 7£ n<3(2)) = ( g ~ 2 )

o

( g ~ 3 )

since MCE f] Q. From inequality (4.2) we have that

Hence, by Theorem 3.1, dim//°(//', ^#(2)) = (g - 3)(g - 4)/2; that is,

dim H° (Ε, Ι Μ (2)) = dim H° (E, IEnQ (2)).

The last equation means that Γ(Ε, ^Μ(2)) = Γ(Ε, / £ n Q ( 2 ) ) , and so

dim //° (//', 7 Q n w , (2)) > (g-3) (fir—4)/2.

It then follows from Theorem 3.1 that dim//' f] Q > 1, whence dim Ε p| Q > 1.

We will now prove that the c a s e s # (M") = 3 , 4 are impossible. In fact, in these

c a s e s we have dim H°{E, /„„(!))= g - 4 or -g - 5, s ince 0 and any g - 2 points of

C f] Ε lie in general posit ion. By Lemma 2.2

4)/2,
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since #(M') > 2g - 5 and the isolated points of M' lie in general position in //'. We

thus obtain from inequality (4.2) that

, M 2 ) ) < (g

(g-3)(g-4) + ( g _ 3 ) _ 1 (g-2)(g-3)

The inequality dimtf°(E, /M(2)) < (g - 3)(g - 2)/2- 1 contradicts Theorem 2.1, since

we have the immersion

Γ(Ι*-\ /Q<2))~r(£,7Q n £(2)) Q Γ(£, 7^(2)).

We now consider the case when 5 < # (M") < g - 2 (clearly, # (M") < g - 2 in any

case). Then g + 1 < # (M') < 2g - 6. In this case, by Lemma 4.2,

dim 77° (//', 7 Λ Γ (2)) =

since the isolated points of M" are in general position in E. We thus obtain from in-

equality (4.2) that

dim № (E, 1M (2)) < [ ( g~2 )

2

( g~1 ) - # (M')j + [(g - 1) - # (ΛΓ)]

<
ώ

which also leads to a contradiction. Therefore these cases are also impossible.

Summarizing what has been said above, we obtain that dim Q f] Ε > 1 in all

possible cases, and, more precisely, there is an irreducible reduced curve L C Q f] Ε

passing through 0. Hence L ̂  C; that is (by Lemma 4.1.), there is an irreducible

reduced surface S C Q passing through L and C, and so also through 0. The propo-

sition is proved.

Proof of Lemma 4.1. By the lemma on the choice of a "good" hyperplane, the

following holds for the generic hyperplane Η: Η f] C ~2>\x \._ . . . 2 ?' w n e r e t n e

x. are isolated points of P g ~ lying in general position in H. In addition, Η f] L

contains one other point y distinct from the x.. Hence for the generic hyperplane

Η we have # (Q f] H) > 2g - 1 and Q f] Η contains 2g - 2 isolated points lying

in general position. The space of quadrics through C restricts to any hyperplane Η

without kernel, and so

dimT(H, IQ Π Η ( 2 ) ) = dim Γ(Ρ«-', 7 Q (2)) = {g—2) (g-3)/2,
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whence, by Theorem 3.1, for the generic hyperplane Η the scheme Q f] Η is a reduced

irreducible curve; consequently dimQ = 2. The scheme Q can obviously have only

one component of dimension 2, and no component of dimension 1, and so there is an

irreducible reduced surface S such that Q D S D L (J C. Lemma 4.1 is proved.

Proof of Lemma 4.2. a) Let X be a reduced O-dimensional closed subscheme of Μ

whose points are k isolated points lying in general position in Pn. Then we have an

immersion Γ(Ρ", /»(2)) -̂» Γ{Ρη, Ιχ(2)), and so the proof of part a) is contained in the

proof of part b).

b) Let χ € X be some point, the remaining k - 1 points being divided into two

groups each of which contains not more than η points. There are thus hyperplanes Η

and H' containing k - 1 points of X. We can obviously assume that Η and Η do not

contain the point x, because the points of X lie in general position in Pn. This means

that for any point χ € X there is a quadric q for which q(y) = 8X for y € X. Hence

for the restriction homomorphism

dim Im (Res) > k; but dimTiX, 0 χ (2)) < k, and so Im(Res) = Γ(Χ, 0χ{2)) and dim (Res)

= k.

It is then obvious that we have the equation

dimr(P", Op(2))= dim Ker (Res)+dim Im (Res)=dimKer (Res)+&;

(4.3)
Ker (Res) = Γ(Ρ", Ιχ(2)), since X is a reduced scheme. Hence, from equation (4.3),

dim //o (P«, Ix(2)) = dim ffo(P\ 0P ( 2 ) ) - k = (* + * ) ( * + 2) _ ^

Lemma 4.2 is proved.

§5. Some properties of schemes which are intersections

of (g - 2)(g - 3)/2 quadrics in P8~2 (conclusion)

3, let /M be a closed subscheme of the projective space P8~ possessing

properties a) and β) (see §3). The cases when # (M) > 2g - 1 were investigated in

§3 (see Theorem 3.1). The result of the present section is

Theorem 5.1. Μ , = Μ.
r e d

If # (M) > 2g - 1, then Μ is a reduced irreducible curve, by Theorem 3.1. This

proves Theorem 5.1 when # (M) ^ 2g - 2, and so we will assume for the remainder of

this section that # (M) = 2g - 2 unless otherwise stated. It is then clear that g > 5.

Before entering upon the proof of Theorem 5.1, let us choose a system of homo-

geneous coordinates X. in P8~2 in such a way that its basis points are contained in

M. Consider the hyperplane Η C P8~2 given by the equation X = 0. The restric-

tion of quadrics cutting Μ to the hyperplane Η is without kernel, because Μ contains

2g — 2 isolated points lying in general position, by property a). Hence
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dim g \

By the choice of the homogeneous coordinates X. the scheme Μ f| Η contains the

basis points of the hyperplane //, and so the general form of a quadric q €.

ΠΗ, 1ΜΓ)Η(2)) will be

q = 2 ααχιχΐ-

Hence dimPlf/, ^ H f / ^ 1 (# - 2)(g - 3)/2. Summarizing what has been said in this

paragraph, we have that

*-a, /Λ, (2)) Ξ Ξ ^ , Γ (//, / Λ | η / / (2))

= \q 6 Γ (//, 0/ί (2) I q = ^ α Λ " X/> w h e r e α

Then the space V(P8~2, lM(2)) has a natural bas is of quadrics

where ζ ̂  / and 1 < i, ]' < g — 2. By the choice of the homogeneous coordinates, the

isolated point (0, 0, · · · , 0, l ) € M. Hence a8.-1 = Q. . (0 , · · · , 0, l ) = 0.

Denote by b , · · · , b _l the bas is points ( 1 , 0 , · · , 0), · · · , (0, 0, · · · , 0 , 1 ,0) ,

(0, · ·.· , 0, 0, l ) of the space P8~2. We will call the points b. and b . M-connected

if there is a cubic

such that Κ = X · Q', where Q\b.) £ 0, Q'{b.) £ 0 and Q1 vanishes on the remain-

ing points of M. Let J ' be the graph whose vertices are the points b , · · · , b

and such that two of its vertices b. and b. are joined if and only if b. and b. are

M-connected.

Proposition 5.1. The graph S' is trivial; that is, any two of its vertices are M-

connected.

Lemma 5.1. If a quadric q vanishes on 2g — 3 points of M, then q G

Γ(Ρ 8 , i»j(2)) fl"<^ vanishes on all the points of M.

Deduction of Theorem 5.1 from Proposition 5.1 and Lemma 5.1. To prove Theorem

5.1, it is sufficient to prove the equation

Γ (P g ~ 2 , /Mred (η)) = Γ (Ρ 3" 2, OP (η - 2)) (χ) Γ (Ρ?~2, / „ (2)) (5.1)



384 V. V. SOKUROV

for all η > 2, s ince r ( P g " 2 , / M ( l)) - 0. For η = 2, equation (5.1) clearly follows

from Lemma 2.2 and condition β for the scheme M. We will prove equation (5.1) for

η > 3 by induction on n.

« = 3. Let S € Γ ( Ρ 8 " 2 , ΙΜ (3)). Denote by S | H the restriction of S to the

hyperplane H. Then S | w (b.) = 0 for ζ: = 1, · · · , g - 2. Clearly, by Lemma 3.2,
M red Π w = Μ η tf, and so

g 2

F o r the proof of e q u a t i o n (5.1) in t h e c a s e η = 3, we can thus a s s u m e t h a t S\H = 0;

tha t i s , 5 = X . q. C o n s i d e r t h e cub
s - 1

Κ = *,_, · Γςτ -
L /=2

where

Xg-i • Q'iitr(Pg~2,oP(\))®lr(Ps-\iM(2))

and Qj. is a quadric not equal to zero only at the points b and b.; such quadrics

Q . exist by Proposit ion 5.1. We can clearly se lec t λ.Ε k such that Q' vanishes

on all the points of Μ except for the point b . Hence, by Lemma 5.1, Q* €

Γ{Ρ8~2, IM(2)), which proves equation (5.1) for η = 3.

Let k > 3 and assume (5.1) to be proved for η < k. Consider S €

F ( P S ~ 2 , IM {k + l ) ) . As above, we can assume for the proof of (5.1) that S |H = 0;
'"red "

that is, S = X • f, where / is a form of degree k. Consider the form

[ g ο - I

/ = 2 J

Since the form X-Q\ • vanishes on all the points of Μ except for b., there are

λ. € k (/ = 1, · · · , ρ - 2) such that Φ = X . · f and /' vanishes on the points b.
j ' ° g-1 r ι

(ζ = 1, · · · , g - 2). It is evident that /' vanishes on the remaining points of Μ lying

outside H. Hence /' € F (P g ~ 2 , lM (&)); that is, by the inductive assumption,
' " r e d

/ ' e Γ {Pg~~\ Op (k - 2)) (g) Γ ( P ? ~ 2 , 1 Μ (2)),

and so

Φ e r (p g - 2 , ο* (* - 1 » <g> r (Ρ*-3, ι Μ (2)).

By choice, the quadrics θ'.. are such that

λ;·Χ?-2 · X g_ x • Q'tf e Γ ( P ? - \ Op (* - 1)) (χ) Γ (Ρ'" 2, ΙΜ (2)).

This proves (5.1) for η = k + 1. Theorem 5.1 is proved.

Proof of Lemma 5.1. Let M' be the closed reduced subscheme of Pg~ con-

sist ing of the 2g - 3 points on which q vanishes. It is clear that q £ Y(Pg~2, 7^,(2)).
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By Lemma 2.2 d i m r ( P g ~ 2 , /M/(2)) < ig -Dig- 3)/2. Hence, by condition β) for the

scheme M, the immersion

will be an isomorphism, and so g €. TiP8~ , l^iD) and vanishes on all the points of

M. The lemma is proved.

Consider three distinct integers i, j , k in the interval [l, g - 2\; such members

exist for g > 5. Let

The quadric Q7,. clearly vanishes on all the points of Μ except for bi and bk. Denote

by J the subgraph of J in which two distinct vertices b. and b, are joined if and

only if there exists / U < / < g - 2) distinct from i and k such that the quadric Q7

ki

does not vanish on the points b. and b, .

Proposition 5.2. The graph J is connected.

Deduction of Proposition 5.1 from Proposition 5.2. J is a subgraph of J , and so

3*' is connected because both graphs have the same number of vertices.

Let the distinct vertices b., b, and b., b, be M-connected and ιφ j. By the defi-

nition of M-connectedness there are cubics

Kik, Kjk € Γ [Pg-\ 0P (1)) ® Γ iPg~\ IM (2))

. · Q., a n d Κ = X . · Q . , , w h e r e Q. ,
g 1 I rZ J fe ^ i 7 ^ ^ ^

two points b., b,, nor does Q., on &., fe^. Consider the cubic

such that K., = X . · Q., and Κ = X . · Q.,, where Q., does not vanish on the
IK g 1 I rZ J fe ^ i 7 ^ ^ ^

Since Q'Sb,) 4 0 and 2-^(^fe) ^ 0, there exist nonzero a, jS, € k such that £)' =

α θ ' + BO'., vanishes on b,, and so it is clear that b. and b. ate M-connected.

Hence J is trivial, since it is connected.

Later in this section we will thoroughly investigate the properties of the coeffici-

ents α . of the quadrics Q.. forming a basis in the space of quadrics through M. To

this end, we will introduce the notions of subbasis, real subbasis, exponent of a sub-

basis, and exponent of complexity of a subbasis.

Definition 5.1. A subbasis of the basis {Q{ \ is a system of quadrics \Q. . \a o>

where α φ β and 1 <a•>β<n<g-2, and the indices ζ ρ · · · , i form a subset of

the integers 1, 2, · · · , g - 2 such that a. . . = 0 for k Φ i., · · · , i . The number η

is called the exponent of the subbasis {Q. j and is denoted by PiQ. . ) .
r ι αχ β ια.ιβ

Examples, a) {Q-\ is a subbasis of itself with P(O..) = g - 2, s ince a?.~ = 0.

b) If there is a quadric
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then QiQJ- is a subbasis and P{Q{ . ) = 2.

Lemma 5.2. // the vertices b. , · · · , bj are only connected among themselves in

the graph J, then \Q. • A is a subbasis.
1 Ο.1 μ

Proof. The lemma i s obvious for η ~ 1. Let η > 2 and ia^ ίβ, where 1 < a, β <

n. Consider an integer k 6 [ l , g - 2] not equal to i.,···, i • s ince the points bL

cr n

and bja are not connected in the graph J , the quadric

g—2 g—2

I = 1 m=l

vanishes on bk and bia} hence α * _ ^ = Q^ib^) - 0; that is, α*^,·α= 0. The lemma
is proved.

Definition 5.2. A subbasis \Qi \ is called real if it is not possible to make up

a smaller subbasis using its elements, and the number

SP{Qi,}= max
(Q } a real

ια ι/3' subbasis

i s c a l l e d the exponent of complexity of t h e b a s i s {<2··ί·

Lemma 5.3. SP\Q..\ = g - 2, or SP\Q..\ = 2 and every element Qiojo of a proper

subbasis will be a subbasis, and also there is a Q.. which is not a subbasis.

Deduction of Proposition 5.2 from Lemma 5.3. The proposition will be proved by

contradiction; suppose J is not connected and consider the following cases.

Case I. There exist vertices bj^, · · · r 6Z- , where 2 < η < g - 3, forming the ver-

tices of some connected component of J . To the vertices bj, , · · · , bj there corres-

ponds, by Lemma 5.2, a subbasis \Qiain\ which is proper since η < g - 3. Hence every

quadric Q. is a subbasis; that is, ai • = 0 for k Φ ia, i*. Since the vertices 6Z-,,

• · · , b{ form a connected component and η > 2, there are two connected vertices b{ ,

b{o; that is, there exists a p (1 < p < g - 2), not equal to z'a or in, such that the quadric

d o e s not p a s s through t h e p o i n t s b{a and bjo . H e n c e °i pp / 0 and a • ϋ Φ 0.

C o n s i d e r t h e quadr ic

f~\ Ρ ^C~l V" V k̂~* ^ V V



NOETHER-ENRIQUES THEOREM 387

which by definition vanishes on all the points of Μ except possibly for b{a and b .

The coefficient α ' α = a* φ 0, and so Q^lb. ) φ 0; that is, by Lemma 5.1, Qf (b ) =
pip Plp ι QP 1<X

 la.v ρ

ap φ 0. It has been shown above that ak . = 0 for k φ ζ" , iR . This means that Case I is
i αίβ * α-ΐ-β α Ρ

imposs ib le .

Case II. There do not exist connected vertices; that is, for any distinct integers

i, j , k in the interval [l, g - 2] the quadric QJ

ik contains points of M. Hence a* . = 0,

which means that every quadric Q.. is a subbasis. This contradicts Lemma 5.3, and

so this case is also impossible. The proposition is proved.

L e m m a 5.4. // #(M) > 2g - 1, then SP[Q..\ = 2 and every quadric Q.. will be a

subbasis.

Proof. By Theorem 3.1, Μ is a reduced irreducible curve which generates P8~ .

Since QJ., is equal to zero on all points of Μ lying outside H, we have QJ

ik = 0 on

almost all points of M, and so Qj € T{P8~2, /M(2)). Hence ak. . = 0 for k 4 i, j ; that

is, every quadric Q.. will be a subbasis and SP{Q..\ - 2. The lemma is proved.

Lemma 5.5. // SP\Q..\ φ g - 2, then SP{Q..\=2 and every element Q. of a

a proper subbasis will be a subbasis.

Proof. We can assume without los s of generality that the proper subbas i s i s de-

defined by the indices Γ, 2, · · · , n, where 2 < η < g - 3. Consider the projective sub-

space Pn of P8~ given by the equations X 1 = · · · = X _., = 0. To every point

x. = ( a . . . , a _ ̂  there corresponds the point x{ - (a . j , · · · , a a _ ̂  6 Pn,

provided that x. does not have the form (0, · · · , 0, α 1, · · • „ α _ 2 , θ). The only

points of Μ having this form are the points b. = {0, · · · , 0 , 1 , 0 , · · · , 0 ) for i — η +

1, · · · , g - 2. Consider Λ1 = Μ \ {έ» ρ · · · > & _ 2 1 , where Μ cons i s t s of (2g - 2)

isolated points of Μ lying in general posit ion; these exist by hypothes is . We will

prove that Μ consis ts of these g + η i solated points lying in general posit ion. In

fact, if this were not so, there would exis t η + 1 points x . € M \{b , , · · · , b Λ
' '_ . . κ ι n+l' g- 2

such that the vectors %. = I o.Zj, · · · , &l

 f a1 _ \ are linearly dependent. It is then

obvious that the points χ i = {o.̂ , · · · , a1 0, · · · , a1 _ ̂ \ and the points b l,

• · · , b _j will in conjunction be linearly dependent in P8~ . It would then follow

that the points x. and bn γ, · · · , b _ 2 of M. are dependent, but their number is equal

t o n + l + g — 2 — η - g - 1. This is of course impossible. Hence Pn D Μ contains

g + η isolated points lying in general position in Pn; from the definition of a subbasis

we obtain that

Qu {au . . . , an+1, . . . , a g_!} = QtJ {a l f . . . , art, 0, . . . , 0 , ag_x}

for i Φ j and 1 < i, j < n\ that is, through the points of Μ there pass η {η - l)/2

quadrics of the subbasis and the number of points in Μ' lying in general position in

Pn is equal to g+n>n+3 + n>_2n+3. By Theorem 3.1 the quadrics Q.. for 1 <

i < j < η define in Pn a reduced irreducible curve which generates Pn. Then, by
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Lemma 5.4, every quadric in the given proper subbasis will be a subbas i s . The proof

of Lemma 5.5 is then obvious.

Lemma 5.6. If Q- has a subbasis of order g - 3, then #(M) > 2g - 1.

Deduction of Lemma 5.3 from Lemmas 5.5 and 5.6. By Lemma 5.5, it is clear that

if SP\Q{.\ φ g _ 2, then SP\Qi.j = 2 and every element QiQjQ of a proper subbasis will

be a subbasis; but by Lemma 5.6 there is a quadric Q.. which is not a subbasis. Lemma

5.3 is proved.

Proof of Lemma 5.6. We can assume without loss of generality that a subbasis of

order g - 3 is defined by the indices 1, · · · , g - 3. We denote by 0 the point

(0, · · · , 1, 0) and by Η the hyperplane defined by the equation X _ 2 = 0. Consider

the projection π: P8~ \O -> H. There are 2g - 2 isolated points in Μ lying in general

position. Under projection to Η, they give rise to 2g - 3 isolated points in general

position, on which vanishes the (g - 3)(g - 4)/2-dimensional space of quadrics gener-

ated by the Q.. for 1 < ζ< /< g - 3. Hence Η f] Κ = G', where Κ is the scheme de-

fined by the quadrics Q.. for 1 < ζ< j < g - 3, and G is a reduced irreducible curve

of degree g - 3 generating Η (by Theorem 3.1). Κ is thus an irreducible cone with

x at the point 0, since the Q.

) .

The remaining g-3 quadrics

vertex at the point 0 , since the Q.. do not depend on the variable X _

g-3).

1=1

where ζ = 1, • · · , g - 3, vanish on the projective subspace Η defined by the equations

X _i = X _ 2 = 0, clearly of codimension 2 in P8~ . Consider the closed subscheme

Κ of P8~ defined as the intersection of the quadrics Q _ 2 . (z: = 1, · · · , g - 3).

Κ DM, and so it contains 2g - 2 isolated points lying in general position; in proving

Theorem 3.1 (see the deduction of Theorem 3.1 from Lemma 3.1) it was shown that

Κ' , = G (J Η ' , where G is an irreducible curve of degree g - 2 generating P8

It is evident that G passes through all the points of Μ lying outside Η ; that is, it

passes through at least (2g - 2) - (g - 3) = g + 1 points. Under projection of the curve

G onto the hyperplane Η, it is easy to prove that its image n(G) is an irreducible

curve of degree g-3 generating H. The curve v{G) passes through g points lying among

the 2g - 3 isolated points situated in general position in H. n(G) and G thus have

g common points, and so TAG) = G by Lemma 3.1. This equality shows that

dim Κ f| G > 1; that is, dim Κ f] K' = dim Μ > 1. Lemma 5.6 then follows from The -

orem 3.1.

§6. Reductibility and smoothness of Q

Theorem 6.1. a. Qted = Q·

b. // dim Q = 1, then Q = C.
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c. // dim Q = 2 and g 4 4, then Q is a smooth surface of degree g - 2.

d. // g = 4, then dim Q = 2 and Q is either a nonsingular quadric or a cone with

nonsingular basis curve of degree 2.

Proof of parts a and b of Theorem 6.1. a. By Theorem 4.1 we have dim Q < 2; if

dim Q = 2, then Q , = Q by the same theorem, and so for the proof of part a it is suf-

ficient to prove part b.

b. Let d'imQ = 1; then by Theorem 4.1, Q = C, and by the lemma on the choice

of a "good" hyperplane there exists a hyperplane Η such that Η · C = <L.f~ x., where

the x. are distinct points lying in Η in general position. The scheme Q f] Η thus

contains 2g - 2 isolated points lying in general position in H, and #(Q f] H) = 2g - 2.

The scheme Q f] Η also satisfies property β), since the quadrics through C restrict

without kernel to any hyperplane. Hence by Theorem 5.1, (Q f] H\ea = Q 0 Η, and
s o Q , = δ by the lemma on reducibility (see b, §1).

The proof of part c of Theorem 6.1 will be based on the following proposition which

will not be proved in the present article (its proof can be found in [2], §10, Theorem 7).

Proposition 6.1. // F is a singular irreducible reduced surface of degree g- 2

lying in P8~ and generating P8~ , then F is a cone with nonsingular rational basis

curve of degree g - 2 generating a hyperplane in P8~ l .

Lemma 6.1. For any point 0 € P g ~ the generic hyperplane passing through 0

does not touch the curve C.

Deduction of the remainder of Theorem 6.1 from Proposition 6.1 and Lemma 6.1.

c. Let dimQ = 2 and g φ 4. We will assume that Q is a singular variety. Then, by

Proposition 6.1, Q is a cone with nonsingular rational basis curve G of degree g - 2

generating a hyperplane Η. We consider the projection π from the point 0 (the vertex

of the cone Q) of C onto H. This projection is defined at all points of the curve C,

except perhaps at 0, if 0 € C. The preimage of each generic point of G obviously

consists of the same number of points of C. We denote this number by k {k > l); that

is, a generic generator of the cone Q intersects C in k isolated points, ignoring the

point 0 if 0 € C. Since the generic hyperplane through 0 intersects Q in g - 2

distinct generic generators and does not touch C, by Lemma 6.1 it follows that 2g -

2 = klg -2) for 0 C C and 2g - 2 = k{g - 2) + 1 for 0 € C. It is easy to show that

both equations are impossible for g > 4. This leads to a contra die it ion of the assump-

tion that Q is not smooth for g > 5.

d. If g= 4, then dimW^P 8" 1 , /c(2)) = (g - 2) (g - 3)/2 = 1, and therefore dim Q =

2 and Q is a quadric in Ρ . If Q is a singular surface, by Proposition 6.1 Q will

be a cone with nonsingular basis curve of degree 2. The proof of Theorem 6.1 is com-

plete.

Remark. The case of a singular quadric for g = 4 can actually be realized, for

example, by the curve defined by the equations
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Χ°ο +ΧΪ + * ! = 0, XI -i-Xl +Χ3

3 = 0

in Ρ . For char& 4 2, 3 it is easily proved that this curve is not hyperelliptic and

that its image under the canonical immersion in Q is the singular quadric defined by

the equation

In case k = 2, 3 it is also easy to construct a corresponding example. It will be prov-

ed in §9 that the case of a nonsingular quadric is realizable.

Proof of Lemma 6.1. The hyperplanes passing through 0 and touching C form a

closed subset in r * " which we denote by P. Consider the lines passing through 0

and some point χ 6 C. Since C is a curve generating P8~ and g - 1 > 3, only a

finite number of lines passing through 0 touch the curve C (see [3]), or a tangent line

at the generic point of C does not pass through 0. Let χ € C; then P(x), the space

of planes passing through 0 and touching C at x, will coincide with the space of

planes passing through 0 and a tangent line at x. Hence dim P(x) = g - 4 for the

generic point χ € C, because a tangent line at the generic point does not pass through

0. At the remaining points x, which form a finite set, dim P{x) - g - 5. Hence dim Ρ <

g - 3, and the dimension of the space of hyperplanes passing through 0 in P 8 ~ is

equal to g — 2, and so the generic hyperplane passing through 0 does not touch C.

The lemma is proved.

We recall some properties of rational ruled surfaces which will be needed in the

sequel for the investigation of the structure of Q in the case when Q is a smooth

surface. A rational ruled surface is a rational surface F for which there exists a mor-

phism /: F -> Ρ each of whose fibers is isomorphic to the projective line. It is well

known (see [l] or [2], for example) that every such surface is isomorphic to one of

the surfaces F , η > 0, defined in the following way: F_ — Ρ χ Ρ ; F for η > 1

has a canonical section b: Ρ -> F^ whose image b is a unique irreducible curve on

F with negative index of self-intersection and (b · bn) = - n. It is easy to show

that the fibers of the projection f: F -» Ρ form a linear equivalence class, which

will be denoted by s . For each F we have an isomorphism of groups

PicFn = c\(Fn)~Z<£>Z. (6.1)

The generators for η > 1 are the classes 5 and b , and for η = 0 they are

classes of coefficients, one of which will be denoted by sQ and the other by bQ. It

is easy to compute the canonical class of the surface

(aFn = — (2 -f- n)sn — 2bn> (6.2)
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§7. Q is a smooth surface

In this section we will define a set of surfaces, to one of which Q is isomorphic

if it is nonsingular, and also we will calculate the class of the curve C in Pic ζ>.

Theorem 7.1. // Q is a smooth surface, then the following possibilities arise.

1. Q ~ Ρ ; then g = 6, Q will be a Veronese image of the plane Ρ and the

curve C, immersed in Q, will be a curve of degree 5.

2. Q ~ F , where η satisfies the following relations:

l
V. 3

and

,g— 4J; n = g(mod2) (7.1)
J

S n ) . (7-2)

Before proceeding to the proof of Theorem 7.1, let us recall a known result from

the theory of rational surfaces; its proof can be found in [2] (§10, Theorem 7), for

example.

Proposition 7.1. // F is a nonsingular irreducible reduced surface of degree g —

2 lying in P8~ and generating this space, then F is either the surface F for some

0 < η < g - 4 with η ΈΞ g (mod 2), and the generators {that is, divisors from the class

s ) are lines in P8~ , or g = 6 and then F is isomorphic to Ρ ; in the latter case F

is a Veronese image of the plane Ρ .

Deduction of Theorem 7.1 from Proposition 7.1. Q is an irreducible reduced sur-

face of degree g - 2; let us assume that it is regular, so that we obtain from Proposi-

tion 7.1 the following possibilities:

1. Q ~ Ρ ; then g = 6 and Q is a Veronese image of the plane Ρ . Let η be

the degree of C, immersed in the plane Ρ ; then g = 6 = {n — 2){n — l)/2 by the for-

mula for the genus of a curve of degree n. Hence η = 5, because η > 1; that is, the

curve C, immersed in Ρ , will be a curve of degree 5.

2. Q ^ F . We denote by h the linear equivalence class of divisors of the

hyperplanar sections F — Q C P#~ . From the isomorphism (6.1) we have h =

b · b + 5 · s , and we compute b and s for the given immersion F — Q C P g ~ .

For the generic hyperplane Η, Q f] Η is an irreducible reduced curve of degree g -

2 generating Η (see the proof of part c of Theorem 4.1). Hence

(h.h)=g—2. (7.3)
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Since the curve G is rational, by the formula for the genus of a curve on a surface we

have

(h • (h + ωρη)) = 2g(G) - 2 = - 2 , (7.4)

where ωρ^ denotes the canonical class of the surface F =* Q. Equations (7.3) and

(7.4) yield the following system of two equations for b and s:

((b-bn+s-sn)-{b-bn + S'Sn)) = +2bs—nb2=g—2,

((b'bn + S'Sn)({b—2)-bn+{s—n—2)Sn)) ( 7 5 )

= {b—2)s + (s—n—2) b—b {b—2)n = —2,

since b = - n, s = 0 and (b · s ) = 1. We transform the second equation of (7.5)

making use of the first:

0=2+ (b—2) -s+ (s—n—2)b—b(b—2)n=2—2s—nb

+2nb—2b+2bs—nb2

= 2+nb—2b—2s+g—2=g+nb— 2b—2s,

that is,

g+nb—2b—2s=0.

Multiplying the last equation by b and once again using the first equation of (7.5),

we obtain

0=g& + nb2—2bs—2b2=gb—g+2—262,

that is, 6 satisfies the quadratic equation

2b2—gb + g—2=0.

Hence b = 1 or (g - 2)/2. In the latter case the first equation of (7.5) implies that

5 = 1 + (g - 2)n/4 and δ = ((g - 2)/2)fcn + [(g - 2)n/4 + l] · sn. It is evident that

(/ · b) > 1 for the linear equivalence class / of any irreducible curve, and so {h · b ) >

1 or

"(g-2) < Q

4

Hence η = 0, s = 1 and b = (g - 2)/2, but b ̂  (g - 2)/2 for « > 1. There does not

exist a canonical choice of the class bQ on the surface F Q , and the classes bQ and

sfi, being the classes of the generators, can always be interchanged. Then we obtain



NOETHER-ENRIQUES THEOREM 393

that b can be assumed equal to 1 for η - 0, while b will always be equal to 1 for

η > 1. Since b = 1, we have from the first equation of (7.5) that s = {g + η - 2)/2 and

b = b + {(g + n - 2)/2)s , and hence

We will compute the linear equivalence class of the curve C immersed in F ^

Q. The curve C is a nonsingular irreducible reduced curve of degree 2g - 2 lying in

P g ~ ! , and g(C) = g, the genus of C, and so

(cl (C)-h) =2g—2t (7.6)

and, by the formula for the genus of a nonsingular curve lying on a regular surface,

( c l ( C ) . ( c l ( C ) + W p J ) « 2 ^ - 2 . (7.7)

Let cl(C) = b • b + s • s for the isomorphism (6.1). We then obtain from equa-

tions (7.6) and (7.7) a system of two equations for the unknowns s and b:

((6- 6rt + s • sn) .((6 — 2) · bn + (s — n — 2)sft)) = — 6(6 — 2)n (7.8)

+ s(6 — 2)-}-(s— n— 2) · b = 2g—2.

We obtain from the first equation of this system that s = (2g - 2) - b{g - η - 2)/2

- 4 ) 6 - 6 2 ( g - / z - 2 ) .

Hence

2g — 2 = — b ( & —2)/z + s(6 —2) + (s —n—2)6 = —&(&—1) · « + 26s

— 2s — 26 = — 6(6— l).« + (4g — 4)6 — b2(g — n — 2)

— 2s — 26 = 6rc + (4g — 4)6 — 62(g— 2) — (4g — 4) + 6(g + rc— 2)—26

= 62 (2 - g) + 4 - 4 g + 6 (5g +8);

that is, b is a root of the quadratic equation

8) = 0, (7.9)

and so b = 3 or 6 = 2 + 2/(g - 2). The last value for b is possible only when g = 4,

since g > 4 and b is an integer. For g - 4 the quadratic equation (7.9) has the

double root b = 3. Hence

6 = 3, s = 2 g - 2 - 6 ( g - " - 2 ) = g - r 3 " + 2
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and

It follows from the last equation that

OQ(C) =OQ(\)0 QQ1 =OFn

To conclude the proof of Theorem 7.1, we will show that η satisfies the relations

(7.1). The second relation follows from Proposition 7.1. It is clear that {b · cl(C)) >

0, and so

that is,

3 (7.11)

From the inequality (7.11) and the fact that 0 <n < g - 4 by Proposition 7.1, we obtain

the first relation of (7.1):

Theorem 7.1 is proved.

ξ'β. Proof of Theorem 2

Theorem 8.1. a. Q — F for g > 5 if and only if there exists on the curve C an

effective divisor D of degree 3 such that dim// (C, 0C{D)) = 2.

b. Q ~ P2 if and only if g = 6 and there exists on the curve C an effective

divisor of degree 5 such that its carrier consists of five distinct points and

Proof, a. Necessity. For Q — F it was shown in the proof of Theorem 7.1

that

Let / be a divisor from the class s . By Proposition 7.1, / is a line in P g ~

under the immersion F — Q C P g ~ , because deg Q = g — 2. Consider the divisor

D = I · C on the curve C. It is clear that D is an effective divisor and

degD = (cl(C) · cl(/)) = ((3frrt + g + 3

2

/l + 2 s n ) · sB) = 3.
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Let ω be a divisor from the canonical class of the curve C which is determined by a

hyperplane Η not passing through points of the divisor D and having equation h. Then,

from the definition of the canonical immersion,

h' is a linear form from the coordinate ring ofWOΗ

It is easy to show that

H°(C Or (<d D)) = [~ Λ'is a linear form on P g ~ ! which defines i ·
\h a hyperplane //' C / > ( 8 * 2 )

Hence dimtf°(C, 0c{co - D)) = g - 2. By the duality theorem, dim Hl(C. 0C(D)) = g - 2,

and so, by the Riemann-Roch Theorem for curves,

dim//°(C, O c ( D ) ) = dim Hl{Ct 0 c ( £ > ) ) + d e g £ > — g + l = 2 .

The necessity is proved.

Sufficiency. Let D be an effective divisor of degree 3 on the curve C such that

dimH°(C, 0c{D)) = 2; then by the Riemann-Roch Theorem,

dim//°(C, Ωο (g) 0 c ( — D)) = g — 2. (8.3)

We choose a divisor ω from the canonical class of the curve C in such a way that

(ω · D) = 0; it then follows from formula (8.1) that H°{C, Ο^ω - D)) = \h'/ b\h' is a

linear form from the coordinate ring of the space P g ~ such that, for the hyperplane

Η corresponding to it, the divisor Η • C > D\, and hence the "projectivization" of

the space Η (C, Ο Λω — D)) is isomorphic to the projective space of hyperplanes in-

tersecting the curve C in a divisor not less than D, and the dimension of this space

is equal to g — 3 by formula (8.3); on intersection these hyperplanes therefore define

a line /. Obviously (/ · c) > 3. Hence any quadric passing through C contains /, and

therefore ICQ and dim<2 = 2; by Theorem 6.1, Q is a smooth surface of degree g — 2,

since it was assumed in part a of Theorem 8.1 that g > 5. Q cannot be a Veronese

image of the plane Ρ because, as is well known, a Veronese image of a plane does not

contain lines. Hence Q — F by Proposition 7.1.

b. Necessity. Let Q — Ρ ; then by Theorem 7.1 we have g - 6 and Q is a

Veronese image of the plane Ρ , while the curve C, immersed in Q, will be a curve

of degree 5 on Ρ . Under a Veronese transformation the line / of the plane Ρ pass-

es to a curve of degree 2 in Ρ which generates the plane π. Since the degree of C,

immersed in Ρ — Q, is equal to 5, there exists a line / intersecting C in five dis-

tinct points which form a divisor D. The corresponding plane π then contains the

divisor D and is generated by it. As in the proof of necessity in part a, it is easy to

show that

dim H°(C, Qc S Oc ( - D)) •= g — 3 = 3,
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and, by the Riemann-Roch Theorem,

dim Hl(C, O c (0))=3,

1(C, O c (D))+degD—

The necessity is proved.

Sufficiency. Let C be a curve of genus 6 and D an effective divisor of degree 5

whose carrier consists of 5 points, and dimH°(C, 0c(D)) = 3; then, by the Riemann-

Roch Theorem,

dim//°(C, Qc ® 0 c ( — D)) = g — 3 = 3. (8.4)

We can choose on C a divisor ω from the canonical class in such a way that (D . ω) =

0. Hence, as in the proof of sufficiency in part a, we obtain that the "projectivization"

of the space Η (C, Ο Λω — D)) is isomorphic to the projective space of hyperplanes

which intersect the curve C in a divisor not less than D. By (8.4) the dimension of

this space is equal to 2, and so, on intersection, these hyperplanes define a plane π.

It is easy to show that C · n>D. If Q were equal to C, there would exist two quad-

rics q^ and q2 whose restrictions to π would give a finite number of points, and we

would clearly have deg D < (C . π) < (π · q^ · q2) = 4, contradicting the fact that deg D =

5. Hence dim Q = 2 and Q f] π = q is a quadric lying in the plane π, since Q clearly

does not contain π.

We will show that Q cannot be a ruled surface. To this end we examine the follow-

ing cases.

I. q , = / is a line which contains the divisor D. Since #(SuppD) = 5, (/ · C) >

5. If Q were a ruled surface, then a divisor of a hyperplanar section on Q ^ F

would lie in the ruled system b + ({g + η - 2)/2)s , as was shown in §7. It is easy

to prove from the last equation that if / is a line lying on Q — F , then either / € s ,

or / C b and η = ρ — 4. Therefore q , = / € b and « = Ρ — 4, because

( ( 2 ) ) = 3,

while (/ · C) > 5. Hence

since g = 6 and η = g - 4 = 2. This contradicts the fact that (/ · C) > 5, and so Q

cannot be a ruled surface in this case.

II. q is a singular reduced quadric, and so it splits into two distinct lines, / and

/'. If Q were the ruled surface F , then, by what has been said in the analysis of

case I, it would follow that η = g — 4 and the two lines I and / lie in the classes

s and b . Therefore (C . q) = (C . (s +- b )) = (C . s ) + (C . b ) = 4, since g = 6
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and η = g - 4 = 2. This contradicts the fact that q contains 5 distinct points of C,

and so Q cannot be a ruled surface in this case.

III. q is a smooth reduced quadric. We will assume that Q — F , η = 0, 2, by

Proposition 7.1. Let cl{q) = b - b + s · s . Using the fact that a divisor of a hyper-

planar section under the immersion F = Q C P g ~ lies in the class b +

((g + n _ 2)/2)s , it is easy to show that for η = 2 a nonsingular quadric cannot lie on

F , while cl{q) = bQ for η = 0. Hence

since « = 0 and g - 6. It was noted earlier that (C · q) > 5, and so Q p^ F . From

Theorems 6.1 and 7.1 we then obtain Q =* P2.

Theorem 8.1 is proved.

Remark. For the proof of sufficiency in part b it was shown that, if on a curve C

of genus b there exists an effective divisor of degree 5 for which dim Η (C, 0 JD)) =

3, then dim Q = 2; that is, the curve C, the image under the canonical immersion of

the curve X, will be a special curve. The author does not know whether Q is iso-

morphic to Ρ or possibly to F in this case. It was assumed in part b of Theorem

8.1 that #(supp£>) = 5.

§ 9 . Proof of Theorem 3

Theorem 9.1. a. Let η satisfy the following relations:

then there exists a special curve X of genus g such that Q — F for it.

b. dim H°(Q, OQ - X) = 2g + 8 if Q ^ Fn.

The proof of Theorem 9.1 will be based on the following assertions.

Lemma 9.1. // C is a smooth curve of genus g and degree 2g - 2 lying in the

space P g ~ and generating it, then C is a nonhyperelliptic curve which is its own

image under the canonical immersion.

Proposition 9.1. a. The sheaf Op (b + ms ) is very ample for m > n, and

d i m t f V , OF (b + ms )) = 2m - η + 2.
η ' η η η

b. In the linear system 3b + ks , where k > 3n, there exists for η > 1 a reduced
J η η — ' —

irreducible smooth curve; the same holds for the linear system 3bQ + ks^ for k > 1.
c. dimH°(F , Op Ob + ks )) = 4k - bn + 4, where k > 3rz.

Deduction of Theorem 9.1 from Proposition 9.1 and Lemma 9.1. Let η satisfy

the relations (9.1); then (g + η — 2)/2 is an integer greater than n, and so the sheaf

Op {b + ((g + η - 2)/2)s ) is very ample, and the linear system b +{(g + « — 2)/2)s
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defines an immersion of the surface F into projective space of dimension equal to

(by Proposition 9.1). Denote the image of the surface F in Pg~ by Q'. It is evi-

dent that Q is a reduced irreducible smooth surface generating P8~ . We have

degQ' - (ft, + '-±±=*^ ba + i±p- 2«i.) =ί-2.

Consider the linear system 3b + ((g + 3« + 2)/2)s ; then (g + 3« + 2)/2 > 3n, since

(g + 2)/3 > η for η > 1, and (g + 3« + 2)/2 > 3 for η = 0, as g > 4. Hence by Propo-

sition 9.1 there exists in the class 3b + ((g + 3« + 2)/2)s a reduced irreducible

smooth curve X, and

dim//°(Q\0Q.(X))==4

The genus of the curve X is equal to

/„, g + 3/z + 2
(cl (X), cl (Χ) + ω / ? ) 3&rt + sn, bn

Denote by C the image of X lying in F under the immersion defined by the linear

system b + ((g + η - 2)/2)s . We have

whence, by Lemma 9.1, C is a nonhyperelliptic curve, being a canonical image of X.

Let / be a divisor of the class s ; then / is a reduced irreducible smooth curve iso-

morphic to Ρ . Furthermore,

and so / is a line lying on Q C P g . Also,

(t) · άθη ~\ Snj — 0.

The line / is thus contained in every quadric passing through C; that is, / C Q} and

so Q C 2 since the generators / mark the whole surface Q — F . Hence dim Q = 2

and Q = Q' — F by Theorem 4.1, and so there exists a special curve X of genus

g such that Q = Q' — F for it. Theorem 9.1 is proved.

Proof of Lemma 9.1. Let Η be some hyperplane in P g ~ . Since C generates

P g ~ , the effective divisor D = Η . C is defined and deg D - deg C - 2g _ 2. Clearly

dim Η (C, 0 c(D)) > g. Hence by the Riemann-Roch Theorem

d\mH°(C,Oc(—D)®Qc)^d\mH0(C,Oc(D)) — degD-\-g— 1 > 1;

thus, since deg(O c) = deg (D) = 2g _ 2, there is a function f on C such that
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lies in the canonical class of C and (/)0 = D. D thus lies in the canonical class, and

dim Η (C, 0 AD)) = g, and so C is a proper image under the canonical mapping of the

curve C. The lemma is proved.

Lemma 9.2. The linear systems b + ns and 3 b t 3b s have reduced irreduc-
J η η η η η

ible regular curves for η > 1.

Proof. It is well known that for the ruled surface F the arithmetic genus is equal

to 0. Hence for any divisor D on the surface F we have
η

where U P is the canonical class of F . For any effective divisor D on F it is
η η J η

easy to show, from the duality theorem and the fact that ωρ = - 1b + (n + 1) s ,

t h a t dimH2{Fn, Op^D)) = 0, a n d t h u s , for k>0,

dim H°(Fn, OFn(bn -\- ks.t)) — dim Hl(Fn, 0Fn{bn -\- ksn))
(9.2)

= 1 +(*n+^-3^(* + n + 2)fr) a ^ f l + 2

and

dim H°(Fn, 0Fn(3bn -\- ksn)) — d i m / / 1 ^ , Offt(36rt -f- &V>)

(9.3)
(3bn -\- ks • 3bn -{- (k -J- η + 2) srt)

— 1 -] '• — = Ak — 6/2 -4- 4.
2

Let ra > 1; then b is the unique reduced irreducible curve with negative index

of self-intersection (see [1]). As is well known, b is a regular curve of genus 0. Let

φ € r ( F , Op (b + ns )) and let φ be a function which is constant along generators;

that is, a divisor of the class s ; it is then obvious that φ € F(F , Op (ns )). Con-
' η η η η

sider the restriction φ' of φ to b ; then 0 € Γ(& , Ο, (D)) where D is an effec-

tive divisor of degree n. The restriction to b of functions constant along generators

takes place without kernel, and for any function φ € T(b , 0^ (D)) there is a func-

tion φ, constant on generators, whose restriction to b is equal to φ . There thus

exists on the spaces F(F , 0ρ (b + ns )) a set of linearly independent functions

φ0, φ , . . . , φ , /, where the φ. are functions constant on generators, and / is a

function not constant on generators, because dimF(^ , 0^ (D)) = degD + 1 — η + 1

(the curve b is rational), and equation (9.2) yields the inequality dimF(F , Op (b + ns ))
η η η η η

> η + 2. Since / is not constant along generators, there exists on a divisor of its

zeros an irreducible reduced curve G which does not coincide with 5 or b . Hence
η η

(G . s ) > 1 and (G . b ) > 0 and therefore cl(G) = b • b + s . s , where b > 1
η — η — η η —
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and 5 > η; but clearly cl (G) < b n + ns . We obtain from this inequality that G € b +

nsn' It is easy to show that the curve G is smooth and rational. Consider the mor-

phism μ from F into the projective space P w + defined by the functions (<£0» φ,ι

• · ' ' Φη> /'· Under this moφhism, b passes to the point 0 with coordinates (θ, · · · ,

0, 1), while generators pass into lines passing through the point 0. Under μ, G is

immersed in the plane / = 0. Thus μ ( ^ ) is a cone with vertex at 0 and nonsingular

basis curve G, whose degree is equal to degD = n. Under μ, the generators F and

the curve G are mapped isomorphically onto generators of the cone μ(Ρ ) and the

basis curve of the cone μ(Ρ ) respectively, and thus μ is an isomorphism of F minus

b . Let / be some nonconstant function in V(F , Op (b + ns )). It was shown above
η η ' η η η

that (ftp. = G is an irreducible reduced smooth curve. Since G' C b + ns , it is

obvious that degu((j') = (G" · ns ) = b + ns · ns ) - n. G' thus lies in some hyper-

plane of Pn + 1; that is, G" = (λ/+ Σ λ ^ ^ , and thus /' = λ/ + Σλ^., and the functions

φ. , φ., · ' · , φ , f form a basis of the space V(F , Op (b + ns )),

dim H°(F , OF {b + ns )) = η + 2.
η Γ η η η

Consider the morphism
(aimH«(Fn,0F (3&n + 3 N s , t ) ) - l )

'FP n Ph~\

defined by the linear system 3^n + 3ns

n· ^ follows from properties of the morphism

μ that p.SF ) is an irreducible reduced surface having one singular point, and on

μΛ,Ρ ) the generic hyperplane cuts out divisors of the class 3b + 3ns . By Bertini's

theorem (see [4] or [5]) the generic hyperplane Η in the space Ρ cuts out a reduc-

ed irreducible smooth curve. There thus exists a reduced irreducible smooth curve in

the class 3& + ns . The lemma is proved.

Lemma 9.3. The sheaf Op (b + (n + l)s is very ample.

Proof. This is obvious for η = 0, since on a regular quadric lying in Ρ hyper-

planar sections cut out elements of the class b + s , and so we can assume η > 1 for

the proof of this lemma. Let φ0, φι, · · · , Φη j be linearly independent functions in

Γ(Ρ , Op (b + {n + l)s )), constant along generators. Consider the morphism η de-

fined by the functions φ0, · · · , φη, φη j(3) / and f · Φη y where / is the function de-

fined in the proof of Lemma 9.2. The morphism η is an isomorphism on Ρ^^η, since

the morphism μ defined by the functions φ~, · · · , φη and / is an isomorphism on this

space. Under η generators pass into lines, and b passes isomorphically into a line

which is given parametric ally in the following way:

/: (0, .... 0, 1,X),

where X 6 k (J \<χ>\. Thus η is a one-to-one mapping. In order to prove that η is an

isomorphism, it is necessary to show that the tangent mapping at the points of b is

an isomorphism. This holds because the line r^b ) is transversal to the lines which

(3)It is assumed that φ , 6 Γ (F , OF (S )) is a nonconstant function
77 + 1 n r n n '
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are images of the generators F . Thus η is an isomorphic immersion of F , and,

since there is a function { ' Φη j € (F n, Opn(bn -t- (n + ΐ)$η)) at which (f<f>n j ) ^ €

6 + (n + l)s , the sheaf Op (b + (w + l)s ) is very ample. The lemma is proved.

Deduction of parts a and b of Proposition 9.1 from Lemmas 9.2 and 9.3.

a. The sheaf Opn(bn + (n + \)s ) is very ample, by Lemma 9.3· The sheaf

Op (b + ms ) is thus very ample for m > n, since the system (m - n - \)s has no

fixed components.

Let Q be the image of F under the immersion defined by the very ample sheaf

Opn{bn + ras^). Then Q is an irreducible reduced surface generating Ρ , where

Ν - dim tf° (Fn, 0Fn (ba + mSll)) — 1.

Hence degQ > Ν - 1; that is,

deg Q = (bn -h ms.i, ba -\- 7is,t) = 2 n — n > dim tf° (F n , OFrt (&« -f- ms,,) — 2

and

dimH°(Fn, 0Fn{bn + ms,,)) < 2/n — η 4- 2.

The latter inequality and (9.2) imply that for m > n

dim//°(Fn, 0/rrt(6rt +ms ( I )) = 2m — AZ + 2, a\mHx{Fn, 0Fn{bn + msn)) = 0.

b. It was proved in Lemma 9.2 that for « > 1 there exists an irreducible reduced

smooth curve in the linear system 3^ + 3ns , and so we can assume for the proof of

part b of Proposition 9.1 that k > 3« on the linear system Vo + ks . Hence k - 2» >

n, and the sheaf Op (b + {k — 2n)s ) is very ample; the class b + ns does not have

fixed components (this is obvious for n = 0 and is proved in Lemma 9.2 for n > 1), and

so the sheaf Op (3& + ks ) is very ample. It follows from Bertini's theorem (see

[5]) that there exists a reduced irreducible smooth curve in the full linear system 3b +

ks for k > 3n.
n

Parts a and b of Proposition 9.1 are proved.

Lemma 9.4. a. dimW°(F , O F (2b + 2ns )) < 3n + 3.
n r n n n —

b. dim//°(F , OF {?>b + ?>ns )) < 6n + 4.
w r n n n

Proof, a. It was shown in Lemma 9.2 that there exists a reduced irreducible

smooth curve G of genus 0 in the class b + ns . Let G be another such curve in

b + ns , not equal to G. Consider the restriction of functions in T(F , Op (2G*)) to
π π ί n Γ π

the curve G; functions in F(F , Op (2G*)) thus pass to functions in F(G, OQ(D)),

where D = 2(G · G ) is an effective divisor of degree In. The kernel of this restriction

consists of functions lying in V(F , Op (2G — G)). Hence
dim H*(Fn, 0Fn(2bn -f 2/isn)) < dim tf° (G, 0 G (D)) f dim //o(Fn, 0 f f I (&n + ns,,)) =
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= 2nj-l+«-f2=3/i+3.

b. As in part a, it is easy to show that

dim Γ (Fn, OFfi (3G')) < dim Γ (G, 0G (3G · G')) + dim Γ (Fn, OFn(3G' — G)).

Hence

dim H°(Fn, 0Fn (3bn + 3nsn)) < dim H°(G, 0G (3 (G · G')))

+ dim//0(/=·«, OF;I(2blt + 2rtsn))<3« + 1 +3/2 + 3 = 6/i + 4 .

The lemma is proved.

Lemma 9.5.

dim//°(frt, 0Γη(36η+(Λ f \)sn)) -dim H°(Fn, OFfl(3bni-ksn

Proof. Let / and /' be two distinct generators from s . Restricting functions from

, Op (3b + (k + l)/)) to /' as in the proof of Lemma 9.4, we obtain the inequality

dim//°(FBi 0Fn(3ba+(k +l)/))<dim//u(Fn, 0Fn(3bn+ (k + 1 ) / - / ' )

0r (/' · (3ft. + (k + 1)/))).

Furthermore,

dim//°(f, Or (/' · (3fert + (k H- 1)/))) - (sn • (3ft, +(Λ + 1)^)) + 1 = 4 .

Hence

dim//°(Fn, 0fK(3&n !-(Λ j-l)s r t))-dim//°(F,, OFJ3bn + fon))<4.

The lemma is proved.

Proof of part c of Proposition 9.1. The inequality

dim fi°(Fn, 0Γ)1 (3bn f- fes»)) <. 4^ — 6n + 4 ,

where ^ > 3«, follows from Lemmas 9.4 and 9.5. We then obtain from equation (9.3)

that for k > 3«

dim //°(/=•„, 0Γ / ΐ (3&,t + kslt)) - 4A5 — 6/z r 4 , dim Z/1 (/="„, 0 ^ (3bn-\-ksn)) = 0.

Proposition 9.1 is proved.
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