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THE STUDY OF THE HOMOLOGY OF KUGA VARIETIES
UDC 517.4

V. V. SOKUROV

ABSTRACT. The homology of Kuga varieties is studied. A nondegenerate pairing is
constructed between certain homology spaces and modular forms.

Bibliography: 10 titles.

This article continuous the proof, begun in [7], of a series of results announced in [6]

on periodic cusp forms on Kuga varieties. The author thanks Professor Ju. I. Manin,

during the course of whose seminar this work was completed.

§0. Main results

Let Γ c SL(2, Z) be a subgroup of finite index. We denote by (Γ, w) a pair such that

either the integer w is even or the following condition on Γ holds:

-£ίΓ (•)

(see (*) of §4 of [5] and §0 of [7]). This article continues [7] and uses its notation. In

particular ΔΓ and BT are the modular curve and elliptic modular surface for Γ (see §5 of

[7]). The corresponding canonical projection is ΦΓ : BT —> ΔΓ. In the sequel we will

sometimes omit the index Γ for simplicity.

0.1. Let 5'Η,+2(Γ) be the space of Γ-cusp forms of weight w + 2 (see §2.1 of [3]).

The main goal of this article is to define a canonical pairing

( , ) : //.(ΔΓ, Σ, ( * „ Φ , Ο / ) X SW+2(T) θ 5 ^ ( f ) -»C,

where Σ c ΔΓ is any finite subset.

0.2. THEOREM. The canonical pairing ( , ) is nondegenerate on

Hx (ΔΓ, (/^(D.Qn X Sw,2 (Γ) φ Sw+2 (Γ).

The proof of this theorem is given in §6.

0.3. The construction of the pairing ( , ) is based on the existence of (i) a canonical

isomorphism

the proof and construction of which are given in [7]; (ii) a canonical homomorphism

GRhw : //,(ΔΓ, Σ, (Λ,Φ,Ο/) -» H1+W(B?, Β?\Σ, Q),
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400 V. V. 5OKUROV

where Σ is a finite set of points of ΔΓ containing the points of singular type (see §1 of

[7]), the construction of which is given in §3; and (iii) a canonical pairing

Hw+t(B£, B?\» Q) X H°(B?, ST+ 1 θ ST+1)i-+C,

(homology class σ, ω) —* Ι ω.
-Ό

0.4. In §3 we carry out the construction of the "geometrical realization" homomor-

phisms GRfj (0 < i < 2, 0 < j < 2w). Theorem 1 of [6] corresponds to 3.2, and this

result may easily be proved over Ζ by the same methods. We make the change to Q for

consistency, since in the sequel symmetrization will frequently occur, where division by

w is needed! Theorem 2 of [6] is a simple corollary of Theorem 1 of [6].

Theorem 3 of [6] corresponds to Theorem 4.2 in this article, and Theorem 4 of [6] is a

slight variation of Theorem 2.5. Finally, Theorem 6 of [6] corresponds to the special case

of Corollary 6.1 with Κ = R.

§1. Neighborhood retracts

Let X be an analytic variety, D c C the disk with center at 0, D* = D - {0}, and

Φ : X -> D a proper morphism. In addition we assume that the fiber Φ"'(0) has normal

type. This means that for any point χ e Φ-1(0) there exist a neighborhood U c X and

coordinates Xx, . . . , Xn (n = dim X) in this neighborhood in which the canonical

projection takes monomial form, i.e. Φ\υ = X?" ' " ' -̂ ΊΓ1 f° r some positive integers m,

(1 < / < n). Then by Thorn's isotopy theorem X' — Φ~ι{Ε^) is a topological fiber space

over £f = £, - {0}, where El = {z e C| \z\ < ε} c D for suitable 0 < e.

1.1. LEMMA. For any sufficiently small ε there exists a deformation retract {see [I],p. 28)

of Φ~ι(Ε{) onto φ-'(0).

Corollary 1.2 is obtained from this lemma. Let Bw be Kuga's variety corresponding to

the elliptic surface B. Consider a pair of topological subvarieties Δ D F D F' with

smooth boundary. Then to the mapping of pairs (Δ, F') <^> (Δ, F) there corresponds the

homomorphism in homology

//,(£·, B»\F', Q)-»-#,(#·, 5 - | , , Q). (1.1)

In particular, those F consisting of small closed disks around points of the set Σ give rise

to a projective system of vector spaces Hj(Bw, BW\F, Q) with morphisms (1.1).

1.2. COROLLARY. There is a canonical isomorphism

Hi (Bw, Bw|Σ, Q) => jimff, (Bw, Bw\F, Q).

PROOF. If Ν c Μ and Ν is a deformation retract of M, then Ht(M, N, Q) = 0.

Therefore, by Lemma 1.1 and 3.4 of [7], Η,(Βν\ρ, Βν\Σ, Q) = 0 for F consisting of

suifficiently small disks. Then from the exact sequence

of the triple (Bw, BW\F, ί " | Σ ) it follows that (1.1) is an isomorphism for sufficiently

small F and F' = Σ. •

PROOF OF LEMMA 1.1. The only condition on e + 0 is the condition preceding Lemma

1.1, i.e. the local triviality of X' = Φ'\Ε^) over £f. Indeed, one can easily show,
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because of the normality of the fiber Φ~'(0), that it is a neighborhood deformation
retract, i.e. there exists a neighborhood X' D U D Φ"'(0) which admits a deformation
retract onto Φ-1(0). On the other hand, clearly there exists 0 < ε' < ε such that V =
Φ~1({ζ ε C| \z\ < ε'}) c U. Also it is easy to construct a deformation retract of X' onto
V. Combining the latter deformation with the restriction to V of the first deformation,
we obtain the desired one. •

§2. Homology with coefficients in the sheaf Rfi^Q

2.1. The sheaf Λ,Φ*<2 is obtained by extending from Δ' = Δ - Σ (see §1 of [7]) over Δ
the sheaf of local coefficients U ueA< Hj(B£, Q) in the following way: for a small disk Ε
around ν e Σ and Ε' = Ε — ν

For example, /?^^Q = Rfi^Q = G ® Q, where G is the homological invariant of the
elliptic surface B.

2.2. Fix a basis in the lattice G\UQ C ^ ^ » Q L O - Then a representation of the group
SL(2, Q) in /?^*Q|U o is determined. For any integer w > 0 the representation of
SL(2, Q) in the tensor power (/i^,Q)®M'|Uo decomposes into a direct sum of irreducible
representations of SL(2, Q). Each irreducible representation of SL(2, Q) is a representa-
tion in a symmetric power ( ^ ^ , Q ) m | u ; the positive integer m usually is called the order
of the irreducible representation. The identification of the subspace which is the sum of
all irreducible representations of order m in (^^^Q)®*!^ does not depend on the
choice of basis in the lattice G\Uo. The dimension r™ of this subspace also is independent
of the choice of the point w0 G Δ'. The group Aw of permutations of w elements acts
naturally on the space (/^Φ,Ο)®1"!,, :

a : x,® ..

0

ding into (R^Q)9\:
X x

where xi e Z^*QL0 and a G Aw. The space (Λ,Φ,Ρ)1"^ admits a canonical embed-

xw).x xw

In the sequel (Λ,Φ^,Ρ)1"!^ will be identified with its canonical image in (^^Q)® 1 "!,, .
(Ri&*Q)w\u is an invariant subspace of the representation of SL(2, Q).

13. PROPOSITION, a. r™ = 0 if m ^ w (mod 2).

b. c = i.

c. There is the following direct sum decomposition into subspaces invariant for SL(2, Q):

(Ri®AfwL = (ΚιΦ.ΟΓUΘ

(Σ is not a direct sum).

d. The space of invariant vectors of (-R^Q)®*!^, i.e. the sum of irreducible subspaces
of order 0, is generated by the vectors

w
2 )

where a e Aw (by a, w is even in this case); ex, e2 are a basis of the lattice G\u<.
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2.4. By the Kunneth formula, since B*o = Bu<> X · · · X BUo (H> terms), we have

# / < H 0 = . θ . ®*/m<D.QU. (2.1)

where 0 < 7m < 2. The representation S ([7], 1.4) and the trivial representation π^Δ') in
^o^*QL0

 a n t ^ ^2^*QL0 gi y e a representation of the fundamental group ττ,(Δ) in /?y^*Q.
This representation, which will also be denoted by S, is uniquely defined by the sheaf

Q. Since dim /?^,Q| B o = dim /?2**QL0 = 1, there is a noncanonical isomorphism

|Uo ̂  foO.Q) |Uo>
(2.2)

where w' is the number of j m = 1, w' =jt + · • · +jw =j (mod 2). We have that
5(π,(Δ')) c SL(2, Q), so we may consider the representations of ττ^Δ') on the subspace
(•R^Q)®"7'!^ invariant with respect to SL(2, Q). Below (see Lemma 2.7) we will prove
their irreducibility with respect to π,(Δ'). The decomposition of the space (R\(bmQ)<s>w\u

into irreducible subspaces corresponds to a decomposition of the sheaf (Ri^^Q)9w into
a direct sum of symmetric sheaves (Rfi^Qf, which we will also denote by Sm. We
obtain from (2.1), (2.2), and 2.2 a canonical decomposition into a direct sum

R/KQ = ® srJr>Q) (2.3)
m

where r^m is the number of irreducible representations of order m in Rj<b™Q\Uo, this
number not depending on the choice of uQ e Δ'. The decomposition of s£- into a sum of
sheaves Sm is not canonical.

2.5. THEOREM, a. Η,(Δ, Λ,Φ^) = θ m Η/Δ, SJ'^.

b. dim H0(A, SJ = dim //2(Δ, Sm) = { °-j£ ̂  > '̂

c. For even m > 0

dim //,(Δ, S J - 2(g - l)(m + 1) + Σ «("(I») + "(I?))

For odd m > 0

dim H^A, SJ = 2(g -

+ (m + 1) Σ (»Ό*) + "(Π*) + P(11) + F(IU) + Kill*))

(') In this article Vm denotes a direct power, ind {Vy the tensor symmetric power over Q.
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Here v{*) is the number of fibers of type * of the elliptic surface B, and [ ] as usual denotes

the integer part.

d. r/m = 0forj?*m (mod 2).

2.6. COROLLARY. HO(A, R/ΦζΟ) = ί/2(Δ, Λ,Φ;<?) = 0 for odd}.

2.7. LEMMA. The representation S of the fundamental group πι

irreducible also with respect to this representation:
in , Q ) w

|U o is

b. ( ( / ? ^ , Q ) w | U o ) c o i n v = Ofor w > 1.

c. The following table shows the dimension of the space of sections of the sheaf Sm over

the point υ depending on the type of point.

type of
point c

m > 0
even

m > 0
odd

Io

m + 1

•
Io

m+1

0

lb.
b>\

1

*
\

1

0

II, II·

m + 1 —
«f^ + 2]
2 [ 3 J

0

III, III·

m + 1 —

-ft2]
0

IV, IV·

m + 1
4 " + 21
Λ 3 1

2.8. Following Shioda [5], we construct a complex Μ which allows us to compute the

dimension of the homology spaces //,(Δ, Sm) (we remark that these spaces are isomor-

phic to the cohomology spaces Η2~'(Δ, Sm); see for example §7 of [5]). Fix a point

u0 e Δ'. Let Σ = {t>,, . . . , v,}. As in the proof of Lemma 1.5 of [7], we choose the

following system of generators ak, fik (1 < k < g, where g is the genus of the curve Δ)

and y, (1 < / < t) of the fundamental group 7τ,(Δ') = IT^UQ, Δ') with the single relation

a&al1^1 • • • <x£ga-%\ • • • yt = 1. (2.4)

We consider a small positively oriented disk E, around each point vt Ε Σ. Set γ/ = —dE/.

In each oriented circle yj we fix a point u,, and then we choose a path δ, from u0 to u,

such that δ/Υ/'δ,"1 is homotopic to γ,. We consider the following complex Δ: the 0-cells are

u, (0 < / < 0, the 1-cells are ak, & (1 < k < g), 8, and y\ (1 < / < t), and the 2-cells are

E, (1 < / < Ζ) and Δο = Δ - U Et.

The /-chains σ, with coefficients in the sheaf = Sm have the following form:

t

= 2 miui,
l=o

t

(2.5)

σ2 =

where the coefficients m,, ak, . . ., e e (Ri^mQ)m\Uo, and e7

e,Sy. Let ffit = S^, %k = S f t, S X
i.e. e,

Syt, and , · · · tk and
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&n = S, · · · Θ, (£ ( 0 ) = (?0) = 1, &'> = £). The boundary operator is then rewritten in
the following form:

d(akak) = ak(&k - l ) ^ 3(ftA&) = bk{% - l)Uo>

d(c,yi) = c,(6, - 1)«,, 3(rfA) = d,u, - d,u0, (2.6)

3(βΔο) = £ e£<*-»((l - £ * « * « £ %

/-ι

Therefore a complex Μ of vector spaces over Q

Λ Ι Ο Λ Λ ^ Λ Λ ! , , (2.7)

is determined, where

Mo = 5 m 1̂  0 ( ^ 5 m |0/, Λί2 = ST !„,, M a = S m |Uo,

and 3,(e, e,, . . . , et) = (ak, bk, c,) for

bk = β

c, = βββί'-" - β,,

and 32 is given by

32(«*. **. c,) = Σ (β*(β* - Ο + ^*(®* - Ο) + Σ c,(e, - i).
*-l /-I

From (2.5)-(2.7) it is easy to obtain an isomorphism of the homology spaces //,(Δ, Sm)
with the cohomology spaces H2~\M) of the complex (2.7).

PROOF OF THEOREM 2.5. Part a is an obvious corollary of (2.3).
b. The case m = 0 is obtained from the fact that So = Q, the constant sheaf of vector

spaces of dimension 1, i.e. there is a canonical isomorphism //,(Δ, Sm) CU //,(Δ, Q). The
case m — 0 of part c follows obviously from this isomorphism.

By 2.8 there are isomorphisms

Ho (Δ, Sm) c H* (M) = Coker d2 = ((R.Oft)"1 | ω ο Γ' π ν ,

H2 (A, Sm) ~ H° (M) = Ker d1 = ((^O.Q)m | U o ) i n v .

Then by Lemma 2.7 a and b we obtain the proof of part b for m > 1.
c. Let m > 1. By the previous part there is an exact sequence

Then the direct calculation

dim Hi (Δ, Sn) = dim Hl (M) = dim M,—dim Mo—dim M%

(see 2.8), using the dimension of the space Sm\vt given in the table of Lemma 2.7, proves
part c.

Part d follows from part a of the theorem, (2.2), and part a of Proposition 2.3. •
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PROOF OF PROPOSITION 2.3. Part a is proved by induction on w using Theorem 2 in
§18.2 of [8]. Similarly we obtain b.

c. The action of SL(2, Q) commutes with the action of Aw. Moreover,

where (" b

d) e SL(2, Q). Therefore the spaces in the decomposition are invariant for the
action of SL(2, Q). The exactness of the sequence

0 ->- 2 α ((β, ® e, — e2 (g) e,) (g) ( M . Q ) 8 " I )

is obvious, which proves part c.
Part d is proved by induction for even w; the case of odd w is trivial by a. The case

w = 0 follows because (R^tQ)<8>0 = Q and a((el ® e2 - e2 ® e,)0) = 1. Further induc-
tive steps are obtained from part c and Lemma 2.7a. •

PROOF OF LEMMA 2.7. c. Consider a point u0 e Δ' sufficiently close to v, and a small
positive circuit j 3 c i ' around ν beginning and ending at w0. In the lattice G\u =
Hi(BU(i, Z) choose a basis e1; e2 in which the monodromy sfi ([7], (1.3)) has the normal
form (see §1 of [7]) &v. Then

SJV = (Sm\J' ~ ((Qe, θ Qe2)
mf\ (2.8)

From Table 1 of [7] we obtain the following form of the monodromy in the basis
εα = e^e2~

a, 0 < α < m, of the space (Qe, Φ QeJ1" for points ν of type lb or IJ
(b > 0):

εα Η»· ( ± l ) m ( e j + be2)
ae™ a = ( ± l ) m ίεα + α6εα_1 + ZJ * · ε,·) .

V ι<α-2

Therefore the monodromy matrix is ( ± l)m for b = 0 and

ON

(±ir

for 6 > 1, the action being on the right, with the + sign corresponding to lb and the -
sign corresponding to IJ. Then by (2.8) we obtain the first four columns of our table.

To compute our table at points with finite monodromy we use the relation

dim^Qe, θ Qe2)
mf° = dim^Ce, Θ Ce2)

mf°.

For a given point in Ce, θ Ce2 there exists a new basis in which £„ is diagonal.
Depending on the type II, II*; III, III*; IV, IV* of the point in Table 1 of [7], we obtain
a corresponding diagonal matrix:

i 0\ /η Ο

) (

0
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Therefore in some basis for the space Cex θ Ce2 the monodromy &v has the matrix

e* e? 0 1

el-~

where κ corresponds to the type of the point υ in Table 2 of [7]. Consequently we obtain
by (2.8) that

dim,, SmL·

from which the last three columns of our table follow by an easy computation.
a. The irreducibility of the representation S is obvious for w = 0. Suppose w > 1.

Then to prove part a it suffices to establish the irreducibility of the representation 5 of
the fundamental group ττ,(Δ') in (/*i<I>»Q)w|u . Recall that the matrix of the representa-
tion S acts on the right. Since the functional invariant J ^ const, there exists a point
c e Σ of type lb or I£ (b > 1) (see the values of J(v) in Table 2 of [7]). Choose a point
uQ e Δ' and a basis eu e2 of the lattice G|Uo, as was done in part c. Then in the basis
ε0, . . . , ε̂ , (see c) there is a matrix of the representation S of form (2.9). The invariant
subspaces for the group generated by the matrix (2.9) have the form 0™ Qeo, 0 < m <
w. Suppose the representation S is reducible. In this case the subspace 0jJ" Qea is
invariant for π^Δ') for some 0 < m < w. Consider the matrix Sy = (a

c

 bJ) e SL(2, Z) for
any arbitrary γ e π,(Δ'). By the invariance we have

= cwew

i.e. c = 0. It follows that all points of Δ have either type lb or type I£, and

(see 2.8). The relation (2.4) then leads to a contradiction, since ΣΊ b, > 0 for / ^ const.
b. We use the notation and concepts of the preceding part. Since the coinvariant space

for the group generated by the matrix (2.9) is

w w-1

0 Q e a / © Q e a (2.10)
a=o a=o

or 0, if b were false then (2.10) would be the coinvariant space of the representation S.
Suppose that this were so. Then for the matrix

for an arbitrary γ e π,(Δ') we would have

/ ai-l \ In h
mod © Qea w φ

\ a=o j \C d) \ a=o

/ ai-l \ In h\ I w-i \
e. mod © Qea = awew mod φ (Χεα ) ,

\ j d)
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i.e. a = ± 1. Iterating the matrix &o if necessary, we may assume that the representation

S determines some matrix ± (Q \) with b > 2. Let

d\

be any other matrix of the representation S. Then, since the matrix

b\(ai 6 χ \ _ . / f l l + ^ i *N

± ; o i)\Cl dj \ *

is also determined by the representation, we have a, + bcx = ± 1. Consequently c, = 0

and dx = a, = ± 1. As in the proof of part a, this leads to a contradiction. •

§3. Geometric realizations

3.1. Let ^ be a locally constant sheaf of vector spaces over Δ'. As in 2.1, this sheaf

extends to a sheaf IF over Δ. In this section Π denotes an arbitrary subset of Σ. Let F

and F' be topological subvarieties of Δ with smooth boundary such that Δ D F D F'

and (/ υ F") Π Σ = 0 . Then the mapping of pairs (Δ, F') "^ (Δ, F) induces a homo-

morphism

Hi(A, F', Sr)-^// i(A, F, ST) (3.1)

in homology. In particular consider F = Up^nEp consisting of small closed disks Ep

around the points ρ e Π c Δ. Then a projective system of spaces Η,(Δ, F, Ψ) with

morphisms (3.1) is determined. We set

For sufficiently small Ep this projective limit stabilizes and we have the isomorphism

Η,{Α, Π, ^^Η^Α, F, <F). (3.2)

Let Π D Π'. Then the exact sequence of the triple Δ D F D F' induces in the Umit the

following exact sequence:

Ο-ν/Ζ^Δ, Π', ^ - ^ ^ ( Δ , Π , ^ )

-t ^0(Π, Π', f |π) ->//0(Δ, Π', f)^H0(A, Π, f) - 0 , (3.3)

since /^(/", /", ^1,-) = 0 (in the future the restriction iF|F of the coefficients for the

homology of a subvariety will not be indicated). We identify HX(A, Π, <3r) with its image

in HX(A, Σ, ^) under the embedding of 1-dimensional homology from the exact se-

quence (3.3) for the pair Π c Σ. Then by the functoriality of homology we have the

inclusion #,(Δ, Π', <ϊ) c Ηλ(Α, Π, %) for Π' c Π. In the following considerations the

role of the sheaf % will be played by a subsheaf of .R^*Q. In contrast to §1 of [7], we

will require (unless the contrary is stated) only one Σ, namely the finite set consisting of

all singular points of Δ.

We denote by Hj(Bw, Q) the image of the homology space Hj{Bw, Q) in

Hj(Bw, Bw\-£, Q) under the natural homomorphism of the pair (Bw, Bw\^). The aim of
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this section is to define natural homomorphisms

GRoj : Ho (Σ, Rtf Q) -> H, (Bw | s , Q),

G/?lf/: Hx (Α, Σ, /?,<(*) - //1+/ (Bw, Bw |Σ, Q),

G/?,.,: H2 (A, R^d) -y Hi+l(Bw, Bw\Σ, Q)

and to apply them to describe the spaces Hj(Bw, Q). These homomorphisms will be
called geometric realizations. Their definition is given in 3.5, 3.4 and 3.10, and a
discussion of the "geometry" in 3.6, 3.7 and 3.10.

From the decomposition into a direct sum of subsheaves Λ,Φ*<? = f Φ f' we have a
decomposition of homology spaces //,( , R/&IQ) = H,{ , Ψ) Θ Η,{ , f ')· In such a
situation we will in what follows identify //,( , Ψ) with the corresponding subspace of

3.2. THEOREM, a. GROj, GR1 j and GR2J are monomorphisms.
b. The following diagram is commutative:

Η, (Δ, Σ, R^Q) 4- Ho (Σ, fl/O-Q)

c.

Ή, (Bw, Q), G/?,.,., (//s (Δ, RhS>wM C ^/ (β10, Q)

^/ (fl™, Q) = GRuhl {Hx (Δ, ^--χΦΓΟ)) φ Gtf,,/-, (//2 (Δ, /?/-,O™Q)).

d. Hw+l(Bw, Q) = GR^iH^, ( t f ^ Q D ) θ if', w/iere eac/i homology class of the
subspace H' decomposes into a sum of classes having some representation as a cyclic proper
subvariety of Bw.

Part c of the theorem and Corollary 2.6 imply

33. COROLLARY. For odd j there is an isomorphism

3.4. Let F = \J\ E, and Δο = Δ — Int F, where the E, are sufficiently small disks
around the points υ, e Σ. Δο and Bw(2) = 5Μ'|Δο are compact real varieties with smooth
boundary. Bw(2) is a fiber space over \ with fibers homeomorphic to the product of 2w
circles. Consider a cell decomposition of the pair (Δ,,, 3Δ^). To each decomposition
corresponds a filtration of cell complexes over the base Δο:

and this means also a filtration of complexes of the bundle Bw(2):

), dBw(\)), (Bw(0),
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Let E[j (r > 0) be the corresponding spectral sequence (see Chapter 9 of [9]). This

sequence reduces to the term E[tj for r > 2, since E[_rJ+r_, = 0 and E[+rJ_r+1 = 0 for

such r. From the assumption J ^ const (see the proof of Lemma 2.7a) it follows that

Σ φ 0, and this means 9Δ,, ψ 0 . Therefore

Im (Ηχν (Bw (0), dBw (0), Q) -> //1V/ (Bw (2), dBw (2), Q)) = 0.

Then we obtain the isomorphisms

~ Im (HVrj (Bw (1), a s " (2), Q) •+ HiV, (Bw (2), 3β<" (2), Q)).

Consequently, there is a natural homomorphic embedding

Hx (Δο> 5Δ0, ^ © " Q ) C //1 + / (Β" |Δ ο, Β " | d A o, Q). (3-4)

Moreover, there are isomorphisms

Hx (Δο> 5Δ0, ^ΦΓΟ) - //, (Δ, F, ^ O ^ Q ) ,

//^· ( β " |Δ ο, β " |,Δ ο, Q) ^ /ί1 + / (β", β " \F, Q)

by the excision theorem. Then the monomorphism (3.4) determines the canonical

monomorphism

Hx (Δ, F, R^Q) G //1 + / (β", β " I,, Q). (3.5)

Passing to the projective limit on both sides of (3.5), we obtain by Lemma 1.2 a

canonical mapping GR{J. Obviously GRXJ is injective.

3.5. In analogy with 3.4, the spectral sequence of the filtration of the bundle Bw\hl^,

induced by the filtration of the skeletons of the base ΘΔ̂  reduces to the term EQJ for

r > 0. Therefore there is a canonical monomorphism

Ho (dA0 = dF, R^Q) C H, (BW \dA^dF, Q). (3.6)

It is to establish the isomorphism //0(3F, . R ^ Q ) =s HQ(F, /?,Φ«Ο) for the natural

mapping of the pair (F, dF). For the proof it suffices to consider a simple cell

decomposition of the pair (F = U', E,, 9F = U 'fiE,); for example, 0-cells u, (1 < / < i).

1-cells y; (1 < / < t) and 2-cells E, (I < I < t) (see (2.8)). The composition of this

isomorphism, the mapping (3.6), and the natural homomorphism Hj(Bw\aF,Q)-*

Hj(Bw\F, Q) of the pair (BW\F, BW\3F) determines the canonical homomorphism

H0{F,RprQ)-+Hi(Bw\F,Q). (3.7)

Passing to the projective limit, we obtain the homomorphism GR0J, since

limH,(Bw\F,Q) = H,(BW\VQ).

Indeed, Hj(Bw\F, ΒΚ\Σ, Q) = 0 for sufficiently small F (see the proof of Corollary 1.2).

Then from the exact sequence of the pair (BW\F, Bw\?) we get the isomorphism

7 / J ( 5 - | F , Q ) » / / , ( S " U , Q ) ,

i.e.

limΗ/(Β"\ρ,0) = Η,(ΕΓ\Σ,ϋ). (3.8)
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3.6. We will give an explicit geometric description of the mapping GRQJ. First we
describe (3.7). Fix a cell decomposition of dF. The 2-cells E, augment this complex to a
decomposition of F. Let M, be the 0-cells of the given complex. Then a 0-cycle with
coefficients in i^O^Q has the following form:

where m, e / ^ J Q I ^ = Hj(B™, Q). Consider an arbitrary representative [m,] of the
homology class m, in the fiber Βζ. Then the homology class Σ [mt] in BW\F is the image
of the homology class of the 0-cycle σο under the mapping (3.7). Further, for sufficiently
small F the retraction of the cycle Σ [w,] in the fiber Β"\Σ and the isomorphism (3.8)
describe the mapping GR0J.

3.7. Consider a cell decomposition of the pair (Δ, F) for sufficiently small F. We
require that the intersection of this complex with F provide F with a cell decomposition
of the type described in 3.6. Let Δ,,(Ι) be the 1-skeleton of the cell complex of (Δ, F). We
denote one-dimensional cells by γ. We construct a cell decomposition of the bundle
2?Jao(!) over the cell complex AQ(1). TO do this, fix in each one-dimensional cell an
arbitrary point M0 and a basis ex, e2 in the lattice G\Ua = H^B^, Z), as in §1 of [7]. Then
canonical periods ζ and 1, ζ e H, are determined, and Bu ==: C/zZ + Z. The lattice
zZ + Ζ determines a cell decomposition of the elliptic curve Bu : the 0-cell e is the image
of 0, the 1-cells e, and e2 are the images of ζ X [0, 1] and [0, 1] respectively, and the
2-cell ε is the image of ζ X [0, 1] θ [0, 1]. We will call the dimension of the cells e, ei and
e their degree. Then the concept of degree is defined in the free tensor algebra over Q for
these cells. The cell complex e, et, ε induces a cell decomposition of B™, since u0 e Δ',
and consequently

XB
U>.

We will call this cell decomposition of B™o the cell decomposition corresponding to the

choice of basis in the lattice G\Uo (note that the basis must be chosen with negative
orientation). The cells of this decomposition will be written as w-fold free tensor products
of the cells e, et and e. The dimension of the cell coincides with the degree of the
corresponding tensor product. To each homology class m E. Hj(B™g, Q) there corre-
sponds a unique representation [muQ], a cycle in the cell decomposition corresponding to
the choice of basis in G\u. In the future by the representative [m,] in 3.6 we will mean
the cycle described in this form. Continuation of the cell decomposition of B"o along γ in
both directions by the linear connection gives a cell decomposition of Bw\y over γ, and
continuation of the representative [mu0] gives the representative [cy] of the chain cy,
c e Λ,Φ»<?|Ιη1γ — Hj(B™o, Q). "Sections" of the cell decomposition over each point
«ό £ γ are also cell decompositions corresponding to a choice of basis in G|ui). Each cell
lies either over γ or over one of the ends 3γ. A complete cell decomposition of Bw\lt^Vi is
obtained by taking the union of the cell complexes formed over γ by 1-cells and the
intersection of terminal cell decompositions over each 0-cell of AQ(1). For an arbitrary
1-chain σ, = Σ cy with coefficients in Rj&ZQ we set [σλ\ = Σ[ογ]. The geometric
realization [cy] is a relative cycle of the pair (Bw\y, B \ ) . Therefore [σ,] is a relative
cycle of the pair (5 w | A o ( 1 ) , Bw\£i(/C0)). If σ, is a cycle of the pair (Δ, F), then the boundary
of the chain [σ,] is homologous to 0 over the interior 0-cells of Δο = Δ — F. Therefore in
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this case the chain [a}] may be completed to a relative cycle (σ^ of the pair

(Bw\A,l), Bw\a&) over the interior 0-cells of AQ. The mapping (σ^ induces the mapping

(3.5). From this description of the mapping (3.5) and the description 3.6 of the mapping

(3.7) we obtain the commutativity of the diagram

H^A, F, R^Q) - ^ H0(F, RjQTQ)
(3.54 |{8.7> (3.9)

BW]F,Q) -^ H,(BW\F,Q).

The boundaries of (σ,) are situated over F. Retracting the boundaries of (σ,) to Bw\x, we

obtain a description of the mapping GRXtJ, thanks to the isomorphism (3.2) for Π = Σ.

The isogeny of multiplication of the fiber B£, u0 e Δ', by any integer η induces an

analytic mapping of the pair Bw\/^), Bw\di^. The corresponding mapping in homology we

denote by «„. We easily get the following result from the explicit description of the

mapping (3.5), which of course applies also to (3.4).

3.8. LEMMA. «J I m ( 3.4 ) = nJ.

For the proof it suffices to take a cell decomposition of the pair (Δ, F) such that all the

0-cells lie in F. •

Fix a point u0 e Δ' and a basis ex, e2 in the lattice G\Uo. Then B*o has a cell

decomposition corresponding to the choice of a negative basis. We denote by D the

homology class of the diagonal of B* with the natural analytic orientation.

3.9. L E M M A . D = e®e + e®e-(e1<8>e2-e2® ex).

3.10. Consider an F such that u0 Ε Δ,,. Then by Theorem 2.5b

H2 (Δ, /?,(D"Q;, = H% (Δ, sf°) ~ (R^:Q \u)
inv,

where the invariant subspace is taken relative to the representation of SL(2, Q) analo-

gous to the representation (2.4) of the fundamental group π,(Δ') (the action of the matrix

is on the left in this case). This representation is defined by a componentwise Kunneth

decomposition (2.1) in the following way: it is induced by the choice of basis G\Uo for

^i^*QL 0 ( s e e (2.2)) and it is trivial for /?0<I>,Q|u and #2^*Qli<. Fix generators e and ε

in the spaces /?0<I>*QL0 and R2<b*Q\Uo respectively. Let a e Aw be a permutation. It

determines the analytic mapping a : Bw\^^* Bw\^ which permutes the components of

the fiber, the ith component mapping to the a(/)th. We denote by an the corresponding

mapping in homology. We denote the corresponding action on the sheaf Λ,-Φ,Ο the

same way. This mapping is connected as follows with the mapping a defined in 2.2 of the

space of sections of (/?1<£»Q)l8w|1,o: a = sign(a)a^. Then from the decomposition (2.1),

the isomorphism (2.2), and Lemma 2.3d we find that the space (/?,4>*Q|u)
inv has the

following generators: the vectors

ε®' (χ) (β ι ® e2 — e2 ® e^m)

of degree j, where a e Aw, k, I and m are positive integers, and k + I + 2m = w,

I + m = j/2. We put in correspondence with the vector

e®k ® ε®' <8> (β, ® e2 - e2 ® β,)*™

of degree j the relative algebraic cycle Dklm of dimension^ + 2 for the pair (Bw, Bw\^).
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This cycle is uniquely determined by the following property:

D k , i , m | u e A , = e x · • · x e χ B U a x • • • x B u ,
£ " ϊ

xiButXe + exBu, — D)X ••• X(BUl>xe + exBUo — D).
«• ^ -*

m

It is easy to verify, using the symmetric compactification of Bw, that the mapping a
extends to a regular morphism a : Bw -» Bw (for the sequel its birationality and regular-
ity over Δ' suffice, and they are obvious). We obtain the mapping GR2 j by putting the
relative cycle am(Dklm) in correspondence with the vector

We show that it is well defined. For oddy, the mapping GR2j is trivial by Corollary 2.6.
Therefore we assume thaty is even, unless the contrary is stated. Consider the spectral
sequence of (3.4). This sequence reduces to the term E2J for r > 2. For r > 3 this is
obvious. For r = 2 we have

El,,- = Kerdli/lmdli^ = Kerd*,,· = Ell,,- = Kerdli/lmdli^ = Kerd*,,· = El.,.

Since H0(A, Rj+ ,Φ£) = 0 by 2.6, we have

Elhl = H0(A0, d\, R^aTQ) ^H0(A, F, /?/+l<D™Q) ^H0(A, /?/+lO™Q) = 0.

Since the spectral sequence reduces to the term E^j, by the excision theorem we obtain
the isomorphisms

H2 (Δ, F, RJO:Q) ~ H2 (Δο, dA0, R^Q) - El,- ^ Ef,,

^ Ht>, (Bw (2), dBw (2), Q)/Im (//„, (β" (Ι), 5β"(2), Q)

- //2+/ (fi" (2), ^ β " (2), Q)) ~ H*, (Bw, Bw \F, Q)/Ira (3.5).

Consequently there is a natural isomorphism

H2 (Δ, F, /?,OfQ) ~ H», (Bw, Bw \p, Q)/Im (3.5). (3.10)

Passing to the projective hmit on both sides of (3.10), we obtain the natural isomorphism

H2 (Α, Σ, /?/D»Q) ~ H2+/ (Bw, Bw \Σ, Q)/Im G/?1>/+1. (3.11)

By Lemma 3.9 and the geometric description of the mapping GR2J given above we obtain
the congruence (3.11) = GR2J (mod Im GRlJ+i). Therefore to prove that GR2J is well
defined it suffices to establish the triviality of the intersection Η" η Im GRlj+1 = 0,
where H" is the subspace of H2+J(BW, Bw\z, Q) generated by the algebraic cycles
am(Dklm) of dimension^/ + 2. Using the stability of the projective limits and the excision
theorem, this problem may be reduced to proving the triviality of the intersection
Η "Lo Π (3.4) = 0 for sufficiently small F, where the subspace H"]^ c
H2+j(BwL, Bw\diio, Q) is generated by the restrictions of the algebraic cycles a^(Dklm)
of dimension j + 2. The last is obvious from the relation nJH^ = n', and, by Lemma
3.8, «*|im(3.4) = nJ+l. The operator nm on the homology space # 2 +./(- Β Ίν ^"Ίβν ̂  i s

induced by the fiberwise isogeny of multiphcation by n.
Now we assume j arbitrary, not just even.

3.11. LEMMA, a. G/?, y and GR2J are monomorphisms.
b. H2+J(B«, Bw\s, Q) = Im GR2J θ im GRlJ+l.
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PROOF. The injectivity of GRlJ comes from the process of defining the homomor-

phism in 3.4. For even j the injectivity of GR2j and the decomposition b are immediate

corollaries of (3.11), since the intersection

Im Gfl/ u+ U+

is trivial, and the mapping (3.11) is induced by GR2J. Suppose j is odd. In this case the

injectivity is obvious because of the triviality of GR2J (see 2.6). Since Η2(Δ, Rj<&^Q) = 0

and HX(F, Λ,Φ*(?) = 0 for sufficiently small F, we get the triviality of Η2(Δ, F, Λ,Φ,ί?)

= 0 from the exact sequence of the pair (Δ, F). Then H2(AQ, ΘΔΟ, Λ,·Φ*<?) = 0 by the

excision theorem. Consequently the spectral sequence of (3.4) reduces to the term E2J

for r > 2, anH

0 = Ha (Δο, dA0, Rpro.) = El,- ~ ET.,

a H2+i (Bw (2), dBw (2) Q)/Im (H2V (Bw (1), dBw (2), Q)

-,H2+i(Bw(2),dBw(2),Q)).

This proves the surjectivity of (3.4) for j + 1, and similarly the surjectivity of (3.5).

Therefore GRlJ+l is an isomorphism for odd j, which together with the triviality of

GR2j proves b. •

Consider an arbitrary point n e A . Let u0 e Δ' be a point sufficiently close to v, i.e.

u0 e E}, a small closed disk around ν satisfying Lemma 1.1. Then the composition of the

embedding B ^ Bw\Ei = B? and the retraction 5 * ^ . 5 ( 1 ) = Bw\v determines the

following homomorphism:

HJ(B^Q)^HJ(B*\0,Q). (3.12)

We denote by β a single positive circuit around the point ν, β c Δ', with origin at the

point u0. To this circuit there corresponds an endomorphism sfi of the space Hj(B™a, Q)

defined as in (1.3) of [7] by the natural connection on Bw\±>. Then (3.12) determines the

specialization homomorphism

Sp : (Η/ (BZ, Q))c o i n v -> H, (Bw \v, Q),

where the space of coin variant vectors is taken with respect to the endomorphism i^.

3.12. PROPOSITION. Sp is a monomorphism.

PROOF OF THEOREM 3.2. a. The injectivity of GRXj and GR2J was proved in Lemma

3.11a. We prove injectivity for GR0J. Because of the stability of the projective limit it

suffices to prove this for (3.7) for sufficiently small F. In this case F = U\ Et decom-

poses into the connected components E,. Consequently, (3.7) also decomposes into a

direct sum of natural homomorphisms

Ho (Ει, R^fQ) -> Hj (Ba \E[, Q) (3.13)

and it suffices to establish their injectivity for small E,. Consider one of the disks, say Ex,

and assume it is so small that Lemma 1.1 holds. Let ν be the center of the disk Ev Then

we get a natural isomorphism HjiB™, Q) ~ Hj(Bw\v, Q) as in the proof of the isomor-

phism (3.8). Proving the injectivity of GR0J reduces to checking the injectivity of the

composition

Ho (Elt RjOTQ) -> H, (Bw \v, Q) (3.14)
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of this isomorphism and the mapping (3.13) for / = 1. Consider the point u0 e 9£, in the
boundary of Ev This last choice determines a cell decomposition of £,: 0-cell UQ, l-cell
9£Ί and 2-cell Ev It follows immediately from 3.6 that for this cell decomposition the
mapping (3.14) assumes the form Sp. Therefore the injectivity of (3.14) follows from
Proposition 3.12.

Part b follows from the commutative diagram (3.9) by passing to the projective limit.
c. From the construction 3.10 of the mapping GRXJ_2 we have the inclusion

Im GR2j-2 C Hj(Bw, Q). Therefore this part of the theorem is an immediate corollary
of 3.4 and 3.2a,b, since

Ker (Hi (Bw, Bw | Σ , Q) - t Hhl (Bw \Σ, Q)) = Ή, (Bw, Q)

from the exact sequence of the pair (Bw, Bw\^).
d. By the construction of the mapping GRXw-X we have Im GR2iW-x C H'. Therefore

by 3.2c it suffices to establish the analogous decomposition for GRlw(Ht(A, Λ^,Φ ί̂?)).
The Kunneth formula (2.1) for j = w reduces this problem to the decomposition of
GRhw(Hx{L·, (RfimQ)®w)). If even one j m φ 1, then by the description 3.7 of the
mapping GRlw we have

GR1,W (H, (A, J ^ RJJD, Q

The decomposition

GRliW (Η, (Α, ( ^ Φ , dfw) = GRt,w (Η, (Δ, ( ^ Φ , Q)w) φ Hlt

where H1 c H', is an immediate corollary of 2.3c, 3.9 and 3.7. •
PROOF OF LEMMA 3.9. We have

PROOF OF PROPOSITION 3.12. a. We denote by

the composition of Sp with the natural homomorphism in homology induced by the
projection Bw\v -+ Bw\v. We note that B* = B?o, since u0 e Δ'. We will show below that
Sp is a monomorphism, from which the injectivity of Sp follows immediately. The
projection Ψ1*1 (see §3 of [7]) of the deformation of Lemma 1.1 determines a deformation
retract of B™ = Bw\Ei onto Bw\v. Therefore we have the canonical isomorphism

This isomorphism shows the equivalence of the injectivity of Sp and

Hj (Bl, Q)c o i n v Q Η/ (Β?Q), (3.15)

where the last homomorphism is induced by the natural mapping of the pair (5,w, B™o).
b. Reduction to the case lb (b > 1). We know that J5,w ̂  C \ f", where C is a finite

cyclic group of order κ, with action compatible with the projection of σ on the base D
(see [7], 2.2). In the case under consideration D = {|σ|* < ε} is a closed disk. In the base
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D the generator eK = e2ni/" of the group C acts by multiplication. Therefore there is an
isomorphism

iU ( Hw /v.coinv (DVcoinv (C) u / Dw f\\coinv (Et)\Π] [Γχ , H) ) — Π/ (,£>»„, It) ,

where Ve is the arithmetic root, and coinv(D) and coiny^) denote the coinvariants of
the circuits around the boundaries 3D and dEx; coinv(C) the coinvariants of the group
C; and τ(κ0) = σκ(κ0) = ε. On the other hand,

H, (fif, Q) c~ Hi (Fw, Q) i n v ~ Ηj (Fw, Q)c o i n v.

The last isomorphism follows from the semisimplicity of the representation of the finite
cyclic group C of automorphisms in the homology space Hj{Fw, Q). Consequently, to
prove the injectivity of (3.15) it suffices to show the injectivity of

Η/ (F", Q) C Hf (FW, Q)

for the natural mapping of the pair (F w , F£), where d E. dD. Then from 2.2 of [7] and
Chapter 8 of [10] it follows that F£ is the only singular fiber of Fw of type lb (b > 0).
This concludes the reduction to the case lb.

c. If υ has type Io, then sp = id and Sp is an isomorphism, since the bundle 2?J" is
topologically trivial for sufficiently small El.

d. Suppose the point ν has type lb (b > 1). It is easy to check that

Ho (BUa, Q) a Ho (Bo, Q), Hx (BUo> Q) c o i n v a : Hx (Bv, Q),

H2 (Bo., Q) C H2 (Bv, Q),

where in the first and last cases sp = id. Hence by 2.2(ii) of [7] and_by the Kunneth
decomposition (2.1) at the points u0 and v, we obtain the injectivity of Sp, since by (2.10)

(H, (BUo, Q)«m)» i n v ~ {Hl (BUo, Q)«"n')®m. a

§4. Nondegeneracy conditions of the canonical pairing

4.1. If ω e H\BW, &r+1) is a first order differential form on Kuga's variety Bw, then
its integrals are trivial along every chain of fibers over points of the base. Therefore a
pairing

( , ) : //„«(Bw, Bw\Σ, Q)XH°(BW, Ω^ 1 φ Ω^1) -*C,

(homology class σ, ω) = Ja ω, is defined, where σ represents a homology class of the
space Hw+i(Bw, Bw\^, Q) for some cell decomposition, and ω e H°(BW, 2W+1 θ Bw + 1).
The pairing (, ) and the monomorphism GRl determine the pairing

( , ) : / / ! (Δ, Σ, ^ - Q) χ H" (Bw, Ω"+1 ® Uw¥1),

The pairing < , > is always nondegenerate on the right.

4.2. THEOREM. #,(Δ, (R^^QT^ = 0, i.e. <#,(Δ, (R&.Q)"), ω> = 0 implies ω = 0
for any ω e H°(BW, Ώ"+ι θ flw+1).

The proof follows immediately from de Rham's theorem, Theorem 3.2d, and the
triviality of the pairing of H°(BW, Siw+1 ® ®w+') with H'. •
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43. COROLLARY. If

dim H° (Bw, Ω°"+1) = (g — 1) (w + 1) + ^ — (v (I6) -f- ν

(ν (II) + ν (ΙΓ) + ν (IV) + ν (IV*)) + fHL+21 ( ν ( Ι Ι Ι ) + ν ( Ι Ι Γ ) )

L 4 J
for even w > 0,

dim Η" (Bw, Qw+1) = (g-l)(w+ 1) +y-2-v (h) + (?±±

+ ν (ΙΓ) + ν (II) + ν (III) + ν (ΠΙ·)) + | ίϋ±2] (ν (IV) + ν (IV*))

/or odrf w > 0, or

for w = 0, iAe/i ί/ie pairing

« nondegenerate.

The proof follows directly from Theorems 3.2a, 2.5c, and 4.2. •

§5. Application. The Shimura torus

Consider the Hodge decomposition of the (w + l)-cohomology of Bw:

Hw+i ( f i W j Q ) 0 c = nw+1-° (Bw) φ .. . 0 H"·" (Bw) ® . .. φ

We project Hw+l(Bw, Q) onto H°>W+\BW) and denote the resulting Q-subspace by Q.
On the other hand, we have

HWH (Bw, tyZti"*1 (Bw, Q) Ρ^Ξ11^ Η*·™ (B

w), (5.1)

where the mapping D comes from Poincare duality. The mapping (5.1) may be realized
as follows. An element c e HW+1(BW, Q) determines on Hw+i-°(Bw) the C-functional
fc ω, ω e Hw+h0(Bw), (Hw+lft(Bw))* = H°'W+\BW). Hence an element corresponding
to fc is determined in H°'w+l(Bw). This element is the image of c under the homomor-
phism (5.1). Since fc ω = 0 for any ω of type (w + 1, 0) and

1 (f i · ! , , Q)-+Hw+i(B», Q)),

(5.1) determines the mapping

Hw+l(B", Q)-^H°-m+i(B"'). (5.2)

By 3.2c, we may compose the mapping (5.2) and GRlw to obtain a mapping

# , (Δ, (tf.O.Q) ">)-^//°· »+1 (β"). (5.3)

5.1. PROPOSITION. Im (5.3) = Q.

The proof follows directly from 3.2d and the fact that D in (5.1) is an isomorphism.
•

5.2. DEFINITION. If dim,, Q = dimR HOw+\Bw), then the torus
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is determined up to isogeny, where Ζ c Q C HO'W+\BW) is some lattice. T(BW) is called
the Shimura torus. A Kuga variety for which this condition in the definition of the
Shimura torus is satisfied will be called a special Kuga variety.

53. THEOREM. If w is even and Bw is a special Kuga variety, then T(BW) is an abelian
variety.

This theorem is a generalization of Theorem 2 of [4] (see Theorem 7 of [6]).
PROOF. We interpret cohomology in terms of harmonic forms. Then (α, β)Β* =

/Β« α Λ β- Consider the hermitian form

Η (ω ΐ 5 ω2) . = 2t J ω χ Λ ω 2

Bw

on H°-W+\BW). The form Η is real, hermitian, positive definite for w + 2 = 2 (mod4)
and negative definite for w + 2 = 0 (mod 4). Therefore by the Riemann-Frobenius
condition (see §6 of [2]) it remains to verify the rationality of Im Η in Q. If α, β G Q,
then

are rational cohomology classes. Hence

and therefore

\mH(a, p) = Im2i Jo Λ β= (Λ fi^eQ. •

5.4. REMARKS. 1. The Jacobi variety Sw/2(BW) ([2], §6) admits a canonical projection
onto T(BW) in the categroy of complex tori up to isogeny.

2. Corollary 4.3 gives a sufficient condition for Β w to be a special Kuga variety.

§6. Application. The modular case

PROOF OF THEOREM 0.2. This assertion is a direct corollary of the definition from (0.1)
of the pairing ( , ):

(σ, (φ, ψ ) ) = ( σ , ωΦ + ω*>,

where σ e #,(Δ, Σ, (Λ,Φ,ΟΓ), φ , ψ ε Sw + 2(r), and \νφ, ννψ e H°(B?, Qw+l) are the
corresponding regular differentials of Theorem 0.3 of [7], and also Corollary 4.3 of this
paper and Corollary 5.3 and Theorem 0.3 of [7]. •

Let C D Κ D Q be an arbitrary field. Then we may define a canonical pairing

( , ) : #ι(Δ, Σ, (/ϊχΦΛΠ XS™ (Γ) 0 S ™ (Γ)

since

6.1. COROLLARY. The pairing ( , ) on

#ι (Δ, (R&Kf) XSB t i (Γ) 0 Sw+2 (Γ)

(5 nondegenerate. •
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Moreover, we have

6.2. COROLLARY, i) B£ is a special Kuga variety.

ii) Τ(Βγ) is an abelian variety for even w.

PROOF, ii) follows from i) and 5.3. The proof of i) follows from the fact that

since (5.3) is an embedding: by the nondegeneracy of ( , ) and the relation ( , ω) = ( , ω),

and also from the equations

dimQ Ex (Δ, (/?jO. Q)") = 2 dim c H
0·™*1 (Bf)

= 2 dim c H° (fir, &w+1) = 2 dim c Sw+2 (Γ)

(see Theorem 0.3 and Corollary 5.3 of [7], and Theorem 2.5c of this paper). •
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