IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

THE NOETHER-ENRIQUES THEOREM ON CANONICAL CURVES

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1971 Math. USSR Sb. 15 361
(http://iopscience.iop.org/0025-5734/15/3/A02)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 195.37.209.182
The article was downloaded on 20/09/2010 at 14:32

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0025-5734/15/3
http://iopscience.iop.org/0025-5734
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Mat. Sbornik Macth. USSR Sbornik
Tom 86 (128) (1971), No. 3 Vol. 15 (1971), No. 3

THE NOETHER-ENRIQUES THEOREM ON CANONICAL CURVES

UDC 513.015.7
v. v. SOKUROV

Abstract. The principal result of the present work consists in the proof that
an intersection of quadrics passing through a canonical curve is a reduced variety.
The possible cases when the intersection of quadrics does not coincide with the
curve itself are also examined in this article.

Figures: 1. Bibliography: 8 references.

Max Noether considered in [7] the space ®*' . ®'*) of functions of the form
w/w,, where the  are regular differentials of some curve X and w, is a fixed reg-
ular differential; ®'? is the space of i-forms of functions from the space ®D with
coefficients in a ground field k. Noether showed that the dimension of the space of
relations of degree i for functions in oM s equal to

(“"_—1 ) —@i-—Dig—1

13

in the nonhyperelliptic case and equal to

(’g*’;"l) —i(g—1—1
in the hyperelliptic case, where g =dim ®'!) is the genus of the curve X.

Enriques looked at Noether’s result from a geometrical point of view (see [6] for
Enriques’ results). We shall consider a curve C, the image of X under a canonical
transformation. It is well known that C is isomorphic to X in the nonhyperelliptic
case. We will assume in what follows that X is not hyperelliptic. A relation of
degree i between regular differentials corresponds to a form of degree i passing
through C. Enriques proved that the number of linearly independent quadrics passing
through C is equal to (g — 2)(g — 3)/2. This corresponds to Noether’s result on the
number of independent relations of the second degree for regular differentials.
Enriques then looked at the intersection of the quadrics through C, and showed that

in it will be found only the points of C, or a surface of degree g — 2.

o AMS (MOS) subject classifications (1970), Primary 14N0S: Secondary 14H45, 53A20.
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362 V. v. SOKUROV

In the present article, the results of Noether and Enriques will be examined in
connection with the theory of schemes. The principal portion of the article is devoted
to proving that the intersection of the quadrics through C is a reduced scheme. It
coincides with C, or is an irreducible surface.

The author is grateful to A. N. Tjurin for the use of an unpublished manuscript,

and also to Ju. I. Manin for posing the problem.

§0. Formulation of the problem and some basic results
Let & be some field; all our varieties and schemes will be defined over £. Let
us denote by X a complete nonsingular curve of genus g> 3. The curve will be

assumed nonhyperelliptic. Then it is well known that we have a canonical immersion
%: X —Proj(S (H*(X, Qx))),

where (), denotes the sheaf of regular differentials of X over k. Let C =«(X). To
avoid the inhibiting effect of too complicated a notation, we will put pe-! o
Proj (S(H(X, Q). The basic properties of the canonical immersion will be recalled
at the start of §2.

Let us denote by Q the closed subscheme of the space P2~1 whose ideal is
generated by the forms of degree 2 in the ideal of the curve C. It is the purpose of
this article to study the basic properties of the scheme Q. The principal results

are contained in the following theorems.

Theorem 1. a. O is a projective variety; that is, Q is a reduced irreducible
closed subscheme of P&~ 1,

b. The dimension of Q is eitherl or 2.

c. IfdimQ =1, then Q = C.

d. IfdimQ =2 and g # 4, then Q is a smooth surface of degree g — 2. In this
situation, only the [ollowing possibilities can arise.

1. Q & P?, inwhich case we have the following exact description of the
immersion of P? in P81 gpnd of the location of C on P2, Let us denote by OQ(I)
the restriction of the sheaf O, _, (1) to Q. Then P&~ 20 and OQ(C) = 0,2(4)
for g =3; OQ(l) = OPZ(Z) and OQ(C) = Op2(5) for g = 6; in other words, in this case
the curve C lying on P? 2 Q will be a curve of degree 5, and Q is a Veronese
image of this plan. If g# 3, or 6, then Q % P2,

2. QxF (1) and the following relation holds:

0<n<min{g3—ﬁ,g—4}; n = g (mod 2).

As in the previous case, the immersion of Fn in P&~ and the locus of C in the

divisor class group of the surface F_ admits an exact description:

(})The definition and elementary properties of Fn can be found in [1] and [2] (see also

6 of this article).
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0g (1)=0r, by + E5=2 1),

00(C) =0o(C)® QF* = OF, (3bn+ gi'znﬁ . S) _

e. If g =4, then either Q is the surface F,, immersed in the same way as F,

in case d2, or Q is a cone with a nonsingular base curve of degree 2.
Definition. Curves X for which dim Q =2 will be called special.

Theorem 2. In order that the curve X be special, it is necessary and sufficient
that

a) for g>7 or g=35, there exists an effective divisor D of degree 3 such that
dim HO(X, 0,.(D)) = 2;

b} for g =0, either there exists an effective divisor D of degree 3 for which
dim HO(X, OX(D)) = 2, or there exists an effective divisor D of degree 5 for which
dim H(X, 0,,(D)) = 3;

c) for g =3, 4, every curve X is special.

Theorem 3. a. There exists a special curve of genus 6 for which Q is a Veronese
image of the plane P2,
b. If k is infinite und n satisfies the relation (1), then there exists a special

curve X of genus g such that Q = F .

We will assume throughout the sequel that g > 4. The proof of the theorems in
casé g =3 presents no difficulty. We will further assume that k is algebraically
closed. It is clear that the validity of Theorems 1 and 2, and of part a of Theorem 3,
is independent of this assumption. The proof of part b of Theorem 3 is given in $9.
Essentially it relies only on Bertini’s theorem for hyperplanar sections, which holds
when & is infinite.

The following propositions lie at the foundation of the proof of Theorem 1.
o . 0 -1
Proposition 1. dim H"(P&77, 1_(2)) = (g - 2)(g - 3)/2.

Proposition 2. Let M be a scheme given as the intersection of (g - 2) (g - 3)/2
independent quadrics in the space P8=2, which contains 2g — 2 isolated points
lying in general position. Then M __, =M, and if # (M) >2g-2,(2) then M is a

reduced irreducible nonsingular curve of genus 0 and degree g - 2, generating pe-2,

The proof of Proposition 1 is dealt with in $2, where the dimensions of the
spaces H{(P&~!, I-(n)) are actually calculated for all i and n.

$$3 and 5 are devoted to the proof of Proposition 2. This proof makes use of
a detailed analysis of spaces of sections in suitable bases. The situation described

in Proposition 2 arises if we consider the scheme Q[ H for the generic hyperplane

(2) # M denotes the number of points in the set M.
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H. The condition on the number of quadrics defining the scheme Q (] H is realized
in accordance with Proposition 1.
§§4, 6 and 7 are devoted to a detailed derivation of Theorem 1, at the root of

which lie the above propositions.

$1. The necessary general information about the techniques
of hyperplanar sections

1. Let I be some sheaf of ideals on the projective space P”?, and H some hyper-

plane having equation b. Then we have the following exact sequence:
h
0—1(m) &1 (m + )= (I ® On)(m -+ 1)—0. a.1)

Multiplication by the local equation of H is injective on I, since it is a subsheaf of
Opn. Let Z C P" be the subscheme determined by the ideal I,

Lemma 1.1. If Ass(0,) N H =@, then Tor, (0,, 0,) = 0.

Proof. Let X € P™ and let f be the local equation for H at the point x. Then,

tensoring the exact sequence

0—)Ix—>0.x'pn—>0x'z——>0

with O_ /.0 =0,

x.,Pn - we obtain an exact sequence

JH?
Tor, (Ox.prl/f : Ox'pn, Orz)— 1y - Ox— Ox.H-

The arrow on the right is injective since f is not a divisor of 0 in O _ (f is
invertible on all prime ideals associated with Ox’z), and we therefore obtain that
Tor1 (Ox,H' Ox,Z) = 0. The lemma is proved.

Tensoring the monomorphism I, Op, of sheaves with O, we obtain a homo-
morphism ¢: I ® Oy — O. In the general case this homomorphism will not be an
immersion, but if it is, then, identifying the sheaf I ® O, with the image I, C O,
we obtain a quasi-coherent subsheaf I, namely, the sheaf of ideals in Oy. The
following lemma indicates a sufficient condition that the above homomorphism be a

monemorphism.

Lemma 1.2. If Ass (OZ) N H =@, then the homomorphism ¢ will be an immersion
and the subsheaf I, = Im{l @ OH) will be the sheaf of ideals on H defining the
closed subscheme Z (| H C H.

Proof. Consider the exact sequence

O—>[-—>OP1_>OZ -0

and tensor it with O; then with the aid of Lemma 1.1 we obtain that

TOI‘I(O.H, Oz) — I 5 OH - OP” ®0H —> OZ @ OH —0
| ! ! ! (1.2)

i
0 > Iy 04—0zp1,1— 0.
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The lemma is proved.

In what follows, it will be necessary for us repeatedly to carry out restrictions of
a certain scheme Z C P” to some hyperplane H. It is naturally desirable for us to
consider restrictions to hyperplanes H for which the sequence (1.2) is exact. Ac-

cording to Lemma 1.2, it is sufficient for this that Ass (OZ) N H=9a

Lemma 1.3. Let Z be a subvariety (that is, a reduced irreducible k-algebraic
scheme) of P7”; then the following assertions are equivalent:

a) Ass (OZ) N H#OQ,

b) Z CH.

The proof is obvious, since Ass (OZ) consists of one point, the generic one.

Corollary. If Z is a variety not satisfying one of the conditions of Lemma 1.3,
then the sequence

0= I (M) B T(m -+ 1) Iy (m + 1) >0 (L3)

is exact for any integer m, where I, is the sheaf of ideals of the variety Z (| H in
O, (the conditions of Lemma 1.3 are usually verified on the isolated points of Z).

In what follows we will use part of the

Proposition on the restriction. I. Let Z be a variety in P" and H a byperplane

such that Z £ H. Then we have an exact sequence
0— H(P", [ (m))—H°(P", I (m +1))—H*(H, In(m + 1)~ H"(P", [ (m)). (1.4)
We will make more frequent use of a weaker version of this, namely,

II. If we supplement the above conditions by assuming that Z £ H for any byper-

plane, then we bave the following immersion for any byperplane H:
0— HO(P", 1 (2))— H(H, I(2)). (1.5)

This will be an isomorphism if and only if HO(H, IH(Z)) is mapped to 0 € H{(P™, I(1)),
which will be the case if H'(P™, (1)) =0, for example.

Proof. The exact sequence (1.4) is obtained by considering the cohomology
sequence for the exact triple (1.3). The immersion (1.5) is obtained from the exact
sequence (1.4) for m =1, and from the fact that if Z does not lie in any hyperplane,
then H(P7, 1(1)) = 0.

2. Let Y be a projective variety lying in PN and having the following proper-
ties:

1) Y does not lie in any hyperplane, and dim Y > I.

2) The ideal of this variety is generated by forms of degree not less than =,

3) The intersection of the forms of degree n, as a topological space, coincides
with Y.

We will denote by § the intersectionof the forms of degree n of the scheme Y.
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Condition 3) means that §__, = Y. The purpose of the present section is to prove the

following lemma, which gives a sufficient condition that § = Y,

Lemma on reducibility. S = Y if there exists a hyperplane H such that S [} H
is a reduced scheme, or, in other words, S is seduced if S [\ H is reduced for some
byperplane H,

A refinement of this is Lemma 1.4, which is actually a criterion for the reducibil-

ity of the scheme S.
Lemma 1.4. v =S ifandonly if Y ) H=S [} H for some hyperplane H.

Proof. The assertion in one direction is obvious, so let us assume that there
exists a hyperplane H such that Y () H=5 (] H. Let F be some form on PV such
that F(Y) = 0; then it is evident that deg F > n, We will prove by induction on deg F
that F is generated by forms of degree n. In the case when deg F = n, this is obvious
by hypothesis. Let deg F > n, and let us consider the restriction of F to H. This is
a form / which, since Y (1 H =S ) H, is expressed by means of forms of smaller
degree restricted to H; that is, we cdn assume that F =0 on H. Hence F = F'. b,
where b is the equation of the hyperplane H, a form of degree 1. It follows from
property 1) of the scheme Y that F'(Y) =0. Furthermore, deg F' < deg F, whence
F'is generated by forms of degree =, by the inductive assumption. Hence the same
is also true for F. This shows that the ideals of the schemes § and Y coincide;
that is, § = Y. The lemma is proved.

3. We will elucidate in this section those problems involved with the choice of
of a hyperplane, in some sense “‘good’’ as regards restriction, and also prove that
for a certain class of closed subschemes of p”, general hyperplane will be ‘‘good’!

Definition 1.1. N isolated points of p" are situated in general position in p"
if and only if any &+ 1 of these N points generate a subspace Pk C P” where k& < n.

Remark. It is easy to show that, for N> n+ 1, N isolated points of P” are in

general position in P” if and only if any n+ 1 of these N points generate P".

Lemma on the choice of a *‘good’” hyperplane. Let C be an irreducible and
reduced curve generating P" (n>2). Then for a generic hyperplane H we have H - C =
Edie:? ¢ x;, where the x; are degC distinct points lying in H in general position,

Lemma 1.5. There is a hyperplane H in P" such that H- C = 2?:136 X where
the x, are distinct isolated points of H among which are n~1 points such that
(E+ C)=n-1, E being the projective subspace of codimension 2 in P" generated

by these n—1 points.

Deduction of the lemma on the choice of a *‘good’” hyperplane from Lemma 1.5.
We shall denote by C(n ~ 1) the (n - I)-fold symmetric product of the curve C; then
C(n - 1) is a variety, since C is an irreducible reduced curve, with dim C(n - 1) =

n— 1. Let us consider the reduced subscheme C C C(n - 1) x 13”, whose isolated
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points are pairs (d, ), where d is an effective divisor of degree n = 1 on the curve
C and b is a hyperplane in P” such that d Ch . C. We shall consider the two

~
natural projections of the scheme C:

ﬂ:éﬂz
/N
C(n—1) P"

Let U(n ~ 1) be an open set in C(n - 1) whose isolated points coincide with

those divisors X ket X,

points in general position in P?. The proof of the existence of U(n - 1) presents

on C for which the points x; are (n=1) distinct

no difficulty. It is also easy to prove that there is an open set W(n = 1} C U(n — 1)

such that the isolated points of W(n - 1) are those divisors %, + «-- + x, for

which the points x, generate a projective space E of codimenlsion 2 in P"I, and
(C-E)=n=~1. It follows from Lemma 1.5 that W(n - 1) # @, and so the dimension
of the scheme Uln - 1)\W(n = 1) is not greater than n - 2, since C(n- 1) is an
irreducible scheme.

Let us consider a set H in P? which is open in the Zariski topology and whose
isolated points consist of hyperplanes b such that 4 is transversal to C. The pro-

jection 7, is quasi-finite. It projects open sets of C into open sets of P”. Hence

there exiszts a closed subscheme H’ of P" such that its isolated points contain the
images of the isolated points U(n - 1)\W(n - 1)) under the transformation m,om] L
Since the fiber of 7  over the points of U(n - 1) has dimension 1, dimH’ <n -2+
l1=n=-1. Let b be a hyperplane of H which is not *'good’’; then there is a divisor
d € Un = 10\W(n~ 1) such that (d, h) € E, because the transversal hyperplane cuts
out points of C which generate this hyperplane, since C generates P”. Thus b € X,
and so the hyperplanes of H\K' are *‘good’’. The lemma on the choice of a *‘good”’
hyperplane is proved, since dimH’' <n -1 and H is open in the Zariski topology on

P

Lemma 1.6. For n >3 there is an isolated point x on C such that there are

only finitely many lines | passing through x for which {C, 1) > 2.

Deduction of Lemma 1.5 from Lemma 1.6. We will prove Lemma 1.5 by induction
on n> 2. For n=2 the assertion of Lemma 1.5 follows from the fact that, for any
plane reduced curve, there is a line transversal to it.

Let us assume that Lemma 1.5 is proved for n < k&, and let C be a reduced ir-
reducible curve generating pE+l & > 2. By Lemma 1.6 there is a point x on C such
that there are only finitely many lines passing through x and having an intersection
with C of index not less than 3. Let us consider the projection 7 of the curve C
from the point x onto some hyperplane H x € H'. Let C' be the closure of the
image of C under 7. C' isa reduced irreducible curve of degree deg C - 1 which
generates H! By the inductive assumption there is a hyperplane E’ in H' such that

E'.C' = E‘ii% C‘Iyz,, where the y, are deg C' distinct isolated points of E' among
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which are & — 1 points such that (E” . C') = k- 1, E” being the projective subspace
of codimension 2 in H' generated by these k — 1 points. Consider the hyperplane' H
passing through x and E'. It is easily shown that this hyperplane is of the desired
type. Lemma 1.5 is proved.

Proof of Lemma 1.6. For n > 4 there is a point x € P™ such that the projection
of C from this point is an isomorphism. If Lemma 1.6 were false for C, it is also
false for its image under projection from the point x. In order to prove Lemma 1.6, it
is thus sufficient to prove it for n = 3. The proof for this case can be found in (8]

(page 289). Lemma 1.6 is proved.

$2. Computation of the cohomology of the twisted sheaves of
the sheaf of ideals of a canonically immersed curve
Let us consider a canonical immersion of a curve X
% XCC P,
The mapping k has the following properties:
i) By the definition of k, k*(0p(1)) = Qy, and so deg C = 2g - 2.
ii) C generates the space P&~ !,
We shall denote by I the sheaf of ideals of C., This section is devoted to com-

puting the cohomology of the twisted sheaf I(n). The result obtained in this connec-

tion yields the following assertion.

Theorem 2.1

=1\ o0 Do) for 0
dim Ho (P, I (n)) = ( " ) @2n—1(g—1) for n>2,

0 / for n<1;
0 for n>2,
. o 1 for n=l,
dim H2 (P*™, I(n)) = g for n=0,
(1—=2n)(g—1) for n<—1;
0 for n>—g-+1,
dim HE (P71, [ (n)) = (’—n—l‘) for n<L—g;
—n—8

while HI(PE~1, 1(n)) = 0 for all other values of 1i.

Proposition 2.1. For any natural number n > 2 we have

a) dim Ho (P&, I (n)) = kg ’%Z‘l)—(%—-l)(g——l),
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b) dim HY(P*™*, I (n)) = 0,
c) dim H2(P47*, I (n)) = 0.
Lemma 2.1, HO(P&~1, 1(1)) = ' (P&~!, 1(1)) = 0, and dim H2(Pe~ ", I(n)) = 1.

Deduction of Theorem 2.1 from Proposition 2.1 and Lemma 2.1. For arbitrary

n € L consider the exact triple

0—1(n)— Op(n) — %, (QF)—0

and the cohomology sequence corresponding to it

0— H® (P57, I (n))— HO (P, O (n)) — H° (X, QF")

— H' (P72, 1 (n)) — H (P*77, Op (n)) — H'(X, QF")
T T T . (2.1)

Since HY(X, Q®") =0 for i >2 and H/(PE™! 0,(n)) =0 for j£0, g1, we
obtain from this sequence that H{(P&~', 1(n)) = 0 for i £0,1,2, g~ 1. Ve also
obtain that

0 for n>—g+41,

dim HE™ (P, [ (n)) = dim HE™ (P, Op(n) = (_ n— ‘) for n< —g.

—n—g,

Since H'(P&™1, Op(n)) = H%pe-1, 0p(n)) =0, we have
dim H2 (P67, () = dim H'(X, Q") = dim H°(X, Q¥"™")

(0 for n>>»2,
)1 for n =1, (2.2)
- g for n =0,

(1—2n)(g—1) for nC— 1.
To complete the proof of Theorem 2.1, it remains for us to compute the zeroth and
first cohomology groups, this being the most difficult part of the proof. We remark
that all the other cohomology groups have been calculated without using Proposition
2.1 or Lemma 2.1, with the result that a part of Lemma 2.1 and a part ¢) of Proposi-

tion 2.1 have been proved in the process.

Let n =0 in the sequence (2.1); then
dim He (P4, 1(0)) = dim H* (PS4, 1(0)) =0,
whence H'(P&~!, 0p(0)) = 0, while
dim HO (P#™*, 0p (0)) = dim H*(X, Q%) =1
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and the mapping HO(P&~!, 0p(0)) » HO(X, ng) is evidently an isomorphism. For
n <0 we have

HO(PE™, Op (n)) = HO(X, Q") = H! (PE*, Op(n) = 0,
and we thus obtain from the exact sequence (2.1) that
dim Ho(P#™*, I (n)) = dim HY (P, I (n)) = 0.

Lemma 2.1 and Proposition 2.1 in conjunction with what we have proved complete the
proof of Theorem 2.1.

Proof of Lemma 2.1. It follows from property (ii) of the canonical immersion &
that HO(PE-I, 1(1)) = 0 and, since

dim Ho (P47, Op (1)) = dim H (X, Qx) = g and H!(P™*, 0p (1)) = 0,

we have dim H (P&~ I(1)) = 0. The lemma is proved.
Ht(Pe-1, Op(n)) = 0. Taking the alternating sum of the dimensions of the first

four terms of the exact sequence (2.1), we obtain that

dim HO (PEY)] (n))—dimHo(P ™, Op (n))-+dim H* (X, QF")—dim B (P¥™, I (n)) =O0.

For n > 2, this equation yields the following identity:

dim H (P, 1 (n)) = (g o 1) —(@n—1)(g— 1)+ dimH* (P*7, I (n)), 23
\ n ’
because dimHO(PE™!, Op(n)) = (8*"71) for >0, while dimH'(X, QE") = (2n - 1) x
(g-—l) for n> 2.
With the aid of (2.3) and the following lemma, we will prove Proposition 2.1 by

induction on n > 2.

Lemma 2.2. 1. Let M be a closed subscheme in P8 % which contains 2g -3

isolated points lying in general position; then

dim Ho (P2, [14(2)) < W . 2.4)

. Let M be a closed subscheme in P&87% which contains 2g - 2 isolated

points lying in general position; then, for n > 3,

dim HO (P42, Iy (n)) < (g”LZ_Q) —(26—2). 2.5)

Deduction of Proposition 2.1 from Lemma 2.2. Part c¢) was proved in Theorem 2.1,
and so it remains to prove parts a) and b); these will be proved simultaneously by
induction on n.

Let n =2. It follows from the lemma on the choice of a ‘‘good’’ hyperplane

that there exists a hyperplane H such that H . C = E?:f ¢ x,, where the x,
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are deg C distinct points situated in general position on H. The sheaf of ideals Iy
is defined by the Corollary in $1 to be the restriction of the sheaf of ideals I. Let M
be the closed subscheme of H which corresponds to the sheaf of ideals I;. By the
choice of the hyperplane H it is clear that the conditions of Lemma 2.2 are fulfilled,
and so inequalities (2.4) and (2.5) hold for n > 3. By the proposition on the restric-

tion in $1 we have the immersion (1.5), and thus

dim Ho (P47, 1(2)) < dim H°(H, [4(2)).
By inequality (2.4)
dim HO(H, I11(2)) = dim HO(H, 14 (2)) < (g—2)2(g —3)

According to (2.3) for n= 2, we obtain that

din H¢ (pg-—l’ [(2)) — (_g—Z)ZQLfi) +- dim HI(PE~1, [(2))> (g — 2)2(g — 3) .

Hence

dimH'(P*™, 1(2)) = 0 and dim HO(P¥™, 1(2)) = &= 2)2<g =3

This proves the first step of the induction (n = 2).
Let us assume that parts a) and b) of Proposition 2.1 hold for » < k. By applying

the proposition on the restriction for n = k, we obtain an exact sequence
0— HOP* ', I (R))— H (P, I (k - 1)—H(H, In (k-+1))—H* (P&, [ (R))—... .
By the inductive assumption, dim H(P&~1, I(k)) = 0. Hence
dim HO(Pe-!, [ (k+1)) =dim H(H, Tu(k+1))+dim HO(P&=1, I (k)).
We remarked earlier that inequality (2.5) is satisfied for n > 3, and since £+ 1> 3 we

can use the inductive assumption for the zeroth cohomology groups and inequality (2.5)

to obtain that

dim HO(PE, I (k 1)) < (,gﬂi_ 1\) —(2k—1)(g—1)

R e A
(E i) e = (] ek -,

The reverse inequality is contained in (2.3) for n = k + 1. This completes the induction,
and the proposition is proved.
Proof of Lemma 2.2. Let X be some reduced scheme which is a closed subscheme

of M; then we have an exact sequence

O*»IM*IX'*@""’Ov
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which induces the following immersion:
HO(PET%, Iy (n)) G HO (P2, I (n)).

This allows us to reduce the lemma in the first case to a reduced scheme ng_3
consisting, as a topological space, of 2g ~ 3 isolated points lying in general position,
and in the second to ng—z' For any point of ng_3 there exists a quadric 0 which
contains the remaining 2g - 4 points and does not contain this point. (To see this, it
is sufficient to break up the 2g - 4 points arbitrarily into two groups of g — 2 points
and to draw hyperplanes H and H' through each of these groups, whereupon we obtain

1

from the fact that the 2g — 3 points of ng are in general positionthat Q= H {J H

-3
is the desired quadric.) This means that for any point x € XZg—S there exists among
fhe global sections I"(ng_a, OXZg—S(Z)) a section [ such that f_is the image of
image of some quadric under the restriction isomorphism to X, 3t
g—

Res: T (Pg_z, OP (2))-—) r (ng—-s, Ong_a (2)).

Then dimIm (Res) > 2g ~ 3, but clearly, dim F(ng_s, OXZg—S(Z)) <2g - 3. Hence

Im(Res) =T (X2E—3’ Ong-—s (2))-

It follows from the last equation that

dim Ker (Res) - dim H° (Xag—y, Ox,,_;(2)) = dimHo(P*™* 0, (2)) = £& =1)
2

Also, Ker (Res) = r(pe-2, lx2 3(2)), since ng_S is a reduced scheme. Hence
P

. o —1 .
dim HO (P, I, (2) = Lg-z_’g- — dim HO (Xog—s, Ox,,_, (2))

:(_g—qi)g — dim Im (Res ) < (g_zl)g_2g+3 — (g—z)z(g""s) .

Inequality (2.5) is proved analogously; to do this it is first of all necessary to show

that the image of the space ['(P&~2, 0p(n)) under restriction to ng—z coincides

with the space I"(X2 Oy (n)) for all n > 3. Lemma 2.2 is proved.
2 2

g-2’ g-

$3. Some properties of schemes which- are intersections
of (g - 2)(g - 3)/2 quadrics in P82
Let M be a closed subscheme of the projective space pe-? having the following
properties:
a) There exist 2g - 2 isolated points in M which lie in general position in P&~?2

B) The ideal of the scheme M is generated by quadratic forms and
dim HO(P<=%, I5(2)) = (g—2) (g—3)/2,

where I, denotes the sheaf of ideals of M.
In this section we will study the properties of such schemes M which contain not

less than 2g — 1 isolated points; the result of this study is expressed in
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Theorem 3.1. If # (M) > 2g - 1, then M is a reduced, irreducible, nonsingular,

projective curve of degree g — 2 which clearly generates P82,

We will denote by G a projective irreducible reduced curve of degree g -~ 2 which
generates PE~2. To prove Theorem 3.1, we will need certain properties of G contained

in the following lemma.

Lemma 3.1. a) There is one such curve G passing through any g+ 1 isolated
points of PE~2 lying in general position.

b) G is a smooth curve of genus 0.

c) dim HO(P&~2, 16(2) = (g = 2)(g - 3)/2 and G is the intersection of the quad-
rics which pass through it; that is, the ideal of the scheme G is generated by the
(g - 2)(g ~ 3)/ 2-dimensional space of quadratic forms of this ideal.

Proof. a) Let xg,---, x, be isolated points of P&-2 lying in general position.
We choose homogeneous coordinates X, (j= 0, 1, -+, g=2) in P&"2 in sucha way
= e 1, e 3 - = =
that x, (0, , 1, , 0) for i< g-2, Xo_q= (1, , 1) and X, = (ao, , "g-z)‘

i
Since the points x; lie in general position, it is clear that a, # 0 and a.# a_ for 0 <
1 ] -

i<j<g-2. Letting tj _ []Z_#]. a, we will specify the curve G in parametric form. Let

X0 = H#i(t -t), where 0<i<g~2and t € k U {oof is a parameter. It is easy
to show that for the values Loy *oe sy tg-z’ o and 0 of the parameter we obtain the
points xg, +«+ , Xo 0 ool and X respectively. This demonstrates the existence of

a curve G passing through the points x, -, X

Before proving the uniqueness of this G, let us prove part b).

b) Since G is irreducible and generates pe-2 x
we can define for any hyperplane H the index of its
intersection with G; (G - H) =deg G = g - 2. Con- /
sider an arbitrary point x € G. It is easy to prove \ ,
by induction on k that for any 0 <k < g~ 3 there ¢
exists a k-dimensional projective subspace H C i
P&€~2 passing through x and containing & + 1 points 1, N
of 'G. Hence there is a hyperplane H such that
(H- G, >1 and (H. G)yizl for i=1,.+-, g=3,
where the y, are distinct isolated points different

from x. It follows from this that (H - G) = 1; that

Figure 1

is, x is a simple point. This shows that G is smooth.

The proof of the following property of G presents no difficulty.

(SG) For an arbitrary k-dimensional projective subspace H C PE=2 it follows
from the fact that £ < g — 3 that supp(H - G) consists of not more than &+ 1 points
which lie in general position in H.

a) (continued). We will carry out the proof of uniqueness by induction on g> 4.

For g =4, this is a well-known fact from analyric geometry. Assume the assertion
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to be proved for g < k; we will prove uniqueness for g =k + 1. Let us suppose that
there exist two curves G and G' passing through k + 2 isolated points and let x and
y be two of these points. Consider the projections of G' and G from x onto a hyper-
plane H not passing through x. It is evident from the inductive assumption that the
images of these curves must coincide. Let G # G'; then there is an isolated point x,€
G through which G’ does not pass; that is, X, € G. Consider the line through x and
x,. Since the images of G and G' under projection coincide, there is an isolated point
v, € G'n ;c;: different from both x and x,. By property (SG), y, # G. Drawing the
lines through %, y and y,, y, we obtainisolated points y, € G'Nn ;T)‘/- and x, €

G' N ;I_y It is clear that x, y, X, %, lie in one plane and belong to G. Since & -
2 > 2, this contradicts property (SG). The proof of part a) of Lemma 3.1 is complete.

c) The proof of this part is based on the following lemma.

Lemma 3.2. Let M' be a closed subscheme in P" which contains n+ 1 isolated
points lying in general position and such that dim H(P", 1y/(2) 2 nln+ 1)/2. Then
M' is a reduced O-dimensional scheme coinciding with the n + 1 isolated points, which
are in M' by bypothesis, and dim H(P", IM;(Z)) =nln+1)/2.

Deduction of part ¢) of Lemma 3.1 from Lemma 3.2. Consider the exact triple

0—I6(2)— 0p(2)— i, (0 (2D))— 0,

where D = H . G is an effective divisor of degree g - 2 on the curve 'G. This short

exact sequence induces the following exact cohomology sequence:

0— HO(P*%, 15(2)) — H® (P*%, 0p(2)) — H* (G, 05 (2D)) — H* (P* %, 15 (2)) — 0,

(3.1)
because dim H!(P&~2, OP(Z)) =0 for g~ 2> 2. From the exact sequence (3.1) we

obtain that

dim HO (P*7*, I5(2)) =dimH® (P**, Op (2))—dimH(G, O (2D)) +dim HY(P¥~*,15(2)).

(3.2)
We know that the genus of G is equal to 0 (this can be proved, for example, from the
* property (SG) for hyperplanes). Then, by the Riemann-Roch Theorem,
dim HY(G, 0,(2D)) = 2degG -0+ 1=2g~3. From formula (3.2) we thus obtain the
inequality
_ e—2(—3 .

dim Ho (P*™2, 16(2)) > -‘g——z“—g —(2g—3) ;

(3.3)

Consider the closed subscheme G' C P8~2 whose ideal is generated by the forms
of degree 2 contained in the ideal of the scheme G. By the lemma on the choice of a

“‘good’’ hyperplane in §1, there exists a hyperplane H suchthat H. G = 2?:12 x.,

i
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where the x; are distinct isolated points lying in general position in H. Since G is

irreducible and generates P&~2 it it clear that
dim H°(P#72) I5.(2)) = dim HO(H, I6: 1 (2)),

Hence dim H(H, I 4(2) > (g = 2)(g - 3)/2. By Lemma 3.2 G' ) H is the reduced
scheme M',and so G N H=G' (| H. From the equality of these schemes we obtain

that

dim H*(H, Ion 1 (2)) = dim HO(H, Ig-qm (2)) = .(g——z)z(g—*i") _
By the proposition on the restriction (see §1), this yields the inequality

dim Ho (P42, /5 (2)) < 8 =2 (&—3) ”2’2(5’ -3

(3.4)
It follows from inequalities (3.3) and (3.4) that
dim Ho (P*™2, J5(2)) — €=2& =3
2 (3.5)

The next step in the proof of part c¢) will be to prove that G:ed = G. Since this is
obvious for g =4, we can assume that g> 5 for this step. Proceeding by the method
of contradiction, let us assume that there exists an isolated point x € G’ with x € G.
We assert first of all that there is a hyperplane H, passing through x which does not
touch G; that is, H1 - G= Zf:lz X, where the x, are distinct isolated points, lying
in general position by property (S§G) Consider the lines passing through x and a
point of G. Let one of these touch G or intersect G in two points. Then G' contains
isolated points of G and this line L. Let us consider then the generic hyperplane, for
which H N (G U L) = {x.}.

Siet e g2 U {y}, where the x_ are isolated points of H

lying in general position, and y is an isolated point not coinciding with any of the x_.
Consider the scheme G' \ H=G () H; it consists of g~ 2 isolated points, which
leads to a contradiction. We have shown that any line passing through x intersects

G in exactly one point. The projection 7 of G from x onto some hyperplane H! is
thus a regular immersion. By the lemma on the choice of a “‘good’’ hyperplane there
exists a hyperplane H% not tangent to 7(G). There corresponds to it a hyperplane H,
passing-through x and nottangent to G. This proves the existence of a hyperplane
H, transversalto G and passing through x. By Lemma 3.2 the scheme G'n H,
consists of g — 2 isolated points, contradicting the suppositionthat x € G. Thus
G:'ed = G.

It was shown earlier that there is a hyperplane H such that G' N H=G H,
and so G = G’ by the lemma on reducibility (see $1). The proof of Lemma 3.1 is
complete.

Deduction of Theorem 3.1 from Lemma 3.1. By hypothesis P&~ ? contains 2g - 2

isolated points x. €M (i=1,2,...,2g~2) lying in general position, and also a
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certain isolated point x distinct from the X

We show first of all that the points {xi} U {x} lie in general position in P8~2,
Let us assume the opposite; then there is a hyperplane H in P82 which contains
the points x, ((=1,2,...,g-2) and x. Considering the scheme M (| H and using
Lemma 3.2, we obtain a contradiction since dimH %(H, IMF\H(Z)) >(g-2)(g-3)2,
and so the restriction of quadrics to this hyperplane has no kernel, by which we mean
that among the quadratic forms of the scheme M there is no form ¢ for which qIH =0.
In fact, if we assume that there is a g € r(ps-2, IM(Z)) such that q|H =0, then g =
h-»b isa splitting quadric, b being the equation of H and ' giving some hyperplane
H', distinct from H since M ¢ H. It is clear that H' contains the points x, for i >
g — 1; that is,H' contains g points of {x 1, contradicting the fact that the points of
tx} lie in general position. Indeed, it would be sufficient to assume the existence of
2g -~ 3 points of M lying in general position in order to prove that any finite set of
isolated points of M lay in general position. In comparison with what is stated above,
the proof of this fact contains no new ideas.

We will denote by J a reduced closed subscheme of the space P€~? which, as
a topological space, consists of 2g — 1 isolated points. These lie in general position
in P872, as has been shown. Consider any g - 3 isolated points of J. Denote by
J" the reduced subscheme of J containing these g — 3 isolated points, and by J"
the “‘complementary’’ reduced subscheme. The subscheme J' determines a projective
subspace W C P8~ of codimension 2, since it consists of g - 3 points lying in gen-

eral position. It is easy to show that the sequence

0— HO(PE™2, [ gy (2)) — HO(PET2, [ 5 (2)) Sesiction o B Ho(wy, [ 70 (2),
(3.6)

is exact, where by J" U W we mean the reduced scheme whose points comprise the
settheoretic union of those of the scheme J” and of W. From Lemma 3.2 we obtain
the inequality dim HO(W, Ig. (2)) < (g-2)(g - 3)/2 ~(g = 3). It then follows from the
exact sequence (3.6) that

dim HY(P&2 I g-yw (2)) =g8—3;

that is, there are g — 3 linearly independent quadrics @, - -, Qg_3such that Q
contains W and J as closed subschemes. Let us denote by G’ an irreducible com-
ponent of the scheme G' = f;s Q, which contains some point of J". We will prove
in the sequel that G = G;ed; that is, we will prove that G:ed is an irreducible curve

of degree g — 2 generating P&€=2, By definition, G is a reduced irreducible scheme

of dimension not less than 1 not contained in W. Let H be some hyperplane passing
through W such that red (H [} G") £ W; that is, there is an isolated point x € H N G"
lying outside W. It is clear that the restriction of the quadrics Qi to H has no kernel,
as for all quadrics in HO(P&—2, lg (2)). The Q| = b, - b are splitting quadrics in

H, b being the equation of the hyperplane W in H, and the 5 being independent
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linear forms since the restriction of quadrics to H has no kernel. Hence x € f_-l} H.
and M 5:13 H. consists of not more than one point. Summarizing what has been proved

in this paragraph, we have
W

d@NH={"
red (@ (1) W | {x}), where x is an isolated point of H,

lying outside W. (3.7)

On the isolated points of the variety G C G" not lying in W, we define the mapping
¢:G - p! which associates with an isolated point x € G lying outside W the hyper-
plane determined by the space W and the point x; that is, ¢ is a rational morphism.
By property (3.7) of the intersection G" [ H it is clear that we have dimG < 1; that
is, G is a projective curve lying outside W. For a generic hyperplane passing through
W, H (| G contains a point lying outside W. Since the dimension of each irreducible
component of G is not less than 1,redG" =W (J G. Hence G >J" and so G generat-
es P72 anddegG > g - 2.

We will prove that degG = g — 2. Let us assume the contrary; that is, let degG >
g - 1. Applying the lemma on the choice of a ‘‘good’’ hyperplane, it is easy to prove
that there is a hyperplane H with the following properties: H does not pass through
W,and H | G contains g — 1 isolated points lying in general position in H and lying
outside W. Consider a hyperplane E in H which passes through W 1 H and one of
the points x,. Let this point be Xo_1s where x, ..., X .y are the isolated points
of H (| G. From property (3.7) for the intersection G [} H we obtain that red (E [ G")
=W NnH U{xg_li - It is clear that the quadrics Q |p = b, - b are splitting (i =1,
2,000, 8~ 3). The restriction of the quadrics Qi to E has a kernel, since otherwise
we would have red(E 1 G") =W ) H. Hence there is a quadric Q, generated by the

Q. for which Q| =0. The restriction to any hyperplane has no kernel, and so Q| =
[.1I' £0, where [ is the equation of the hyperplane E and [' gives the hyperplane E’

in H. E' contains the points x, .- ,x__,,since red (G"  E)=(W N H) |
{xg_1} and the points x, € W. This contradicts the fact that the x lie in general
position in H. Hence degG = g - 2.

We have proved that through any g + 2 = {(2g - 1) - (g - 3)] points of T there
passes a reduced irreducible curve G of degree g — 2. By part a) of Lemma 3.1 we
know that there is a curve G passing through 2g — 1 isolated points of J. Since I

is a closed subscheme of G, we have an immersion
HO(P*2, 16(2)) G HO (P2, 157 (2)). (3.8)
By Lemma 2.2
dim H°(P*™*, 1 7 (2)) < (g — 2)(g — 3)/2,
and by Lemma 3.1
dim HO(P* 7%, 16(2)) = (g — 2)(g — 3) 2.
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The immersion (3.8) is thus an isomorphism; that is,
HO(P™%, 17 (2)) = HO (P72, 16(2)) = HO(P*™*, In(2)):

By property 3) of the scheme M we have M = N Q,, where 0 € HO(Pe—?, 1,(2)). By
part ¢) of Lemma 3.1 we thus have that M = G is a reduced irreducible nonsingular curve
of degree g — 2 generating P8~2_ The theorem is proved.

Proof of Lemma 3.2. By hypothesis there are isolated points {xz.}:’:ll lying in gen-
eral position in P, We can choose in P" homogeneous coordinates X, such that the
points x . form a basis; that is, X (x ) = 3; Then the quadrics Q defining the scheme
M’ pass through the points X Q(x ) is thus the coefficient in x =0; that is, 0 =
Z#i ini X]. It is easy to compute that in this case the number of independent quad-
rics defining M’ is not more than (n + 1) n/2. M’ is thus defined by the (n + 1) n/2
quadrics Qij =X, . X], (i £ 7).

Let y = (xl, cee o X ) be an isolated point of M'. If it has two nonzero coordin-
ates %, and X ,then y ﬁ M since Q. (y) =X, %, #0. Then, as a topological space,
M' consists of n + 1 isolated points Wthh represent basis points. We will prove that
M' is a reduced scheme. Todo this it is clearly sufficient to show that any form which
vanishes on the basis points is generated by the quadrics Qi].. The verification of this

fact does not present any difficulty. The lemma is proved.
34 Qred

In this section we investigate the structure of the scheme Q ;. The definitive

result is the following.

Theorem 4.1. a) dimQ < 2.
b) If dimQ =1 then Q _, = C.
c) If dimQ =2, then Q = Q..q is anirreducible reduced surface of degree g -2

which generates P&~ 1

The proof of this theorem in the case g =4 is obvious, and so it will be assumed

in the rest of this section that g >'5.

Proposition 4.1. Let O contain, in addition to C, one other isolated point O not
lying on C; then there is an irreducible reduced surface S such that Q 28§ 20 |J C.

Deduction of Theorem 4.1 from Proposition 4.1. a. By the lemma on the choice of
a “‘good’’ hyperplane, there is a hyperplane H such that H . C = 212.51_2 x ., where the
x. are isolated points lying in general position. The scheme Q (N H thus has the
propertres a)and f) indicated at the beginning of $3, since dimH(P&8~1, Io (2)) =
(g -2)(g - 3)/2 and the restriction of quadrics to any hyperplane is without kernel
We obtain from Theorem 3.1 that dimQ } H <1, and so dimQ < 2.

c. If dimQ =2, then dimQ () H =1 by the above inequality. Hence, by Theorem
3.1,0 N H =G is areduced irreducible curve of degree g ~ 2 generating H. This

holds for a generic hyperplane, and so O _, has only one component of dimension 2.
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Using Proposition 4.1, it is easy to prove that the curve C lies in the irreducible com-
ponent of dimension 2 and that Qred is an irreducible surface. Q ., has degree g — 2,
since for the generic hyperplane Q..q4 N H=G isacurve of degree g - 2. By the

lemma on reducibility, it is evident that Q = Q oq
b follows immediately from Proposition 4.1. Theorem 4.1 is proved.

Proposition 4.1 will be proved with the aid of the following lemmas.

Lemma 4.1. If O contains a reduced and irreducible curve L # C, then there is an
irreducible surface S such that Q DSDL |J C.

Lemma 4.2. Let M be a closed subscheme in P® which contains k< 2n+ 1 iso-
lated points lying in general position in P". Then the following assertions are true.

a) dimH(P", 1,(2N < (n + D(n +2)/2 - k.

b) I/ M =M and # (M) =k<2n+1, then dimHO(P", 1, (2) =(n+1)n+2)/2 - k.

Proof of Proposition 4.1. 1If there exists a line L passing through the point O
which either touches or intersects C in at least two points, then L C Q (since other-
wise (L - K) > 3 for some quadric K D C). It follows then from Lemma 4.1 that the
desired surface S exists; we can therefore assume further that (L - C) < 1 for any line
passing through O.

Let H be a hyperplane not passing through O. We consider the morphism 7: C »
H, where n(x) = H (] Ox for isolated points x of C. It follows from the above agree-
ment that 7 is a biregular morphism. #(C) is thus a nonsingular algebraic curve of
degree 2g — 2 which clearly generates H. By the lemma on the choice of a *‘good”’
hyperplane, the generic hyperplane E' of H intersects 7(C) in 2g — 2 isolated points
which lie in general position in E',

Consider the hyperplane E in pe-1 passing through O and the space E'. We
will prove that dimQ N E > 1. We have 0 | ED(C N E) |J {0}, and obviously
C N E-=ixt

ii=l,--,2g~2"
O. 1If the points {xi} lay in general position in E, by Theorem 3.1 we would have that

where the x are isolated points of E not coinciding with

0 N E is a complete, reduced, irreducible, algebraic curve. The proof of the propo-
sition would then follow from Lemma 4.1, and so we will assume in what follows that
the points of C ] E do not lie in general position.

We will show first of all that any g — 2 points of C [} E lie in general position
in E. In fact, if this were not so, there would exist a projective space E" c pg-1
having codimension 2 in E and containing g ~ 2 points of C [} E. #(E") would thus
contain g — 2 points of 7(C) and would have codimension not less than 1 in E; and
this would contradict the generality of the points of #(C) ) E. Similarly, it is easy
to prove that the point O and any g — 2 points of C | E lie in general position
in E.

Since, by the assumption made above, the points {x | do not lie in general posi-

tion, there are g — 1 points in {xi} which generate a hyperplane (since g — 2 points
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are already in general position). Let us denote this hyperplane by H'. Hence the
restriction of quadrics cutting Q D C to the projective subspace H'C P€~! has a
kernel (by Lemma 3.2). This means that there is a quadric g € ['(P&8~1, Ig Q)=
rpe-1, | c(2) for which ﬂH: = 0. But since ¢ € [(P#~1, 1.(2)) and C is an irreduc-
ible curve generating P8~ ", we have ¢|; #0. Then ¢|g = " - b’ is a splitting quad-
ric, where b’ is the equation of H' and A" defines a hyperplane H" £ H'. The iso-
lated points {x } and the point O lie in the subspaces H' and H" since (0 N E) .4
CH" U H. Denote by M' the reduced 0-dimensional scheme consisting of the points
x; lying in the hyperplane H', and by M" the reduced scheme consisting of the remain-
ing points x_ and the point O. M’ is obviously a closed subscheme of H'. Further,
M" is a closed subscheme of H" since O lies in H", for O and any g - 2 points of
C N E lie in general position in E.

By its choice, the hyperplane E is not a tangent, and so it is generated by the iso-
lated points {x,} = C | E. Hence # (M") > 2.

The exactness of the sequence

0— P(E L (1) 2%, X h’ T'(E, In @) restriction to I’ r (Hl, Iy (2))’ (4.1)

where M is a reduced scheme whose isolated points are precisely the points of M’ |

" M", is obvious. The exact sequence (4.1) yields the inequality
dim HO (H', Iy (2)) > dim H°(E, 1 (2)) — dim H*(E, I 1~ (1)). (4.2)
Consider the case when # (M") =2 and # (M') = 2g — 3. Then
dimH°(E", In- (1)) =[(g—1)—2]=g—3,

and

dim HO(E, Iy (2))>dim HO(E, Iz 1o(2)) =& —2)2(g 3

since MC E | Q. From inequality (4.2) we have that

dim HO(H', 1y (2) > (8'____5(5__ (g—3) = _(5:_‘_?)7(&:_3_)_; #(M')=2g—3.

Hence, by Theorem 3.1, dim HO(H', 1,,,(2)) = (g - 3) (g - 4)/2; that is,
dim H (E, [4(2)) = dim HY(E, I (2)).

The last equation means that I'(E, I,,(2)) = T'(E, IEnQ(Z)), and so
dim HO(H', Ionn- (2)) > (8—3) (g—4)/2.

It then follows from Theorem 3.1 that dimH' | Q > 1, whence dimE  Q > 1.

We will now prove that the cases # (M") = 3, 4 are impossible. In fact, in these
cases we have dim H(E, IM,,(I))= g—4 or.g—5,since O and any g — 2 points of
C N E lie in general position. By Lemma 2.2

dim Ho (H', Ly, (2)) < (g — 3)(g— 4).2,
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since #(M') > 2g - 5 and the isolated points of M’ lie in general position in H'. We

thus obtain from inequality (4.2) that

dim HO(E, Iy (2)) < g:i)z(_g—_’*) 4+ g—4,g—5

(g—3)(@—4 — %) (g —3
< (g )2(g )+(g_3)_1 _ (g )z(g )___l.

The inequality dim HOE, IM(Z)) < (g-3)(g~2)/2-1 contradicts Theorem 2.1, since

we have the immersion

I (P, 1612y =T (E, Ione(2)) G T (E, In(2)).

We now consider the case when 5 < # (M < g~ 2 (clearly, # M" < g-2 inany
case). Then g+ 1< # (M')<2g - 6. In this case, by Lemma 4.2,
dim HO (', Iy (2)) = [(g“—z)z(g"—“ — (M’)J and dim HO (E, I~ (1))
=[(g—1)—HM")]
since the isolated points of M” are in general position in E. We thus obtain from in-

equality (4.2) that

dim H0 (E, 1 (2)) < [E=2E= — s 1) + (g — 1) — 3 (M)

—D(g—1 —2)(g—1
_ (e )z(g_)+(g_1)__#(M)=(g )2(g )

g—2)(eg—1)

+(g— 1 —(2g—1) = L= g

— (g — 2)2(g —3) ) < dim T (Pg—l, ]Q (2)) |E —_ (g—z)z(g —3) ,

which also leads to a contradiction. Therefore these cases are also impossible.

Summarizing what has been said above, we obtain that dimQ [} E > 1 in all
possible cases, and, more precisely, there is an irreducible reduced curve LCQ N E
passing through O. Hence L # C; that is (by Lemma 4.1.), there is an irreducible
reduced surface S C Q passing through L and C, and so aiso through O. The propo-
sition is proved.

Proof of Lemma 4.1. By the lemma on the choice of a “‘good’’ hyperplane, the
following holds for the generic hyperplane H: H | C D {xi}i=l,- .. 2g-o» Where the
x, are isolated points of P€-! lying in general position in H. In addition, H ] L
contains one other point y distince from the x,. Hence for the generic hyperplane
H we have # (0 N H)>2g -1 and Q | H contains 2g — 2 isolated points lying
in general position. The space of quadrics through C restricts to any hyperplane H

without kernel, and so

dlmF(H, IQ ﬂH(Q)) = dim ]\(p“"l, [(\)(2) )= (g—2) (g—S)/Q,
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whence, by Theorem 3.1, for the generic hyperplane H the scheme Q | H is a reduced
irreducible curve; consequently dim(Q = 2. The scheme Q.4 can obviously have only
one component of dimension 2, and no component of dimension 1, and so there is an
irreducible reduced surface § such that Q DS DL |J C. Lemma 4.1 is proved.

.Proof of Lemma 4.2. a) Let X be a reduced 0-dimensional closed subscheme of M
whose points are k isolated points lying in general position in P®. Then we have an
immersion I'(P7, IM(Z)) o (P, IX(Z)), and so the proof of part a) is contained in the
proof of part b).

b) Let x € X be some point, the remaining & ~ 1 points being divided into two
groups each of which contains not more than » points. There are thus hyperplanes H
and H' containing k — 1 points of X. We can obviously assume that H and H' do not
contain the point x, because the points of X lie in general position in P”. This means
that for any point x € X there is a quadric g for which g(y) = 8; for y € X. Hence

for the restriction homomorphism
Res: T (Pn, Op (2)) —-T (X, Ox (2))

dimIm(Res) > &; but dim[(X, 0,(2)) < &, and so Im(Res) = ['(X, 0,(2)) and dim (Res)
= k.

It is then obvious that we have the equation

dimI'(P», Op(2)) =dim Ker (Res) +dim Im (Res) =dim Ker (Res) +.

(4.3)
Ker(Res) = ['(P?, lx(2)), since X is a reduced scheme. Hence, from equation (4.3),

dim Ho (P*, 1 (2)) = dim HO(P", 0p (2) — k — ir‘—ﬂ’-z—(’ﬂ —k

Lemma 4.2 is proved.

§5. Some properties of schemes which are intersections
of (g — 2)(g - 3)/2 quadrics in P~2 (conclusion)
As in §3, let M be a closed subscheme of the projective space pe-2 possessing
properties ) and f3) (see §3). The cases when # (M) > 2g — 1 were investigated in

§3 (see Theorem 3.1). The result of the present section is
p

Theorem 5.1. M =M.
red

If #(M)>2g -~ 1, then M is a reduced irreducible curve, by Theorem 3.1. This
proves Theorem 5.1 when # (M) # 2g ~ 2, 'and so we will assume for the remainder of
this section that # (M) = 2g — 2 unless otherwise stated. It is then clear that g > 5.

Before entering upon the proof of Theorem 5.1, let us choose a system of homo-
geneous coordinates X in P&-2? in such a way that its basis points are contained in

1
tion of quadrics cutting M to the hyperplane H is without kernel, because M contains

M. Consider the hyperplane H C P€~2 given by the equation Xg_ = 0. The restric-

2g - 2 isolated points lying in general position, by property a). Hence
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dim (P, 1y (2)) = dim T (H, Iy s (2) > (g — 2) (@ — 3)/2.

By the choice of the homogeneous coordinates X, the scheme M 1 H contains the
basis points of the hyperplane H, and so the general form of a quadric g €

[(H, I} ~,(2) will be

q = Z (liiX,;Xj.

1Ii<isg—?

Hence dimT'(H, IMmH(Z)) < (g - 2)(g - 3)/2. Summarizing what has been said in this

paragraph, we have that

[P Iy (2)) I'(H, Iunu (2))

= qEI‘(H,OH(Q)]qz 2 Gi]‘Xi'Xj, -where (IijEk}.

ISi<i<g—2

Then the space rpe-2, IM(Z)) has a natural basis of quadrics

g—1
Qi=0Qy=X; Xj+Xgu (Z af/‘Xk),

\k=1 J
where i#j and 1< j< g-2. By the choice of the homogeneous coordinates, the
isolated point (0,0, -+, 0, 1) € M. Hence ag"l =Q ].(0, e, 0, 1D)=0
Denote by b bg the basis points (l 0,---,0),-.-,,0,...,0,1,0),

0,---,0,0,1) of the space P8~2. We will call the points b. and b]. M-connected

if there is a cubic

KET (Ps-2, Op(1)) QT (P&-2, I (2))

such that K=X__, - Q' where Q'(b. ) #0, Q'(b ) #0 and Q' vanishes on the remain-
ing points of M. Let J' be the graph whose vertxces are the points b, ) bg_2
and such that two of its vertices b, and b]. are joined if and only if bl. and b’. are

M-connected.

Proposition 5.1. The graph I' is trivial; that is, any two of its vertices are M-

connected.

Lemma 5.1. If a quadric q vanishes on 2g ~ 3 points of M, then q €
r(pe-2, [M(2)) and vanishes on all the points of M.

Deduction of Theorem 5.1 from Proposition 5.1 and Lemma 5.1. To prove Theorem

5.1, it is sufficient to prove the equation

T (P2, Ity () =T (P*™, Op (0 — 2) @ T (P, 14(2)) (5.1)
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for all n> 2, since T'(P8-21, d(1)) =0. For n =2, equation (5.1) clearly follows
from Lemma 2.2 and condition Befor the scheme M. We will prove equation (5.1) for
n > 3 by induction on 7.
n=3. Let S €(P8~2, I, (3)). Denote by S|, the restriction of S to the
hyperplane H. Then S|, (b, ) = 0 “for i=1, .- , 8 — 2. Clearly, by Lemma 3.2,
M _,NH=M]n H,andso

Sly €T(H,0u(1) ® I'(H, Iunn (2))-

For the proof of equation (5.1) in the case n = 3, we can thus assume that S]H =0;
that is, § = Xg_l . g. Consider the cubic

g—2
K=X;,- [q - MQ;/] =Xg1-Q,

=2
where

Xg-1 - Q€T (P, 0p (1) & T (P, Iy (2)

and Ql'j is a quadric not equal to zero only at the points b, and bj; such quadrics
Qllj exist by Proposition 5.1. We can clearly select )\I. € k such that Q' vanishes
on all the points of M except for the point bl' Hence, by Lemma 5.1, Q' €
r(pe-2, 1,,(2)), which proves equation (5.1) for 7 = 3.

Let &> 3 and assume (5.1) to be proved for n < k. Consider § €
r(pe-2, Iy d(k +1)). As above, we can assume for the proof of (5.1) that S|y =0;

that is, § = Xg_1 - [, where [ is a form of degree k. Consider the form

g—2
@ :Xg—! : [f —Z‘ ;"/'X?_2Q1i_‘7‘1 'Xl—2Ql2] =Xg—1 : f’-

=2

Since the form Xf"z Q'li vanishes on all the points of M except for b]., there are

A €k(j=1,...,g-2) such that ® = Xooy f' and f' vanishes on the points b,
(i=1,..-,g~-2). Itis evident that ' vanishes on the remaining points of M lying
outside H. Hence /' € rpe-2, IM:ed(k)); that is, by the inductive assumption,

Fer (P 0p (k—2))® I'(P*2, 14 (2)),
and so

®EeT (P2 0p(k— 1) @ T (P2, In(2).
By choice, the quadrics Q:.]. are such that
AMXET? Xooy - QET (P2, 0p (k= 1)) @ T (PY% I (2)).

This proves (5.1) for n = &k + 1. Theorem 5.1 is proved.
Proof of Lemma 5.1. Let M’ be the closed reduced subscheme of P€~2 con-

sisting of the 2g — 3 points on which g vanishes. It is clear that g € [(P&~2, 1,,/(2)).
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By Lemma 2.2 dim r(pe-2, I,1+(2)) <(g - 2)(g - 3)/2. Hence, by condition ) for the

scheme M, the immersion
TP, In(2) G T (P, In(2))

will be an isomorphism, and so g € F(Pg"z, IM(2)) and vanishes on all the points of
M. The lemma is proved.
Consider three distinct integers i, j, k in the interval {1, g~ 2]; such members

exist for g> 5. Let

Khi=—Kly=Xe Qi — X Qe

g2 &2 : :
= Xg1 (2 ‘111 X1 Xe— Z 0k} Xm X) =Xg1 - Qu=—Xg1 - Qe

[l m=1
The quadric Q”.u. clearly vanishes on all the points of M except for &, and 5,. Denote
by J the subgraph of J" in which two distinct vertices b, and b, are joined if and
only if there exists j (1 <j < g—2) distinct from i and k such that the quadric Q]kz

does not vanish on the points &. and b,.
Proposition 5.2. The graph T is connected.

Deduction of Proposition 5.1 from Proposition 5.2. J is a subgraph of J. and so
J"' is connected because both graphs have the same number of vertices.
Let the distinct vertices b, b, and bi’ b, be M-comnected and i # j. By the defi-

nition of M-connectedness there are cubics

Kie, iz €T (Pg—z, Op (1)) ®T (P52, 1 (2))

such that K X Qlk and K ot Q;‘k’ where Q;.k does not vanish on the

two points b bk’ nor does o ik ©n b b Consider the cubic
K = aKis -+ BKjt = Xg—1 - (@Qir + BQjr)-

Since Q;k(bk) # 0 and Q;k(bk) £ 0, there exist nonzero a, B, € k such that Q'=
CLQ;.k + ﬁQ;‘k vanishes on b,, and so it is clear that b, and b]. are M-connected.
Hence J' is trivial, since it is connected.

Later in this section we will thoroughly investigate the properties of the coeffici-
ents al . of the quadrics Q forming a basis in the space of quadrics through M, To
this end, we will introduce the notions of subbasis, real subbasis, exponent of a sub-
basis, and exponent of complexity of a subbasis.

Definition 5.1. A subbasis of the basis {0, i is a system of quadrics {Qlaz ba B

where a £ 8 and 1 <a, 8<n<g- 2, and the md1ces ippeee i, forma subset of

the integers 1, 2, ---, g = 2 such that a’? =0 for k# i, -+, i . The number »

is called the exponent of the subbasis {Q, ! and is denoted by P(Ql lﬁ)
Examples. a) {Qijf is a subbasis of 1tself with P(Qu) = g~- 2, since algj—l =0,

b) If there is a quadric

Qijs = Xiy - Xj, 4+ Xg - (odr X5, + it X0,
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then Qlom is a subbasis and P(onzo) =2,
Lemma 5.2. If the vertices b . b,-n are only connected among themselves in

the graph T, then {Q ,6; is a subbaszs

Proof. The lemma is obvious for » = 1. Let n> 2 and i # I8, where 1< a, B<
n. Consider an integer k € [1, g - 2] not equal to ij5+++, 1 ; since the points b,
and b;, are not connected in the graph J, the quadric

g—a
iak~ Z Cllu,; X - X 2 aiatBX - Xg
=1 m=1
B
vanishes on bk and b; hence al aig Q (b ) = 0; that is, afﬁia= 0. The lemma

is proved.
Definition 5.2. A subbasis fQ B} is called real if it is not possible to make up
a smaller subbasis using its elements, and the number
SP{Qi} = max  (P(Qi,))

1a real
subbasis

Qi)

is called the exponent of complexity of the basis {Ql.jf.

Lemma 5.3. SP{QZ.].} =g-2, or SP{ Qij} = 2 and every element Q;,;. of a proper

subbasis will be a subbasis, and also there is a Qij which is not a subbasis.

Deduction of Proposition 5.2 from Lemma 5.3. The proposition will be proved by
contradiction; suppose J is not connected and consider the following cases.

Case I. There exist vertices b;, -+ , b; , where 2 <n <g- 3, forming the ver-
tices of some connected component of J. To the vertices biys+-+ »b;, there corres-
ponds, by Lemma 5.2, a subbasis {Q;,;s} which is proper since n < g - 3. Hence every
aip

<, bin form a connected component and n > 2, there are two connected vertices b;

quadric Q. is a subbasis; that is, a7 ; = 0 for kL g, ig. Since the vertices b;

i1
[ ¥o k)
biﬁ5 that is, there exists a p (1 <p <g~2), not equal to i or 1,8’ such that the quadric

g—2 g—2
P i Y m
QiaiB = 2 Qigp - Xy 'Xia— Z Qi X ~Xf3
=1

m==

does not pass through the points b;, and biﬁ . Hence a,-lgp # 0 and a;fp # 0.

Consider the quadric

g2 g—2
§ ' o ¢
lap = Z ap;@ : 'Xi(;—- Z Qi gig X - Xp,

/=1 n=:1
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which by defmmon vamshes on all the points of M except possibly for b,a and b,.

The coefficient a pipg= Ay ﬁ;é 0, and so Q'/3 (b ),1.0 that is, by Lemma 5.1, Q (bp) -

a? . £0. It has been shown above that ak . =0 for k£ iy i . This means that Caselis
taif tatf3
impossible.
Case II. There do not exist connected vertices; that is, for any distinct integers
Z, j, k in the interval [1, g - 2] the quadric Q;k contains points of M. Hence afj =0,
which means that every quadric Qii is a subbasis. This contradicts Lemma 5.3, and

so this case is also impossible. The proposition is proved.

Lemma 5.4. If #(M) > 2g — 1, then SP{QI.].} = 2 and every quadric Qij will be a

subbasis.

Proof. By Theorem 3.1, M is a reduced irreducible curve which generates pe-2,
Since Qi:k is equal to zero on alllpoiﬂts of M lying outside H, we have Q’, =0 on
almost all points of M, and so Q:’k € r(pe-?, IM(Z)). Hence Otf]. =0 for k# 7 j; that
is, every quadric Ql.]. will be a subbasis and SP{ Qi;‘} = 2. The lemma is proved.

Lemma 5.5. If SP{QI-].} £ g~ 2, then SP{QI.].} =2 and every element Qiojo of a

a proper subbasis will be a subbasis.

Proof. We can assume without loss of generality that the proper subbasis is de-

defined by the indices I, 2, ---, n, where 2 <7 < g — 3. Consider the projective sub-
space P” of P&~2 given by the equations Xn+l == Xg_3 =0, To every point
xp=la, ey a ) there corresponds the point x, =(a,, -+, a , a,_ ) E P,
provided that x. does not have the form (0, «--, 0, Qa2 Gy 0). The only
points of M having this form are the points b, = {0,---,0,1,0, .-+ ,0} for i=n+

N e
i

1,--+, g-2. Consider M= M \fo_

, R bg_zi, where M’ consists of (2g - 2)
isolated points of M lying in general position; these exist by hypothesis. We will

" . . . . . ..
prove that M~ consists of these g + n isolated points lying in general position. In

fact, if this were not so, there would exist » + 1 points x; em’ \{an, cen, bg-zi
such that the vectors x, = =1 al’ e OL:Z, OL;_ |} are linearly dependent. It is then
obvious that the points x = {OL], e, a;, 0, -+, a; } and the points b T

<o, bg—z will in con]unctxon be linearly dependent in Pg 2, It would then follow
that the points x; and bn+1, ceey bg_2 of M are dependent, but their number is equal
ton+1+g—2~n= g-1. This is of course impossible. Hence P" D M" contains
g + n isolated points lying in general position in P”; from the definition of a subbasis

we obtain that
Qii{alr coe 3 Onta, ... :ag—l} :Qii{alr DO raﬂ-yoy e ,O,agfx}

for i #j and 1 <i, j<n;that is, through the points of M" there pass n (n - 1)/2
quadrics of the subbasis and the number of points in M’ lying in general position in
P" isequalto g+n>n+ 3+ n>2n+ 3. By Theorem 3.1 the quadrics Qi]. for 1<

i <j<n define in P" areduced irreducible curve which generates P”. Then, by
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Lemma 5.4, every quadric in the given proper subbasis will be a subbasis. The proof

of Lemma 5.5 is then obvious.
Lemma 5.6, If Q;; has a subbasis of order g - 3, then #(M)> 2g - 1.

Deduction of Lemma 5.3 from Lemmas 5.5 and 5.6. By Lemma 5.5, it is clear that
if SPQ, 1 #g-2,then SP{Q, j} =2 and every element Q;,;, of a proper subbasis will
be a subbasxs but by Lemma 5 6 there is a quadric Q” which is not a subbasis. Lemma
5.3 is proved.

Proof of Lemma 5.6. We can assume without loss of generality that a subbasis of
arder g — 3 is defined by the indices 1, ..., g~ 3. We denote by O the point
(0, .-+, 1,0 and by H the hyperplane defined by the equation X _,=0. Consider
the projection 7: P&~ 2\O > H. There are 2g - 2 isolated points in M lying in general
position. Under projection to H, they give rise to 2g ~ 3 isolated points in general
position, on which vanishes the (g - 3)(g -~ 4)/2-dimensional space of quadrics gener-
ated by the Q,; for 1<i<j<g-3. Hence H | K= G, where K is the scheme de-
fined by the quadrics Q;; for 1<i<j<g-3,and G' is a reduced irreducible curve
of degree g — 3 generating H (by Theorem 3.1). K is thus an irreducible cone with
vertex at the point O, since the Qi do not depend on the variable X g-2 (1<i<j<

- 3.

The remaining g ~ 3 quadrics

/g_g
Qg2 == Xg—s - Xi + Xga ( Z “é-z,ixj) )

j=1

where i= 1, ..., g~ 3, vanish on the projective subspace H' defined by the equations
_1=X g=2" 0, clearly of codimension 2 in P&~ 2. Consider the closed subscheme

$ of P&~ 22 defined as the intersection of the quadrics Q 2. (i=1,..., g- 3).

K' DM, and so it contains 2g — 2 isolated points lying in general position; in proving

Theorem 3.1 (see the deduction of Theorem 3.1 from Lemma 3.1) it was shown that

K:'ed ,

Tt is evident that G passes through all the points of M lying outside H'; that is, it

passes through at least (2g - 2) - (g - 3) = g + 1 points. Under projection of the curve

G onto the hyperplane H, it is easy to prove that its image 7(G) is an irreducible

curve of degree g — 3 generating H. The curve m(G) passes through g points lying among

the 2g — 3 isolated points situated in general position in H. #(G) and G' thus have

g common points, and so 7(G) = G' by Lemma 3.1. This equality shows that

dimK (} G> 1;thatis, dimK | K' = dimM> 1. Lemma 5.6 then follows from The-

=G |J H', where G is an irreducible curve of degree g - 2 generating pe~2.

orem 3.1.

$e. Reducibility and smoothness of Q

Theorem 6.1. a. Q . =0.
If dimQ =1, then Q= C.
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c. If dimQ =2 and g # 4, then Q is a smooth surface of degree g~ 2.
d. If g=4, then dimQ = 2 and Q is either a nonsingular quadric or a cone with

nonsingular basis curve of degree 2.

Proof of parts a and b of Theorem 6.1. a. By Theorem 4.1 we have dimQ < 2; if
dimQ =2, then Q _, = Q by the same theorem, and so for the proof of part a it is suf-
ficient to prove part b.

b. Let dimQ = 1; then by Theorem 4.1, Q.04 = C, and by the lemma on the choice
of a “‘good’’ hyperplane there exists a hyperplane H such that H - C= 23__‘_”1'2 x., where
the x, are distinct points lying in H in general position. The scheme Q N H thus
contains 2g - 2 isolated points lying in general position in H, and #(Q N H) = 2g - 2.
The scheme Q [ H also satisfies property B), since the quadrics through C restrict
without kernel to any hyperplane. Hence by Theorem 5.1, (Q H)[ed =0 ) H, and
so Q4= 0@ by the lemma on reducibility (see b, S1).

The proof of part ¢ of Theorem 6.1 will be based on the following proposition which

will not be proved in the present article (its proof can be found in [2], $10, Theorem 7).

Proposition 6.1. If F is a singular irreducible reduced surface of degree g - 2
lying in P&~ 4nd generating P8~ ! then F is a cone with nonsingular rational basis
curve of degree g — 2 generating a hyperplane in P8~ L

Lemma 6.1. For any point O € P81

does not touch the curve C.

the generic byperplane passing through O

Deduction of the remainder of Theorem 6.1 from Proposition 6.1 and Lemma 6.1.
c. Let dimQ =2 and g # 4. We will assume that Q is a singular variety. Then, by
Proposition 6.1, Q is a cone with nonsingular rational basis curve G of degree g~ 2
generating a hyperplane H. We consider the projection 7 from the point O (the vertex
of the cone Q) of C onto H. This projection is defined at all points of the curve C,
except perhaps at O, if O € C. The preimage of each generic point of G obviously
consists of the same number of points of C. We denote this number by & (k¢ > 1); that
is, a generic generator of the cone Q intersects C in k isolated points, ignoring the
point O if O € C. Since the generic hyperplane through O intersects Q in g - 2
distinct generic generators and does not touch C, by Lemma 6.1 it follows that 2g -
2=Kg-2) for O C and 2g~2=Kg-2)+1 for O € C. It is easy to show that
both equations are impossible for g > 4. This leads to a contradicition of the assump-
tion that Q is not smooth for g > 5.

d. If g =4, then dimHO(P8~ 1, 1-(2)) = (g~ 2 (g - 3)/2 =1, and therefore dim Q =
2 and Q is a quadric in P> 1fQ isa singular surface, by Proposition 6.1 Q will
be a cone with nonsingular basis curve of degree 2. The proof of Theorem 6.1 is com-
plete.

Remark. The case of a singular quadric for g = 4 can actually be realized, for

example, by the curve defined by the equations
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X, +Xi4+X:=0, SFXi+Xi=0

in P2, For chark # 2, 3 it is easily proved that this curve is not hyperelliptic and
that its image under the canonical immersion in Q is the singular quadric defined by

the equation

Xi +X;: +X;=0.

In case k=2, 3 it is also easy to construct a corresponding example. It will be prov-
ed in §9 that the case of a nonsingular quadric is realizable.

Proof of Lemma 6.1. The hyperplanes passing through O and touching C form a
closed subset in P&~! which we denote by P. Consider the lines passing through O
and some point x € C. Since C is a curve generating P~ ! and g— 1 >3, only a
finite number of lines passing through O touch the curve C (see [3]), or a tangent line
at the generic point of C does not pass through O. Let x € C; then P(x), the space
of planes passing through O and touching C at x, will coincide with the space of
planes passing through O and a tangent line at x. Hence dim P(x) = g - 4 for the
generic point x € C, because a tangent line at the generic point does not pass through
O. At the remaining points x, which form a finite set, dim P(x) = g - 5. Hence dim P <
g — 3, and the dimension of the space of hyperplanes passing through O in Pe-! s
equal to g - 2, and so the generic hyperplane passing through O does not touch C.
The lemma is proved.

We recall some properties of rational ruled surfaces which will be needed in the
sequel for the investigation of the structure of Q in the case when Q is a smooth
surface. A rational ruled surface is a rational surface F for which there exists a mor-
phism f: F - P! each of whose fibers is isomorphic to the projective line. It is well
known (see [1] or [2], for example) that every such surface is isomorphic to one of
the surfaces Fn, n > 0, defined in the following way: FO ~ ply Pl; Fn for n>1
has a canonical section b: P! > F, whose image b  is a unique irreducible curve on
F_ with negative index of self-intersection and (bn . bn) = - n. It is easy to show
that the fibers of the projection /: F - P! form a linear equivalence class, which

will be denoted by s . For each F_ we have an isomorphism of groups

Pic F, = cl(F))~Z D Z. (6.1)

The generators for n> 1 are the classes s and b , and for n =0 they are
classes of coefficients, one of which will be denoted by s, and the other by &,. It

is easy to compute the canonical class of the surface

= —(2 +n)sn_2bn' (6.2)

an
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$7. Q is a smooth surface

In this section we will define a set of surfaces, to one of which Q is isomorphic

if it is nonsingular, and also we will calculate the class of the curve C in Pic Q.

Theorem 7.1. If Q is a smooth surface, then the following possibilities arise.
1, 0~ P2, then g = 6, Q will be a Veronese image of the plane P2 and the
curve C, immersed in Q, will be a curve of degree 5.

2. Q= F , where n satisfies the following relations:

0 < n<min {g_’_;f;?’g_4}; n = g (mod2) (7.1

and

Og(1) = Or, (b + 55251} 00(€) = 0o() @ "

=0F, <3b,, +£+_32"_+_2 s,,) : (7.2)

Before proceeding to the proof of Theorem 7.1, let us recall a known result from
the theory of rational surfaces; its proof can be found in [2] (§10, Theorem 7), for

example.

Proposition 7.1. If F is a nonsingular irreducible reduced surface of degree g —
2 lying in Pe=1 and generating this space, then F is either the surface Fn for some
0<n<g-4 with n=g (mod 2), and the generators (that is, divisors from the class
s") are lines in P8~ 1, or g =06 and then F is isomorphic to P?; in the latter case F

is a Veronese image of the plane P2,

Deduction of Theorem 7.1 from Proposition 7.1. Q is an irreducible reduced sur-
face of degree g — 2; let us assume that it is regular, so that we obtain from Proposi-
tion 7.1 the following possibilities:

1, 0~ P?. then g="06 and Q is a Veronese image of the plane P2, Let n be
the degree of C, immersed in the plane P then g =6 = (n - 2)(n - 1)/2 by the for-
mula for the genus of a curve of degree ». Hence n =5, because n > 1; that is, the
curve C, immersed in P2, will be a curve of degree 5.

2, 0~ F_. We denote by b the linear equivalence class of divisors of the
hyperplanar sections F_ = Q C P&~!. From the isomorphism (6.1) we have b =
b-b +s-s ,and we compute b and s for the given immersion Fn ~ g cPe-l,
For the generic hyperplane H, QO () H is an irreducible reduced curve of degree g —

2 generating H (see the proof of part ¢ of Theorem 4.1). Hence

(h-h) =g—2. (7.3)
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Since the curve G is rational, by the formula for the genus of a curve on a surface we

have
(h - (h +or,) =28(0) —2 = —2, (7.4)
where wF, denotes the canonical class of the surface Fn >~ (. Equations (7.3) and
(7.4) yield the following system of two equations for b and s:
((b-bn+s-Sn)-(b-ba+5-5)) =+2bs—nb2=g—2,
((b-bn+s-52) ((6—2) -bn+ (s—n—2)s2)) (7.5)
= (b—2)s+ (s—n—2)b—b(b—2)n=—2,
since bf} =-n, s’zz = 0 and (bn . sn) = 1. We transform the second equation of (7.5)
making use of the first:
0=2+ (b—2) -s+ (s—n—2)b—b (b—2)n=2—2s—nb
+2nb—2b +2bs—nb?
= 2+nb—2b—2s+g—2=g+nb—2b—2s,
that is,
g+nb—2b—2s=().

Multiplying the last equation by b and once again using the first equation of (7.5),

we obtain

0=gb +nb?—2bs—2b?=gb—g+2—2b2,

that is, b satisfies the quadratic equation
2b2—gb+g—2=0.

Hence b =1 or (g — 2)/2. In the latter case the first equation of (7.5) implies that
s=14+(g~-2n/4 and b =(g-2)/2b, +[(g-2)n/4 +1].s . Itis evident that
(. b) > 1 for the linear equivalence class ! of any irreducible curve, and so (b - bn) >

1 or

(B o[ nr 1] ) ) = =G24 B0 11>,

ng—=2) .
4 ~

Hence n= 0, s =1 and b= (g - 2)/2, but b# (g~ 2)/2 for n > 1. There does not
exist a canonical choice of the class bo on the surface F;, and the classes & and

s,» being the classes of the generators, can always be interchanged. Then we obtain
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that b can be assumed equal to 1 for n = 0, while b will always be equal to 1 for
n>1. Since b =1, we have from the first equation of (7.5) that s = (g + n - 2)/2 and
h=b_ + ((g+n- 2)/2).9", and hence

Og(1) =0, (b + &7 =251

We will compute the linear equivalence class of the curve C immersed in F =~
Q. The curve C is a nonsingular irreducible reduced curve of degree 2g — 2 lying in

Pe~! and g(C) = g, the genus of C, and so
(cl (C)-h) =2¢—2, (7.6)
and, by the formula for the genus of a nonsingular curve lying on a regular surface,

(c] (C) - (cl (C)+o0r,))=2g—2. (7.7)

Let cl(C)=b.b +s.s forthe isomorphism (6.1). We then obtain from equa-

tions (7.6) and (7.7) a system of two equations for the unknowns s and &:

((b~bn+s-sn) (b,.+%—2sn)) — —bn +s+b(€—+—;:—2) —2g-—2,
(b bats ) (b—2) - bat(s—n—2)s)) = —b(b—2n  (7.8)
s(b—2)+(s—n—2). b—=2g—2.

We obtain from the first equation of this system that s = (2g — 2) - b(g - n - 2)/2

or

2bs =(4g—4)b—b*(g—n—2).
Hence
28 —2=—b(b—2)n+s(b—2)+(s—n—2)b=—b(b—1)-n+ 2bs
—2—2b=—b(b—1)n+(4g—4)b—b*(g—n—2)
—925—2b="bn+(4g—4)b—b*(g—2)—(4g—4)+b(g+n—2)—2b
=b*(2—g) +4—4g + b(5¢ +-8);

that is, & is a root of the quadratic equation

b*(2—g) + 6—6g 1 b(5¢ —8) =0, (7.9)
and so b=3 or b=2+2/(g - 2). The last value for & is possible only when g = 4,
since g >4 and b is an integer. For g = 4 the quadratic equation (7.9) has the
double root b = 3. Hence

_ _o9g_o__plg—n—2) g-+i3n+2
b=3,s=2g—2—b 5 = 5
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and

cl(C) =3b,+ £ T2 h— e,
2 (7.10)

It follows from the last equation that

—~ 3 2
0 (€)= 0e(1)® %" = O, (3bu+ ELFE25,).
To conclude the proof of Theorem 7.1, we will show that » satisfies the relations

(7.1). The second relation follows from Proposition 7.1. It is clear that (bn - cl(Q) >
0, and so

3
(bn' (3bn.+ ﬁzi“t_zsn)) ___g+6;n+2 >0,

that is,

giz>n_
3 (7.11)

From the inequality (7.11) and the fact that 0 <2 < g - 4 by Proposition 7.1, we obtain
the first relation of (7.1):

0<n<min{€§3, g——4}.

Theorem 7.1 is proved.
$8. Proof of Theorem 2

Theorem 8.1, a. QO = F_ for g>5 if and only if there exists on the curve C an
effective divisor D of degree 3 such that dim H’(C, 0.(D)) = 2.

b. Q= P? if and only if g = 6 and there exists on the curve C an effective
divisor of degree 5 such that its carrier consists of five distinct points and

dimH%C, 0.(D)) = 3.
Proof. a. Necessity. For Q &~ F_ it was shown in the proof of Theorem 7.1
that

el (C) = 3b, + ﬁ%s,,.

Let [ be a divisor from the class s . By Proposition 7.1, 1 is a line in P&~!

under the immersion Fn ~ Q C P&~ 1, because deg Q) = g — 2. Consider the divisor

D =1.C onthe curve C. It is clear that D is an effective divisor and

deg D = (cl(C) - el (1)) = ((Bb,,—{— W sn) . s,,) —3.
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Let @ be a divisor from the canonical class of the curve € which is determined by a
hyperplane H not passing through points of the divisor D and having equation 5. Then,
from the definition of the canonical immersion,
R’ |h' is a linear form from the coordinate ring of the
() —
1€, 0c = {E

space P&-!

It is easy to show that

H°(C, O¢(0— D))= {h—h, R'is a linear form on P&=1 which defines } 8.2)

a hyperplane H'C [

Hence dimH%C, O (w ~ D)) = g — 2. By the duality theorem, dim H'(C, O (D)) = g - 2,

and so, by the Riemann-Roch Theorem for curves,
dim H°(C, O¢ (D)) =dim H'(C, O¢(D)) +deg D—g+1=2.

The necessity is proved.
Sufficiency. Let D be an effective divisor of degree 3 on the curve C such that
dimH°(C, OC(D)) = 2; then by the Riemann-Roch Theorem,

dim H°(C, Q¢ ® O (— D)) = g — 2. (8.3)

We choose a divisor @ from the canonical class of the curve C in such a way that
(w - D) = 0; it then follows from formula (8.1) that H°(C, O o -D)) = {b'/blb' is a
linear form from the coordinate ring of the space P&~1! such that, for the hyperplane
H' corresponding to it, the divisor H' . C > D}, and hence the ‘‘projectivization’’ of
the space HO(C, OC(“) - D)) is isomorphic to the projective space of hyperplanes in-
tersecting the curve C in a divisor not less than D, and the dimension of this space
is equal to g — 3 by formula (8.3); on intersection these hyperplanes therefore define
a line I. Obviously (/. c¢) > 3. Hence any quadric passing through C contains /, and
therefore / CQ and dimQ = 2; by Theorem 6.1, Q is a smooth surface of degree g — 2,
since it was assumed in part a of Theorem 8.1 that g > 5. Q cannot be a Veronese
image of the plane P? because, as is well known, a Veronese image of a plane does not
contain lines. Hence Q =~ F_ by Proposition 7.1.

b. Necessity. Let Q =~ P?; then by Theorem 7.1 we have g =6 and Q is a
Veronese image of the plane Pz, while the curve C, immersed in O, will be a curve
of degree 5 on P2, Under a Veronese transformation the line ! of the plane P? pass-
es to a curve of degree 2 in P> which generates the plane 7. Since the degree of C,
immersed in P2 ~ Q, is equal to 5, there exists a line [/ intersecting C in five dis-
tinct points which form a divisor D. The corresponding plane 7 then contains the
divisor D and is generated by it. As in the proof of necessity in part a, it is easy to
show that

dimH°(C, Q¢ & Oc(— D)) =g—3=3

’
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and, by the Riemann-Roch Theorem,
dim HY(C, O¢(D)) =3, dim H°(C, O¢ (D))
=dim H'(C, O¢(D)) +deg D—g+1=3.

The necessity is proved.

Sufficiency. Let C be a curve of genus 6 and D an effective divisor of degree S
whose carrier consists of 5 points, and dim H(c, OC(D)) = 3; then, by the Riemann-
Roch Theorem,

dim H%(C, Q¢ ® Oz (— D)) = g — 3—=3. (8.4)

We can choose on C a divisor w from the canonical class in such a way that (D . @) =
0. Hence, as in the proof of sufficiency in part a, we obtain that the "‘projectivization’’
of the space H°(C, O (w - D)) is isomorphic to the projective space of hyperplanes
which intersect the curve C in a divisor not less than D. By (8.4) the dimension of
this space is equal to 2, and so, on intersection, these hyperplanes define a plane =.
It is easy to show that C . 7> D. If Q0 were equal to C, there would exist two quad-
rics g, and g, whose restrictions to 7 would give a finite number of points, and we
would clearly have degD <(C . n) <(7. g, - q,) = 4, contradicting the fact that degD =
5. Hence dimQ =2 and Q () 7 = g is a quadric lying in the plane =, since Q clearly
does not contain 7.

We will show that Q cannot be a ruled surface. To this end we examine the follow-
ing cases.

I. g4 =1 1isa line which contains the divisor D. Since #(SuppD) =5, (/. C)>
5. If Q were a ruled surface, then a divisor of a hyperplanar section on Q =~ F.
would lie in the ruled system &b+ (g+n- 2)/2)sn, as was shown in §7. It is easy
to prove from the last equation that if [ is a line lying on Q = F_, then either IXS S,

or /€56 and n=g-4. Therefore g ,=/€b and n=g- 4, because

(52 - €) :(s,, . (3b,,+ g:i—_%nﬁsn)) =3,
while (/. C) > 5. Hence

”'C):(bn-C):——3n+g+32”+2=2—32n+2:1

’

since g =6 and 7 = g — 4 = 2. This contradicts the fact that (/. C) > 5, and so Q
cannot be a ruled surface in this case.

II. g is a singular reduced quadric, and so it splits into two distinct lines, / and
I If Q were the ruled surface Fn, then, by what has been said in the analysis of
case I, it would follow that 7 = g — 4 and the two lines / and /' lie in the classes
s, and b . Therefore (C.9=(C.(s + bn)) =(C. Sn) +(C. bn) = 4, since g =6
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and n =g - 4 = 2. This contradicts the fact that g contains 5 distinct points of C,
and so Q cannot be a ruled surface in this case.

III. g is a smooth reduced quadric. We will assume that Q =~ Fn, n=0,2 by
Proposition 7.1. Let cl(q) = & . b +s.s . Using the fact that a divisor of a hyper-
planar section under the immersion Fn =Q0cC P&-! lies in the class bn +
((g+7-2)/2)s , it is easy to show that for 7 = 2 a nonsingular quadric cannot lie on
F_, while cl(g) = by for n=0. Hence

(C-q9)=(C-by) = ((3b0+&:;”_+_230).b0) _4

since =0 and g = 6. It was noted earlier that (C . g) > 5, and so Q 9 Fn. From
Theorems 6.1 and 7.1 we then obtain Q ~ PZ.

Theorem 8.1 is proved.

Remark. For the proof of sufficiency in part b it was shown that, if on a curve C
of genus b there exists an effective divisor of degree 5 for which dim H%(C, 0.(D)) =
3, then dim Q = 2; that is, the curve C, the image under the canonical immersion of
the curve X, will be a special curve. The author does not know whether Q0 is iso-
morphic to P? or possibly to Fn in this case. It was assumed in part b of Theorem
8.1 that #(suppD) = S5.

$9. Proof of Theorem 3

Theorem 9.1. a. Let n satisfy the following relations:

. 2
0<n<mm{g—+— —4}- n = g(mod 2),
then there exists a special curve X of genus g such that Q =~ E_ for it.
b. dimH%(Q, Oy - X) =2g +8 if Q= F .

The proof of Theorem 9.1 will be based on the following assertions.

Lemma 9.1. If C is a smooth curve of genus g and degree 2g ~ 2 lying in the
space P&™1 and generating it, then C is a nonbyperelliptic curve which is its own

image under the canonical immersion.

Proposition 9.1. a. The sheaf OFn(bn + msn) is very ample for m > n, and
dimHO(Fn, O,-:n(bn + msn)) =2m-n+ 2.

b. In the linear system Bbﬂ + ks _, where k > 3n, there exists for n> 1 a reduced
irreducible smooth curve; the same holds for the linear system 3b; + ks, for k> 1.

c. dimHF , Op (3b_+ ks )) =4k — bn + 4, where k> 3n.

Deduction of Theorem 9.1 from Proposition 9.1 and Lemma 9.1. Let n satisfy
the relations (9.1); then (g + n -~ 2)/2 is an integer greater than 7, and so the sheaf

Of, (bn + g+n- 2)/2)sn) is very ample, and the linear system b_+((g+7 - 2)/2)Sn
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defines an immersion of the surface Fn into projective space of dimension equal to
. —2
d:mH"(F,,, an(b,. +2+_§_ sn))— l=g4n—2—nt2—-1=-g—1

(by Proposition 9.1). Denote the image of the surface F_in Pe=l by Q' It is evi-
dent that Q' is a reduced irreducible smooth surface generating Pe=!  We have

dengz(bn‘{"g'_’__z—n—sz b +g——'§—_;l';25n) =g—2

Consider the linear system 36 +((g +3n+2)/2)s ; then (g + 3z + 2)/2 > 3n, since
(g+2)/3>n for n>1,and (g +3n+2)/2>3 for n=0, as g> 4. Hence by Propo-
sition 9.1 there exists in the class 3bn + ((g+3n+ 2)/2).9" a reduced irreducible
smooth curve X, and

dim H(Q', Og-(X)) = 4 (g+_3_2+2) — 6n - 4=2g 8.

The genus of the curve X is equal to

g+3n+42
(cl (X), cl(X) +an) (3!’n + o S by 9  °n

2 —|_1: 9 +1:g¢

Denote by C the image of X lying in F under the immersion defined by the linear
system b+ (g+n- 2)/2)sn. We have

degC = (cl(X) - bn ‘{——gj:%:—zsn) =2g—2,

whence, by Lemma 9.1, C is a nonhyperelliptic curve, being a canonical image of X.
Let [ be a divisor of the class s 3 then [ is a reduced irreducible smooth curve iso-
morphic to P!, Furthermore,

(cl(l) . bn+.g++—2sn) —1,

and so [ is a line lying on Q' C Pe-1, Also,

(-0 :<cl(l) 36+ L) s,

The line ! is thus contained in every quadric passing through C; that is, [/ CQ, and
so Q' C QO since the generators [ mark the whole surface Q' ~ Fn. Hence dimQ = 2
and Q= Q' ~ F by Theorem 4.1, and so there exists a special curve X of genus
g such that Q = Q' =~ F_ for it. Theorem 9.1 is proved.

Proof of Lemma 9.1. Let H be some hyperplane in Pe=!. Since C generates
Pe=! the effective divisor D = H . C is defined and degD = deg C = 2g — 2. Clearly
dim H°(C, OC(D)) > g. Hence by the Riemann-Roch Theorem

dimH*(C, Oc(— D) ® Q) =dimH°(C, Oc (D)) —degD --g— 1> 1;

thus, since deg (QC) = deg (D) = 2g — 2, there is a function [ on C such that (/)
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lies in the canonical class of C and (f); = D. D thus lies in the canonical class, and
dim H%(C, 0 (D)) = g, and so C is a proper image under the canonical mapping of the
C prop g 8

curve C. The lemma is proved.

Lemma 9.2, The linear systems b +ns, and 3bn " 3bnsn bhave reduced irreduc-

ible regular curves for n> 1.

Proof. It is well known that for the ruled surface F_ the arithmetic genus is equal
to 0. Hence for any divisor D on the surface F" we have
. . (D, D—o )
dim HO(F,, Of, (D)) —dim H'(F,, O, (D)) 4-dim H?(Fy, O, (D))=1+ ——2J .

where wfp  is the canonical class of F . For any effective divisor Don F itis
easy to show, from the duality theorem and the fact that WE, =~ zbn +(n+2) S
that dim Hz(Fn, OFn(D)) =0, and thus, for £ >0,

dim HO (F, Or, (by + ks.)) — dim H* (Fa, Or, (bs - ksa)

9.2)
b ks -3 k 2
— g b"+2( TRt A%  op_na2
and
dim HO(Fy, O (3b, + ksy)) —dim HY (Fy, O, (3, + ks)
(9.3)

B (8by + ks, - 3b, + (k4-n-+2)s,)
' 2

=1 — 4k 61 4.

Let n > 1; then &_ is the unique reduced irreducible curve with negative index
of self-intersection (see [1]). As is well known, b, is aregular curve of genus 0. Let
¢ € F(Fn, OFn(bn + nsn)) and let ¢ be a function which is constant along generators;
that is, a divisor of the class s_; it is then obvious that &b € F(Fn, OFﬂ(nsn)). Con-
sider the restriction @' of ¢ to b_; then o' € F(bn, Obn(D)), where D is an effec-
tive divisor of degree n. The restriction to b of functions constant along generators
takes place without kernel, and for any function ¢i € F(bn, Obn(D)) there is a func-
tion ¢, constant on generators, whose restriction to b is equal to ¢'. There thus
exists on the spaces F(Fn, OFn(bn + nsn)) a set of linearly independent functions
bo> ¢>1, e, gbn, [, where the qf)i are functions constant on generators, and [ is a
function not constant on generators, because dim r(bn, Obn(D)) ~degD+1l=ny1l
(the curve b, is rational), and equation (9.2) yields the inequality dim F(Fn, OFn(bn + nsn))
>n 4+ 2. Since [ is not constant along generators, there exists on a divisor of its
zeros an irreducible reduced curve G which does not coincide with s, or b, Hence
(G . sn) >1 and (G . bn) >0, and therefore cl(G) = b . b +s s, where b> 1
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and s > 7; but clearly cl1(G) <& +ns . We obtain from this inequality that G € b _+
ns . It is easy to show that the curve G is smooth and rational. Consider the mor-
phism p from F_ into the projective space P"*! defined by the functions ‘(qSo, I

cs b /). Under this morphism, b passes to the point O with coordinates (o, -+,
0, 1), while generators pass into lines passing through the point O. Under p, G is
immersed in the plane f= 0. Thus pL(Fn) is a cone with vertex at O and nonsingular
basis curve G, whose degree is equal to degD =n. Under u, the generators F_ and
the curve G are mapped isomorphically onto generators of the cone [L(F") and the
basis curve of the cone F(F,,) respectively, and thus p is an isomorphism of F  minus
bn. Let /' be some nonconstant function in F(Fn. O;:n(b’z + nsn)). It was shown above
that (/’)0 = G' is an irreducible reduced smooth curve. Since G' € bn +ns_, it is
obvious that degu(G’) = (G* . nsn) =b +ns - nsn) =n. G' thus lies in some hyper-
plane of P+l thatis, G' = (\/ + EAipi)O, and thus [ = M + 2)\1.[1., and the functions
g2 P> ** 5 b, f form a basis of the space F(Fn, OFn(bn + nsn)),
dimHF , Op (b +ns ))=n+ 2.

Consider the morphism

(dimH(F ,,0p (3b,-+3ns,))-1) -
M3:Fﬂ~_)P " :PN l)

defined by the linear system 3b + 3ns . It follows from properties of the morphism

p that ya(Fn) is an irreducible reduced surface having one singular point, and on
#3(Fn) the generic hyperplane cuts out divisors of the class 3b + 3ns . By Bertini’s
theorem (see [4] or [S]) the generic hyperplane H in the space PN=1 cuts out a reduc-
ed irreducible smooth curve. There thus exists a reduced irreducible smooth curve in

the class 3b + ns . The lemma is proved.
Lemma 9.3. The sheaf Op (b +(n+ 1)s_ is very ample.

Proof. This is obvious for 7 = 0, since on a regular quadric lying in P3 hyper-
planar sections cut out elements of the class bo +54, and so we can assume 7 > 1 for
the proof of this lemma. Let ¢ys 50 ¢n+1 be linearly independent functions in
F(Fn, OFn(bn +(n+ l)sn)), constant along generators. Consider the morphism 7 de-
fined by the functions ¢y, -+, @ , ¢n+1(3)f and f - ¢n+l’ where [ is the function de-
fined in the proof of Lemma 9.2. The morphism 7 is an isomorphism on Fn\bn, since
the morphism y defined by the functions ¢,, -+, ¢ and / is an isomorphism on this
space. Under 7 generators pass into lines, and b passes isomorphically into a line

which is given parametrically in the following way:
[0, ...,0,1,X),

where X € k |J {~}. Thus 7 is a one-to-one mapping. In order to prove that 7 is an
isomorphism, it is necessary to show that the tangent mapping at the points of b_ is
an isomorphism. This holds because the line 77(17,,) is transversal to the lines which

(31t is assumed that & € T(F , O (s )) is a nonconstant function
n4l n n'n
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are images of the generators F . Thus 7 is an isomorphic immersion of F , and,
since there is a function | - ¢, € (F, O (b +(n+ l)sn)) at which (f¢n+1)°° €
b+ (n + l)sn, the sheaf OFn(bn + (7 + 1)5”) is very ample. The lemma is proved.

Deduction of parts a and b of Proposition 9.1 from [.emmas 9.2 and 9.3.

a. The sheaf OFn(bn +(n+ l)sn) is very ample, by Lemma 9.3. The sheaf
Opn(b" + msn) is thus very ample for m > n, since the system (m —n ~ I)Sn has no
fixed components.

Let Q be the image of F_ under the immersion defined by the very ample sheaf

OFn(bn + msn). Then Q is an irreducible reduced surface generating PN, where

N = dim H°(Fy, O, (b, 4 ms,)) — 1.
Hence degQ > N ~ 1; that is,

deg Q = (bx + ms,, by + ns,) = 2n —n >dim H® (Fr, Of, (by - ms,) — 2

dim H°(F,, Or, (ba + ms.)) < 2m —n + 2.
The latter inequality and (9.2) imply that for m > n
dim H®(F,, Of,(ba +-ms,)) = 2m —n + 2,  dim ' (Fy, OF, (bs + msa)) = 0.

b. It was proved in Lemma 9.2 that for n > 1 there exists an irreducible reduced
smooth curve in the linear system 3b_+ 3ns_, and so we can assume for the proof of
part b of Proposition 9.1 that & > 3n on the linear system 3b + ks . Hence k- 2n>
n, and the sheaf OFn(bn +(k ~ 2n)sn) is very ample; the class bn +ns does not have
fixed components (this is obvious for » = 0 and is proved in Lemma 9.2 for » > 1), and
so the sheaf OFn(Sbn + ksn) is very ample. It follows from Bertini’s theorem (see
[5]) that there exists a reduced irreducible smooth curve in the full linear system 3b, +
ksn for & > 3n.

Parts a and b of Proposition 9.1 are proved.

Lemma 9.4, a. dim HO(Fn, Opn(an + 2nsn)) < 3n+ 3
b. dim HO(F , Op (36 + 3ns ) <6n + 4.

Proof. a. It was shown in Lemma 9.2 that there exists a reduced irreducible
smooth curve G of genus 0 in the class b +ns . Let G' be another such curve in
b +ns_, not equal to G. Consider the restriction of functions in F(Fﬂ, OFn(ZG')) to

the curve G; functions in F(Fn, Opn(ZG')) thus pass to functions in (G, 0(D)),
where D = 2(G - G') is an effective divisor of degree 2n. The kernel of this restriction

consists of functions lying in F(Fn, OFn(ZG' -~ G)). Hence

dim H®(Fa, Or,,(2bn + 2ns,)) < dim H°(G, Og (D)) - dim HO(F,, O, (bs + 15,)) =
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=2n -1 +n+2=3n+3.

b. As in part a, it is easy to show that
dimT (F,, Or, (3G') <. dim I'(G, 0(3G - G')) +dim T (F,, Or, (3G — G)).

Hence

dim H%(Fy, Of, (3b, -+ 3ns,)) < dim H°(G, O (3 (G - G')))
+ dim HO(Fy, Of,(2b, + 2ns,)) < 3n +143n 4 3=6n 4.

The lemma is proved.
Lemma 9.5.
dim HY(F,, Or, (3by+(k +1) s,))-—dim HO (F,, Or,, (3bs+-ksn))<A4.

[ . . . . .
Proof. Let / and I’ be two distinct generators from s Restricting functions from

I(F_, Op (3b_+ (k+ 1)) to ' as in the proof of Lemma 9.4, we obtain the inequality

dim HO(Fy, Or, (36, + (k +1)1)) < dim H®(Fa, Or, (3bx+ (k +1)1 — ')
+dimHO(L, O (I - (3b: + (B + 1)1))).

Furthermore,

dim HO (', O (I' - (3bi + (k 4+ 1) ))) = (sn - (3bn + (k + 1)50)) +1=4.
Hence

dim HO(F,, Or, (3ba 1-(k -1-1)8p)) — dim HO(F,, Or, (3b, - |- ksa)) < 4.

The lemma is proved.
Proof of part ¢ of Proposition 9.1. The inequality

dim HO(Fy, Or, (3b, - ks,)) <. 4k — b1 -4,

where k& > 3n, follows from Lemmas 9.4 and 9.5. We then obtain from equation (9.3)

that for £ > 3n

dim HO(F,, Or (3b, -~ ksy)) — 4k —6n -4, dim H*(F,,, O, (3b,+ksy)) = 0.
Proposition 9.1 is proved.
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