


Contemporary Mathematics
Volume 207, 1997

LETTERS OF A BI-RATIONALIST
I. A projectivity criterion

V.V. Shokurov

In memoriam - Wei-Liang Chow

In April of 1990, during an algebraic geometry conference in Bayreuth (Ger-
many), I heard from F. Campana a conjecture that any Moishezon manifold without -
rational curves is projective. For 3-folds it was proven by Th. Peternell in 1986
[P1, Theorem in § 2] (cf. Example 9.5.1 below). In the non-singular case, Kollar
stated due to Mori a kind of progress in the conjecture for the algebraic spaces in
the positive characteristics [Kol, I1.5.16-11.17.1].

Here we discuss the conjecture in a more general framework using the LMMP
[Sh3, 5.1]. A conclusion is that a non-projectivity may be attributed to an existence
of rational curves and as well as of certain singularities (cf. Examples 9.5.2-3).

All algebraic objects and their morphisms below are Noetherian separated of
finite type and defined over an algebraically closed field k. (In the relative analytic
case we are working over small neighborhoods of a compact subspace in a base space,
assuming that the spaces are Moishezon over such neighborhoods. Respectively,
rational curves should be replaced by meromorphic images of P, etc.)

1. Loc MINIMAL CONJECTURE. Suppose that (X/S, B) is a log pair with an
algebraic space X and a boundary B, such that

1.1. X is normal (or even semi-normal);

1.2. X/S is proper;

1.3. Kx + B is log canonical (or even semi-log canonical); and

1.4. there are no rational curves in X/S.
Then X/S is a weakly log canonical model, or, equivalently, K x + B is nef/S. Fach
log minimal model of (X/S, B) is dominant over X.

1.5. REMARK-EXAMPLE. The conjecture holds in dimension < 2 even with
condition 1.3 replaced by the R-Cartier property of Kx + B (cf. Example 9.5.2).
Moreover, if Kx + B is not so, we may check that Kx + B is nef (and even
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144 V. V. SHOKUROV

numerically ample whenever K x + B is non-log canonical) with intersection defined
as in [Shl, § 3].

Indeed, it is enough to check for a (semi-)log canonical resolution where it is
well known.

However in dimension > 3 it is rather possible that Kx + B is negative on
a non-rational curve C in non-log canonical singularities of Kx + B. This allows
an existence of non-projective 3-folds with Q-Cartier Kx + B negative on C (see
Example 9.5.3).

1.6. REMARK ON LOG SINGULARITIES. In a definition of log canonical and
similar singularities a topology plays a crucial role. This due to a local nature
of the Cartier and Q-Cartier property. Of course our results hold in the Zariski
topology. But as well we may use the classical complex topology for complex
algebraic spaces or etale in general. Then any non-singular algebraic space is Q-
factorial and terminal which may not hold for non-algebraic varieties in the Zariski
topology.

2. THEOREM. Conjecture 1 holds in the dimensions < n if

2.1. each X/S with dim X < n has a log resolution Y — X /S which is projec-
tive/S;

2.2. the Base Point Free Theorem and
2.3. the LMMP hold in the dimensions < n.

Essentially the prove below uses a generalization of [Sh2, Conjecture], where
projective morphisms are replaced by proper ones. In general this and corollaries
(cf. {Sh2]) will be discussed elsewhere.

3. LEMMA. Under assumptions 2.1-8, let f : X — S be a proper morphism
of normal algebraic space with a boundary B, dim X < n, and such that Kx +
B is Kawamata log terminal near a subspace E, consisting of components of the
degenerate locus

Ezc(f/P):={z € X | f(z) € P and { is not finite at =}

over a closed subspace P C S, and lety : E— — G/S be a rational proper dominant
morphism of algebraic spaces. Suppose also that —(Kx + B) is nef and big over a
neighborhood of P in S. Then E has a family (possibly disconnected) of rational
curves {C)}/S which covers G/S, i.e., so does {7(C))} in G/S.

Then [C, Théoréme 1.2] implies that
3.1. X/P (i.e., each fiber/P) is rationally connected.

In the lemma rational proper dominant v means that it is dominant and proper
over non-empty Zariski open subset of G. In the case of connected fibers it is quasi-
fibration [C, 0.7]. Here we present only a modest fragment. We will prove a little
bit more

3.2. a family of rational curves on E is the image of a such family from a
resolution Y/X .
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SKETCH PROOF. First, by the very definition our statement is local in the
etale topology of S. So, we may assume that S is affine. Assuming that X is
normal, E is irreducible and after taking sections we suppose that E is complete
with f(E) = P = pt.

Next we complete Kx + B to a similar log divisor K x + B which is ~g 0/S.
This follows from the same claim in the projective case [Shl, Proposition 5.5] to
which we reduce the situation according to the Base Point Free Theorem [KMM,
Remark 3-1-2]. Thus we replace Kx + B by an R-complement, so (X/S, B) is
a weakly log canonical model with S/S as its canonical model. However a new
boundary B is big which allows us to replace the nef and big properties of Kx + B
by

3.3. Kx + B ~g 0/S and Supp B > D where the birational image of D is
ample/S on some partial (or log) resolution Y/X.

For projective X/S we may take Y = X, otherwise we apply 2.1 or even Chow’s
Lemma [Kn, Theorem 3.1].

Then we can use [Sh2, Heuristic Arguments] with the following changes. Since
E is a component of f~1P, we may construct Kx + B + ¢f*H maximally log
canonical in first closed subspace E := E’ C E, and rational dominant/G, where
H is a generic hyperplane through P in the case when S # P. Then when we
consider a fiber case ¢ : X — E/S = P, use as well an induction on dim X, because
X is rational dominant/G, and we may take E := X with v := 4 o4. In the case
when S # P, new X is a divisor on old X, and we may preserve 3.2 by the Tsen’s
theorem. (Of course, here we assume that a resolution in 2.1 may be done by
monoidal transforms. In characteristic 0 it is known by Hironaka.)

Moreover, we can suppose that (X, B) is again log minimal (in particular,
projective/E and even /S = P after that. In applications below we have this from
the beginning).

Indeed, by 2.1 we may assume that G is projective, and X/G is projective after
the LMMP (and [Sh3, Proposition 4.4]) as well. Note that by our construction and
3.3, X/G has the log Kodaira dimension 0 over the generic point of G.

But 3.3 we need to replace by

3.3. Kx + B ~r 0/G, semi-negative on rather generic curves in X, for
instance, on hyperplane curve sections, and Supp B > D where D is of fiber type
for v, i.e., v(D) is a divisor on G, and (D) is big.

Then K x + B —eD will be negative on rather generic curves which not in fibers
of 7. So we continue as in [Sh2, Heuristic Arguments]. A covering family will be
not in fibers/G by 3.3".

Of course, we assume that G # pt.. Then we have non-trivial D in G and so is
D:=~"'DinE. ®&

3.4. (SELF-)ADVERTISEMENT. Similarly, we may derive from 2.1-2 that any
relative log Fano X/S with dim X < n and having only log canonical singularities
is rationally connected/S (cf. [KMMo, 3.11]). But about this and something else
in the next letter.

PROOF OF THEOREM 2. Let (Y/S, By) be a log resolution of (X/S, B) as in
2.1.
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First, we may find such minimal but partial resolution g : Y — X. It means,
that (Y/S, By) is log minimal. Otherwise, by the LMMP we have an extremal
contraction h: Y — Z/S. By Lemma 3 each fiber E = h™!P, P € Z has a family
of rational curve/S covering G = g(E). (Take v = g.) Then by 1.4 G = pt. and
each h™!P is a cycle/X. So, h makes a contraction/X as well and it is birational.

The fliped Y*/S is again a partial resolution of X/S. Hence, essentially by
1.4, the LMMP is compatible with a relative structure/X, and we can continue it.

According to the termination, we have finally log minimal Y/S. Using a regular
hut and [Shl, 1.5.7} we check as well that any log minimal model (Y/S, By) of
(X/S, B) is dominant over X.

Since Y/S is minimal, so is Y/X. Again by [Shl, 1.5.7] and by 1.3, Ky + By
is numerically trivial/X. Therefore, X/ is a weakly log canonical model as Y/S.
a

3.5. REMARK. In a similar way Lemma 3 makes also the following improve-
ment of Kleiman’s criterion for projectivity by Peternell [P2, Theorem 2.6.1]. Sup-
pose that X/S has mild singularities (for instance, log terminal, or strictly log
terminal in the log case), then X/S is projective when

3.5.1. C = 0 implies C = 0 for any rational curve/S, and

3.5.2. NE(X)N —NE(X) = 0.

Of course, it is stated up to 2.1-3. So it holds in characteristic 0 up to dimension
3 of X (cf. Example 9.5.1 below).

A restatement of Theorem 2 is

4. COROLLARY. Under conditions 2.1-3 with n = dim X, X has a rational
curve/S whenever 1.1-8 hold as well as (Kx + B.C) < 0 for some curve C in X/S.

4.1. PROBLEM. Does exist in Corollary 4 a rational curve C in X/S with
(Kx + B.C) < 0?7 (The same for Corollaries 6 and 8.)

Note now that 2.1-2 hold in characteristic 0. 2.1 follows from Chow’s Lemma
and Hironaka’s resolution in characteristic 0. (It works as well in the semi-normal
case.) 2.2, the Base Point Free Theorem, is implied by [KMM, 3-1-2(1)] and the
proof of [Sh3, 2.7]. So, we have

5. COROLLARY. In characteristic 0 Conjecture 1 holds in the dimensions <n
if the LMMP holds in the dimensions < n.

6. COROLLARY. In characteristic 0 and under the LMMP in the dimensions
< n =dimX, X has a rational curve/S whenever 1.1-3 hold as well as (Kx +
B.C) < 0 for some curve C in X/S.

The LMMP holds n < 3 at least in characteristic 0 and for normal 3-folds [Sh3].
Here by the latter we mean 3-dimensional spaces. So,

7. COROLLARY. In characteristic 0 Conjecture 1 holds for 3-folds.

8. COROLLARY. In characteristic 0, a 3-fold X has a rational curve/S when-
ever 1.1-3 hold as well as (Kx + B.C) < 0 for some curve C in X/S.
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9. PROJECTIVITY CRITERION. Under assumptions 1.1-4, 2.1-8, suppose more-
over that

9.1. Kx + B is Kawamata log terminal, and
9.2. there exists a big (R-)Cartier divisor D/S; or just

9.1-2’. X has only log terminal singularities and Q-factorial in etale topology,
for instance, X is non-singular.
Then X is projective/S, and X over its log canonical model Y/S or the Iitaka
morphism I : X — Y/S has equi-dimensional fibers, ie,foreachy €Y,

dim7I 'y = dim X — dimY.

Each weakly log canonical model is dominated over Y (cf. Theorem 2 for log
minimal models). In particular, Y = X is the log minimal model/S if and only if
X/S is of log general type.

PROOF-COMMENTARY. First, condition 9.1 implies that X normal and irre-
ducible if connected. (If X does not connected, the statements holds for each
connected component of X.)

Let D be big/S and R-Cartier. Then we may assume that D is effective [Sh3,
Lemma 6.17]. So, by Theorem 2 Kx + B + €D is nef, big and still satisfies 9.1.
Therefore according to the Base Point Free Theorem, for Kx + B +¢D, there exists
the canonical model Y/S with the litaka contraction I : X — Y/S.

By 3.1and 1.4, I =id, Y = X and X is projective/S.

In addition, if the Iitaka contraction exists for Kx + B, it will be projective
and by 1.4 with [Sh2, Corollary 3], I has no degeneracy or equi-dimensional.

If 9.1-2’ hold, then Kx is Kawamata log terminal and any big divisor/S is
R-Cartier, which gives 9.2. B

9.3. REMARK. So, if X has the Iitaka contraction, then B does not intersects
generic fibers E = I~1y,y € Y, and they are projective varieties with Kz = 0. So,
if X has no such subvarieties/S then K x + B is ample/S. Presumably, it will take
place whenever X is the Brody hyperbolic/S [Br]. Maybe, in an algebraic version
we need to replace maps of C — X by maps of P! and of some special varieties E
to X with Kg = 0 (with semi-elliptic E in the analytic case as well as), e.g., by
maps of Abelian varieties, Calabi-Yau 3-folds, and even elliptic curves sometimes
(cf. 14 and 14.2).

In addition, correspondence P — I(P) for prime divisors P, gives an isomor-
phisms between Weil divisors/Y and that of Y, as well so is for Q-Cartier/Y’,
equivalently, for Q-Cartier= 0/Y. So, Kx + B = f*(Ky + By) for some divisor
By. Presumably, we may chose By as a boundary with Kawamata log terminal
Ky + By. Respectively, Y is Q-factorial and log terminal whenever so is X.

9.4. If, in addition, — (K x + B) is nef/S, then any effective and, in particular,
big (R-)Cartier divisor D is nef/S. Hence by Theorem 2 Kx = B = 0/S, whenever
X is Q-Gorenstein.

In characteristic 0, we have Criterion 9 and 9.3-4, without assumptions 2.1-2.
In dimension < 3 without assumption 2.3 as well.

9.5. EXAMPLES.
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9.5.1. Let X be a complete 3-fold in characteristic 0 having only Q-factorial log
terminal singularities (for instance, non-singular) and having no rational curves.
Then X is projective with nef Kx. This explains constructions of non-projective
3-folds [II, VI.2.3].

If, in addition, —Kx is nef, then Kx = 0 and the cone of the effective divisors
D coincides with that of nef. Both such D’s will be semi-ample.

So, every non-projective X with above singularities and Kx =0 (for instance,
Bogomolov-Calabi-Yau) will have a rational curve.

9.5.2. Let X — Y be a birational contraction of a non-singular complete surface X
to a non-projective normal algebraic surface Y [N2, Th. 1]. Then after replacing X
by finite (cyclic) coverings we may suppose, according to Bogomolov, that X and Y
have no rational curves. (Indeed, then X be of general type with c3(X) > ca(X).)
However Y is not a weakly log canonical model for any boundary B because Y is
non-projective. More precisely, Ky + B will not be R-Gorenstein.

However in dimension > 3 we have similar examples with R-Gorenstein K x +B
(and even with B = 0).

9.5.3. Now let X — Y be a birational extremal contraction of two non-singular
curves C; and C; in a non-singular 3-fold, so that C; = aC for a rational multiple
a # 0, and a flip exists in both of them. (For instance, they arise after blow-ups
in two non-singular curves in a 3-fold, having a normal crossing in two points, cf.
[LI1, ib].) We may suppose that X is not projective after a flip in one of these curve
while Y is still projective. Finite coverings preserve all these conditions, except for
singularities, and after that we may assume that X has no rational curves. Since
these coverings may be chosen Galois, Kx will be Q-Cartier. Moreover, we may
suppose that fliped curves for C;’s will be again non-rational. Thus after these flips
we will have no rational curves in fliped X as well.

Finally we may chose a covering with a ramification in a Cartier divisor D
sufficiently negative on C;. Then Kx.C; < 0 after the covering.

Note that in this case we may construct X as an algebraic variety.

For higher dimensions we may take a product of X by a projective non-singular
variety without rational curves, e. g., by an Abelian.

Condition 1.4 in conjunction with mild singularities is anti-birational as shown
by the following results. (Cf. [CKM, 1.1-6].)

10. INDETERMINACY Locus THEOREM. Let g : X— — Y/S be a rational
morphism of algebraic spaces where X/S satisfies 1.2, 9.1 (or 9.1’, i.e.,, X has only
log terminal singularities), and Y/S is proper. Then for each closed PC X, g(P)
is covered by rational curves/S, whenever 2.1-3.

SKETCH COMMENT-PROOF. First, remark that g(P) here denotes the indeter-
minacy locus of P:
g(P) = q(p~")P for a regular hut
w
p
v
X Y

q

(for example, a graph diagram). We may assume also that (W/X, Bw) is strictly
log terminal. Then we use the LMMP/X (as well the the Base Point Free Theorem)
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with Lemma 3. In the latter v = g. (Cf. the proof of Theorem 2 and Criterion 9.)
]

10.1. ADVERTISEMENT. Similarly we can prove that g(P = pt.) is rationally
connected/S which is especially interesting when g is the inverse to a birational
contraction g~! : Y — X (for instance, a resolution) with g(P) = (¢g!)~!P. This
gives an affirmative answer to a Borisov’s question.

10.2. REMARK-COROLLARY. However Theorem 10 implies the following gen-
eralization of an Abhyankar result [Ab, Proposition 4] [CKM, Proposition 1.2]:

10.2.1. Under the assumptions of Theorem 10, let g be the inverse to a birational
contraction g~! : Y — X. Then any fiber of Y/X is covered by rational curves.

Using this and the Inverse of Adjunction [Shl, 3.4] we may generalize two funda-
mental theorems of Matsusaka and Mumford [MM, Theorems 1 and 2| to the case
of varieties with mild singularities. For instance, one of the results will assert that

10.2.2. Two projective (log) varieties, which are isomorphic as polarized varieties,
remain isomorphic after specializations over a discreet valuation, whenever they
have satisfies 1.2, 9.1 (or 9.1’, i.e., they have only log terminal singularities), and
at least one of them is non-uniruled.

The required model over the ring will satisfies 1.2, 9.1 (or 9.1°) as well.

10.3. REGULARITY COROLLARY. Under the assumptions of Theorem 10, sup-
pose that Y/S has no rational curves/S. Then g is regular.

Or its restatement

10.4. COROLLARY. Under the assumptions of Theorem 10, suppose that g is
not regular. Then Y has a rational curve/S.

10.5. REMARK-EXAMPLE. [CKM, 1.5] does not hold in general. Take f: Y —
Z being a contraction of a connected subspace on Y into a point z;, and g =
id:Y — X =Y. Then g(f~!2) = pt. if and only if zg # z,. Note that the
corresponding set Z \ 2; is not closed.

However [CKM, 1.6] may use the Negativity of a Birational Contraction [Sh1,
1.1]. But essentially it follows from Corollary 10.4.

11. COROLLARY. Let g : X— — Y/S be a birational morphism of algebraic
spaces where X,Y/S satisfy 1.2, 9.1(or 9.1°), and both X,Y/S do not have rational
curves/S. Then g is biregular, whenever 2.1-3 hold.

In particular, each birational automorphism of X/S is biregular.

Again, in characteristic 0, we have Theorem 10 and Corollaries 10.2-4, 11 with-
out assumptions 2.1-2. In dimension < 3 without assumption 2.3 as well.
In most of the above statements, we may even drop 1.2.

12. QuASI-PROJECTIVITY CRITERION. Without 1.2 in Conjecture 1 (in the
analytic case X/S is a Zariski open subspaces of a Moishezon space/S) Theorems
2, 9, 9.4, 10, Corollaries 4-8, 10.2-4, Remark 9.3 hold with the following changes:

12.1. By a weakly log canonical model X/S we mean a Zariski open subset
of an appropriate completion X /S, whereas B is extended to B by a complement
divisor aF with F = Ox = X\ X and some 0 < a < 1. So, we suppose that K+ + B
is log canonical or has the same properties as Kx + B.
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12.2. If a curve C/S is non-complete, i.e., intersects F', we consider (K7+§.C’)
instead of Kx + B. However then we assume conditions $.1-2 or 9.1'-2".

12.3. Dominant means a proper morphism of a Zariski open subset, for instance,
of a log minimal model, when it dominates, etc.

12.4. The projectivity we replace by the quasi-projectivity.

12.5. However, Y/S is still supposed to be proper in Theorem 10, Corollaries
10.2-4.

Moreover, in Remark 9.3 and according to it, I is proper and even projective
on X/S, and 9.4 takes place only for projective X/S.

Finally, here by a rational curve/S we mean a curve C C X/S with a rational
complement.

COMMENT-PROOF. Use an existence of a completion X by Chow’s Lemma [Kn,
Theorem 3.1] (cf. with Nagata’s [N1]).

Note that now in 12.2 of Theorem 2 we need the Semi-Ampleness [Sh3, Con-
jecture 2.6} but in a big case which in characteristic 0 follows from the Base Point
Free Theorem. B

13. ARBITRARY FIELDS. All derivations and results hold over any base field
k.

By a rational curve we mean here a 1-di_mensional subspace C/S which consists
of rational curve over an algebraic closure k, i.e., C is geometrically uniruled.

COMMENT-PROOF. The existence of rational curves in X/S is equivalent to
that of in X7/S. The latter can be descend to X in terms of conjugations.

We know that in the proper case (with algebraically closed k) a rational curve
is the image of regular non-constant map P! — X. In general, case we assume the
map is only rational. But maybe we can improve it.

14. ALGEBRAIC HYPERBOLICITY QUESTION. Whether it is true Conjecture 1
and etc, if we mean by a rational curve an image of a regular non-constant map
of AL = K — X. Equivalently, it extended to P', or log (P!, B = oo) whereas
(P!, B = 00) — (X, F) maps only oo into F.

To strength results, to log canonical one, we need perhaps to exclude more: the
elliptic curves as regular maps, and the log proper maps of (P!, B = 0+ 00). Such
type of curves are compatible with the etale topology. In particular, Theorem 2 in
that case should state that (X/S, B) is quasi-log canonical model, i.e., a Zariski
open subset of a log canonical model (X /S, Bx) and so X/S is quasi-projective.
This should be a generalization of the Satake compactification (cf. 14.2 below).

Even we may change the target X/S by a finite cover X — X, because in the
given case, the projectivity and quasi-projectivity is compatible with finite maps
by [H, Exercise 5.7 (d) in Ch. III] and the regular property of the automorphisms
of the log canonical model (X/S, F).

If the answer is negative we may replace P* and A! by log varieties (Y, By)
with nef —(Ky + By) or according to Bogomolov-Yau by log Abelian, simplectic
and SU-varieties.
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14.1. PREMATURE-EXAMPLE. Suppose that M is a fine moduli space of alge-
braic spaces of given topological type. Then they will be quasi-projective whenever
we have a rigidity

14.1.1. Any family of such spaces over Al = k is locally trivial (in the etale
topology).

A similar condition, for P! (and for an elliptic curve) instead of A, is fulfilled
in some cases. For instance, when we consider moduli of projective non-singular
varieties X with ample canonical polarization K, it is true according to Kovacs
[Kov]. If the moduli space is not fine, we can often add an extra structure to make
this which gives a finite covering and we have again 14.1.1 on it. Of course, the
quasi-projectivity of these moduli is known by other reasons.

For the quasi-projectivity, we may replace 4.1.1 also by weaker but a sufficient
condition:

14.1.2. Any family of such spaces over any log varieties (Y, By ) with nef —(Ky+
By) or even with Ky + By = 0 (cf. Remark 9.3 and Question 14) is etale locally
trivial.

14.2. ANALYTIC CASE. In the analytic case the exclusions in Conjecture 14
are covered by holomorphic maps C — X which means the Brody hyperbolicity.

So, in particular, we anticipate that Brody hyperbolic Zariski open subsét of a
Moishezon space are quasi-projective.

For instance, this is true for free algebraic quotients of bounded domains with
the Satake compactification. For other quotients we may use a finite covering given
by a subgroup with a free action.

In the opposite case when —(Kx + B) is nef/S, whether X is covered (or a
non-empty open subset of X) by holomorphic curves C — X/S (cf. Remark 9.3).

There exists an analytic interpretation of the Moishezon property [ShSh].
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