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THE EXISTENCE OF A STRAIGHT LINE ON FANO 3-FOLDS
UDC 513.6

V. V. SOKUROV

ABSTRACT. In this paper is shown the existence of a straight line on a Fano 3-fold of the
principal series (under the anticanonical embedding) if the 3-fold has index 1 and is not
isomorphic to the product Ρ 1 Χ Ρ2.

Bibliography: 13 titles.

In the papers [6] and [7] about Fano 3-folds, as well as in the classical papers [4] and
[11], a considerable role in studying the geometry of these varieties is played by the
question of existence of straight lines on them under the anticanonical embedding. In [4]
Fano states a proposition about the existence of a straight line on an algebraic 3-fold V,
whose Picard group is generated by the very ample anticanonical class — Kv. Such
varieties V are called in [7] Fano 3-folds of the first species. However, his considerations
[3], to which Roth refers in [11], are based mainly on counting parameters, which does
not give a precise proof. The importance of the question about the existence of a straight
line was pointed out by Iskovskih [7]. In the present paper a complete answer is obtained
to this question (see, for example, Theorem 1.2).

§1. Statement of the main result

1.1. We shall assume that the ground field k is algebraically closed and has zero
characteristic.

As in [6], [7] and [12], by a Fano 3-fold we mean a complete, nonsingular, irreducible
variety V of dimension 3 over the field k with ample anticanonical class — Kv. The
integer g = g( V) = -Kv/2 + 1 is called the genus of V. The largest integer r > 1 such
that %r ss 6y(- Ky) for some invertible sheaf % e Pic V is called the index of V. An
effective one-dimensional cycle / c V with — Kvl = 1 will be called a line.

Following [7], a Fano 3-fold with a very ample anticanonical class — Kv will be called
a Fano 3-fold of the principal series. For every such 3-fold V the anticanonical linear
system gives an embedding ψ\-Κι/\· V —> V2g_2 c P 8 + l , where V2g_2 is the subvariety of
P«+ 1 of degree 2g - 2.

V2g_2 is called the anticanonical model of the 3-fold V. In the case of a Fano 3-fold of
the principal series the straight line / has the usual geometric sense. It is a straight line on
the anticanonical model V2g_2.
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174 V. V. SOKUROV

1.2. THEOREM. Let V be a Fano 3-fold of the principal series. Then precisely one of the
following alternatives is true.

(1.2.1) On V there is a line.
(1.2.2) V has index r > 2.
(1.2.3) F « P ' X P2.

From this theorem it is easy to deduce the following criterion for the existence of a
straight line.

13. CRITERION FOR THE EXISTENCE OF A STRAIGHT LINE. Let V be a Fano 3-fold of the
principal series. On V there exists a straight line if and only if the anticanonical class — Kv

cannot be represented as a sum of two ample divisor classes. •

1.4. REMARKS.

(1.4.1) Criterion 1.3 is a weaker proposition than Theorem 1.2. Nevertheless from it
one can deduce the following moral: the obstruction to the existence of a straight line
has a topological nature at least in the case of a ground field k of characteristic zero.

(1.4.2) Apparently, Theorem 1.2 and Criterion 1.3 remain valid in the case of an
arbitrary Fano 3-fold (compare Corollary 1.5), i.e. without assuming the very ampleness
of the anticanonical divisor.

As a second simple corollary of Theorem 1.2 we obtain the truth of the following
proposition, which is called in [6] Hypothesis 1.14. We recall that a Fano 3-fold V with
Pic V = Ζ is called a Fano 3-fold of the first species.

1.5. COROLLARY. On a Fano 3-fold of the first species and of index one there exists a
straight line.

PROOF. By Theorem 1.2 of [12], Proposition 4.4 of [6], and Theorem 1.2 the above
corollary remains unproven only in the following two cases:

(a) V is a hyperelliptic Fano 3-fold (see Definition 7.1 of [6]);
(b) the linear system \-Kv\ has a nonempty base set.
In case (b) the fiber of the elliptic pencil | Y\ from Proposition 3.1 (b) of [6] gives the

needed straight line. In case (a) the anticanonical linear system gives a morphism ψ\-Κ\'-
V—> W c P i + l of degree 2. Then by Theorem 7.2 of [6] the variety W is nonsingular
and V is uniquely determined by the pair (IV, D), where D c W is the ramification
divisor of ψ\-Κν\· Since Pic F « Z , by Corollary 7.6 of [6] either W = P 3 and D is a
smooth hypersurface of degree 6, or W = V2 c P 4 is a smooth quadric and D = V2 Π
V4 a smooth intersection of a quadric with a quartic. If b is a bitangent line in W C Ρ
(/ = 3 or 4) to D, then <P|l'/ |̂(*) splits into two straight lines in V. The existence of a
bitangent straight line is an elementary geometric fact. •

According to Theorem 6.1 in [7], from the above corollary we obtain

1.6. COROLLARY. For a Fano 3-fold of the first species and of index 1 we have
-K*< 22. •

1.7. NOTATION AND CONVENTIONS. The basic object of study in this paper is a Fano
3-fold V of the principal series. Fis always identified with its anticanonical model V2g_2.
By the degree of an algebraic cycle c on V we mean the degree of the cycle with respect
to the anticanonical linear system which coincides with the usual degree of c on
V2g-2 C P* + ' . Let X be an algebraic subvariety of P". By (X} we denote the linear hull
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of X in P", i.e. the smallest projective subspace of P" which contains X. In particular,

<X> c P g + 1 is defined for every algebraic subvariety X c V. By Tx we denote the

embedded tangent space to V at the point x.

1.8. Let D be a divisor on V. The rational mapping defined by the linear system \D\

will be denoted by φ | β | : V > ρ·*™!"!.

1.9. Let D be a divisor on a smooth irreducible surface X, x,, . . . , xn a set of η distinct

points on X and k,,..., kn a set of natural numbers. By \D - Σ" fc,x,| we denote the

linear subsystem of the complete linear system \D\ which consists of all the divisors

D' e \D\ which have multiplicity > kt at x,, i = 1, . . . n. By codim|Z) — Σΐ &;x,| we

mean the codimension of the projective space \D — Σ /c,x,| in | O | . We say that the linear

system \D — Σ fc,x,| is nondegenerate at x( if the monoidal transformation with center x,-

removes the indeterminacy at that point. Correspondingly the divisor D' has a nonde-

generate singularity of degree k at χ if this singularity is resolved by a single monoidal

transformation with center x.

1.10. In this paper a curve (respectively a surface) is a one-dimensional (two-dimen-

sional) complete irreducible and reduced algebraic variety.

1.11. Replacing in 1.9 the surface X by a smooth 3-fold and the points x, by curves qit

we can define the linear system \D — Σ /c,<7,| and codim|Z> — Σ fc,g,|. Also the notion of

a nondegenerate linear system \D - Σ" &,<?,-1 at the generic point of qt makes sense, as well

as the nondegeneracy of a surface singularity at the generic point of q, where q is a

curve.

1.12. Let Η be a smooth divisor on a smooth variety V and let D be a divisor on V.

We denote by &H(H, D) the restriction of the invertible sheaf <3V(D) to H, by \(H, D)\

the corresponding complete linear system and by (H, \D\) the linear subsystem of it

obtained by restricting the linear system \D\ to H.

§2. Plan of the proof of Theorem 1.2

2.1. DEFINITION. A linear system |Z)| on an irreducible nonsingular variety V is called

a linear system with splittings if there exist two divisors £>„ D2 > 0 such that Dx + D2 e

\D\.

If Κ is a Fano 3-fold of the first species with index 1, then \-Kv\ is a linear system

without splitting. The author does not know if the converse is true.

The role played by splittings of the anticanonical system |-.KK| of a Fano 3-fold is

explained in the following four propositions.

2.2. PROPOSITION. For a Fano 3-fold V of the principal series one of the following

conditions is fulfilled.

(2.2.1) There is a line on V.

(2.2.2) V has index r > 2.

(2.2.3) F«P'x P2.

(2.2.4) On V there is a surface S * P 2 of degree 4 with d im<5) = 5.

(2.2.5) \-Kv\ is without splitting.

For the proof, see §8.

23. PROPOSITION. For a Fano 3-fold V of the principal series one of the following

conditions is fulfilled.

(2.3.1) If a: V —> V is a monoidal transformation with center at any point χ e V, then V
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is a Fano 3-fold of the principal series, and also <P|_^.| maps S = a~l(x) onto a Veronese
surface S ss P 2 of degree 4.

(2.3.2) \-Kv\ has splittings.

(2.3.3) V contains a conic {i.e. a smooth curve of degree 2).

(2.3.4) V contains a straight line.

For the proof, see §7.

2.4. PROPOSITION. Let V be a Fano 3-fold of the principal series which contains a conic.

Then one of the following statements is true.

(2.4.1) If a: V —> V is a monoidal transformation with center in a sufficiently general

conic q c V, then V is a Fano 3-fold of the principal series, and also the exceptional surface

S = a~\q)c Vhas degree 4, d i n ^ S ) = 5, and S « Ρ 1 Χ Ρ 1 .

(2.4.2) \-Kv\ has splittings.

(2.4.3) V contains a straight line.

For the proof, see §6.

2.5. PROPOSITION. Let V be a Fano 3-fold of the principal series which contains a surface

S of degree 4 and is such that (i) dim<5 > = 5 and (ii) S » P 2 or S « Ρ 1 Χ Ρ1. Then either

(2.5.1) there exists a straight line not meeting S, or

(2.5.2) there exist two effective divisors D, D' > 0 and a positive integer η such that

S & Ass(D) υ Ass(D') and nS + D + D' e \-Kv\.

For the proof, see §5.

The most fundamental role in this paper is played by Propositions 2.3-2.5. From them

it is already easy to deduce the Fano Hypothesis 1.15 of [7]. Also they allow us to

strengthen Proposition 2.2 substantially; namely, the following proposition holds:

2.6. COROLLARY. Proposition 2.2 remains true even if one omits its last statement (2.2.5).

PROOF. Let V be a Fano 3-fold of the principal series on which \—Ky\ does not split. It

is enough to establish the existence of a straight line on V. Let us assume that V contains

neither straight lines nor conies. Then the 3-fold V obtained by the monoidal transform

a: V -» V with center at a general point χ Ε. V is a Fano 3-fold of the principal series by

Proposition 2.3. Also the surface S = a~l(x) c V satisfies the requirements of Proposi-

tion 2.5. Because of the absence of straight lines on V, also V contains no straight lines

which do not intersect S, since Ky ~ a*{Kv) + 25. From this last relation and from the

absence of splittings in \-Ky\ we obtain that for V (2.5.2) is impossible. This leads to a

contradiction with Proposition 2.5. Therefore on V there exist either straight lines or

conies.

Let us assume that V contains conies but no straight lines. Then the monoidal

transform σ: V —> V with center at a general conic q c V leads to a Fano 3-fold V of the

principal series (see Proposition 2.4). Proceeding as above for the monoidal transform

with center at a point, we obtain a contradiction with Proposition 2.5. (We recall that in

this case Ky ~ a*{Kv) + S.) This last contradiction establishes the existence of a

straight line on V. •

The next step in proving Theorem 1.2 is to exclude (2.2.4) from Proposition 2.2. An

important role in doing this is played by the following lemma.
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2.7. LEMMA. Let V be a Fano 3-fold of the principal series, and let S c V be a
nonsingular surface of degree > 3 such that deg S + 1 = dim<S>. Then S is an excep-
tional surface whose contraction σ: Κ—» V gives a Fano 3-fold V of the principal series.

PROOF. By the classification of surfaces of degree η — 1 in P" (see [7]), either
(i) S fa Fn, a rational ruled surface embedded in <S> by means of the complete linear

system

where sn and bn are the standard generators of the Picard group of Fn, or
(ii) S s» P2, a plane embedded in <5> by means of the linear system of quadrics.
In case (i) snS = - 1 , and in case (ii) we have (s, S) /, where / is a straight line on

P2. Therefore by the numerical criterion we have a contraction a: V -± V of the surface
S. In case (i), o{S) is a smooth rational curve, and in case (ii) it is a point. Also
σ*(-Κν·) ~ -Kv + S in case (i), and ~ -Kv + 2S in case (ii), from which, using the
numerical criterion, it is easy to prove the ampleness of — Kv,. Also in case (i) it is
necessary to use the equivalence (5, S - Kv) ~ (deg S — 2)sn on S, which follows from
the adjunction formula for Ks. Consequently, V is a Fano 3-fold of genus g + deg S —
1 in case (i) and of genus g + 4 in case (ii). Since V is a Fano 3-fold of the principal
series, it follows that g > 3. Hence V has genus g' > 5, and - Kv. = 2g' - 2 > 8.
Therefore in the linear system \-Kv\ there are no base points, by Theorem 1.2 of [12] and
Proposition 3.1 in [6].(') Also V — a(S) is mapped biregularly under the anticanonical

morphism φ| _ K^, since σ*( — Kv) Kv + nS, η > 1. Consequently V is a Fano
3-fold of the principal series, by Proposition 4.4 in [6]. •

PROOF OF THEOREM 1.2. Let V contain no straight lines and let the index of V be equal
to 1. Then it is enough to prove that V « Ρ1 Χ Ρ2. Assume this is not so. Then, because
of Corollary 2.6, V contains a Veronese surface S « P 2 of degree 4, which is exceptional
by Lemma 2.7. The 3-fold V obtained by contracting S to a point χ is a Fano 3-fold of
the principal series. V does not contain straight lines; and V $6 Ρ1 Χ Ρ 2 since on
blowing up χ one obtains a Fano 3-fold and therefore no conies or straight lines pass
through x. Also under blowing up the point χ of a Fano 3-fold the parity of the index is
preserved. Therefore the index of V is either one or three. As is known, on a Fano
3-fold of index 3 through every point there passes a one-dimensional family of smooth
rational curves of degree 3. This is the family of straight lines on the quadric Vx « Q2 C
P 4 through χ (see Theorem 4.2 in [6]). Under blowing up with center χ the proper
transform of such a curve of degree 3 is a straight line on V, which is impossible by the
proposition. Consequently the index of V is equal to 1. In such a case by Corollary 2.6
V contains a Veronese surface S « P 2 of degree 4. Further we pass from V to V", etc.
Because of the finiteness of rk Pic V this is impossible, which completes the proof of
Theorem 1.2. •

(') In point (b) of Theorem 3.1 in [6] the possibility that %H ss GH(Z + 4 Y) and V SB F X P\ where F is a
del Pezzo surface of degree 1, is omitted. (This correction was communicated to the author by V. A. Iskovskih,
and was also noted on p. 471 of the English translation of [7].)
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§3. Lemmas about linear systems on surfaces

In this section, by a surface we mean a complete, irreducible and nonsingular variety
of dimension two.

3.1. LEMMA. On the surface X let there be given a divisor D and a set of distinct points

xv . . . , xn with positive integral multiplicities kt, . . . , kn such that

(i) dim|Z) - Σ" £,·Λ:,.| > max {dimlA^I, 0}, and

(ii) the general element of \D — Σ" Ar,jc(| is irreducible and reduced.

Then

^ γ ) + χ(Χ) —2 + min
<• t " = l /

where

%(X) = j] ( - \)lhl(X,Ox)
1 = 0

is the Euler characteristic of X. If X is a K3 surface, then

> - 2 kixi\>yi V '
2

where in the case of equality all the fixed points of the linear system \D — Σ" £,x,| are

nondegenerate; they coincide with one of the points x, (1 < / < n) and have multiplicity kr

PROOF. By the Riemann-Roch theorem, for the divisor Do e \D — Σ" Λ,-ΛΓ,-Ι we have

- 1 , (3.2)

since

h* (X, Ox (Do)) = h° (X, Ox {Kx—Do)) = 0.

Indeed, in the opposite case

η

dim \Kx\^dim \D0\^dim \D—^ ^Λ·|»
1 = 1

which contradicts (i).

For Do we choose a general element of \D - Σ" Α:,Λ:(|. Then we can assume that Do

satisfies the following conditions. Let σ = σγ ° · · · ° o m : f - > J be a sequence of

monoidal transformations σ,, . . . , am which removes the points of indeterminacy of the

linear system \D — Σ" kjXj]. Then the proper transform Do of the divisor Do is a smooth

(because of (ii)) curve on X such that

η

dim | Do | = dim | D — g &*'! · ( 3 J )

i=i
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Also,

g0o) = pa(Do)~2 • f ' ( f ' 2 - 1 ) , (3.4)

where /, is the multiplicity of the point of the monoidal transformation σ, on the proper

transform of Do under the sequence of monoidal transformations σ,, . . . , σ,·_,. We may

assume that m > η and /, > ktA or i = 1, . . . , « . From the exact cohomology sequence of

the triple

0 _> <?~ -> 0 ~ (Do) -* © ^ (Do, Do) -»- 0

we obtain the inequality

dim |D01 < dim \(D0, Do)\ + 1. (3.6)

Consequently the linear system \(D0, Do)\ φ 0 . If hl(D0, 0^ o (u o , Do)) = 0, then by (3.4),

(3.5) and the Riemann-Roch theorem

since

p a (Do) = h 1.

Therefore from (3.6), (3.2) and (3.3) we obtain in this case

η η ?

codim \D — y. ktx{ \>y. ZL + χ (X) — 1. (3.7)
9

1 = 1 1 = 1 Z

Otherwise h\50, Θβο(3ο, Do)) > 0, i.e. \(D0, Do)\ is a special linear system. Then by

Clifford's theorem (see Theorem 5.4 in [5]) dim|(/50, Do)\ < ΐ>1/1.

From (3.6), (3.2), (3.3) and (3.5) we get

codim | D - 2 kiXi\ > 2 — " ^Tp- + χ W " 2 · (3·8)
ί=ι ί=ι 2

This completes the proof of the lemma. The proof of the last assertion is easily deduced

from (3.7) and (3.8). •

Now we will give some corollaries of the lemma.

3.9. COROLLARY. Under the assumptions of Lemma 3.1, if X is a K2> surface and

codim|Z) — Σ" Λ,χ,| < 1, then the following assertions are true:

(3.9.1) The general divisor Do of the linear system \D — Σ" A:,x,| is a smooth curve.

(3.9.2) The linear system \D — Σ" /c,x,| has at most two fixed points, and it has two only

if Do is hyperelliptic.
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PROOF. By Lemma 3.1 we have the inequality 1 > Σ" kf/2, from which we obtain

(3.9.1) and the first half of (3.9.2).

Let us assume that χ, φ x2 e X are two distinct points of \D — Σ" ^,x,|. In this

situation (3.7) is not satisfied and (3.8) is an equality. Therefore, as is clear from the

proof of Lemma 3.1, we also have the equality dim|(£>0, Do)\ = D^/2, and m = 2,

/, = l2 = 1. On the other hand, on a K3 surface one always has 2g(D0) — 2 = DQ =

Do + 2 (the latter by (3.5)). Hence by Clifford's theorem the second half of (3.9.2)

follows in the case DQ > 0. If D$ = 0, then Do has genus 2. •

3.10. COROLLARY. Under the assumptions of Lemma 3.1, if X is a rational surface, with

codim|Z) — Σ" &,x,| < 1 and — KXD > 3, then the following assertions are true:

(3.10.1) The general divisor of the linear system \D — Σ " ΑΓ,-ΛΓ,-Ι is a smooth curve.

(3.10.2) The linear system \D — Σ" &,JC,| has at most one nondegenerate fixed point of

multiplicity one.

PROOF. By Lemma 3.1 we have 1 > Σ" kf/2; hence we obtain (3.10.1).

In the given situation (3.8) implies (3.10.2). Hence difficulty may only arise in the case

of (3.7); but, as one sees from its proof, it is obtained by weakening the inequality

" m [. I'. - L 1 )

( = 1 ( = 1

Therefore if (3.8) is satisfied we have 1 > Σ™ Wi + l)/2; hence we also obtain

(3.10.2). •

3.11. COROLLARY. Let X be a K7> surface and D a curve on it. Then the following

assertions are true:

(3.11.1) If aim\D \ = 0, then D is a smooth rational curve with D2 = -2.

(3.11.2) If dim| D \ > 0, then the linear system \ D | has no fixed points.

(3.11.3) The general member of the linear system \D\ is a smooth curve.

PROOF. By duality and the Raman uj an vanishing theorem for a regular surface (see the

remark on page 180 of [1]), h\X, QX(D)) = 0. Also h\X, 6X(D)) = 0. Hence by the

Riemann-Roch theorem dim|Z)| = D2/2 + 1. On the other hand, 2pa(D) - 2 = D2,

whence we obtain (3.11.1). (3.11.2) is a direct consequence of Lemma 3.1; and (3.11.1),

(3.11.2) and Bertini's theorem imply (3.11.3). •

3.12. COROLLARY. Let X be a rational surface and D a curve on it with — KXD > 1.

Then the following assertions are true:

(3.12.1) If aira\D \ = 0, then D is a smooth rational curve and KXD = D2 = - 1 .

(3.12.2) The general element of \D \ is smooth.

(3.12.3) The linear system \D\ has no base points for — KXD > 2.

PROOF. (3.12.1) is an immediate consequence of the Riemann-Roch theorem and the

arithmetic genus formula for a curve. (3.12.3) and (3.12.2) follow from Bertini's theorem

and Lemma 3.1. •

3.13. COROLLARY. Let X be a smooth rational surface and D a curve on it such that the

linear system \D\ is ample and — DKX > 3. Then \D\ is very ample.
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PROOF. AS was shown in [9], to prove the very ampleness of D it is sufficient to show

the surjectivity of the natural homomorphism of graded algebras

oo

S'H" {Χ, Οχ (D)) -* 0 W (Χ, Οχ {nD)), (3.14)
11=0

where S* Ε denotes the graded symmetric algebra of the vector space E. Let Do e | D \ be

a smooth curve (see (3.12.2)). Then from the cohomology sequence of the triple

0^Θχ -*ex(D)-^&Do(Do,D)-^O we obtain the epimorphism H°(X, QX(D))^>

H°(D0, 0Oo(Z)O' D))> s o t h a t h\x> ®x) = 0 by assumption. Therefore for the proof of

surjectivity in (3.14) it is enough to show it for the homomorphism

S*H° (Do, 0 D o (Do, D)) -v 0 H° (Do, © D . ( D O , nD))

(see Lemma (2.9) in [6]). The latter map is surjective since deg(D0, D) = D2 > 2g(D0) +

1 [9]. •

3.15. LEMMA. Let X be a regular (i.e. h\X, &x) = 0) surface. Assume that on it two

distinct curves D and D' are given for which dim|£) + D'\ > dim|Z>| + dim|£>'|. Then the

general element of \D + D'\ is irreducible and reduced.

PROOF. First of all, from the conditions of the lemma we obtain the absence of fixed

components for divisors of the linear system \D + D'\. We may assume also the absence

of base points in \D + Z>'|—in the opposite case one needs to remove the points of

indeterminacy of \D + D'\. The general element Ε £ \D + D'\ is a smooth divisor. If

\D + D'\ is not a pencil, the lemma follows from Bertini's theorem. If \D + D'\ is a

pencil, then dim \D + D'\ = the number of components of Ε (because of the regularity

of X). On the other hand, from the inequality dim|Z) + D'\ > dim|£>| + dim|£»'| it is

easy to get that dim|Z> + D'\ = 1. Therefore Ε is irreducible. •

3.16. LEMMA. Let X be a regular surface on which are given effective divisors D and D'

such that

(i) AssD'n Ass D = 0,

(ii) h\X, Gx(-D)) = 0, and

(iii) D' is reduced and D' > 0.

Then h\X, Qx(-D - D')) = (the number of connected components of D + D') - 1.

PROOF. By Ramanujan's theorem for a regular surface (see the remark on page 180 in

[ID

hl (X, Ox(—D — D')) = h°(D + D', OD+D>) — 1.

The case D = 0 is obvious by (iii). If D > 0, then one can limit oneself to the case of

connected D + D' by (i). Then h°(D + D', GD + D.) = 1 by (iii), (i) and h°(D, QD) = 1.

The last equality follows from (ii) and Ramanujan's theorem. •

3.17. LEMMA. Let X be a rational surface with \-Kx\ φ 0 on which there are given two

distinct curves D and D' that are not fixed components of |—A |̂. If (i) DD' > 2, or (ii)

DD', - DKX, -D'KX > 1, then the general element of \D + D'\ is irreducible and

reduced.
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PROOF. Subtracting from the Riemann-Roch equality for the divisor D + D' the

analogous equalities for D and D', we obtain that

dim | D + D'\ — dim| D\ — dim | D'\ = h1 (X, Ox (D + D'))

— h1 (X, Ox (D)) - hl (Χ, Οχ (D1)) + D'D,
since

Λ3 (X, Ox (D)) = h* (Χ, Οχ (D')) = Λ2 (X, OX (D + D')) = 0.

Therefore by Lemma 3.15 it is enough to establish the inequality

DD' > h1 (Χ, Οχ (£>')) + h1 (Χ, Οχ (D)) - h1 (X, Ox (D + D')).

The latter is a simple consequence of duality and of Lemma 3.16. Let us analyze for

example the case (i) where D and D' do not intersect any anticanonical divisor

ι

h> (X, Ox (£>)) = h1 (Χ, Οχ ( - D" -D))=l,

D" G | - Kx\. Then

since

Λ1 (Χ, Οχ ( - D")) = h1 (X, Ox (Kx)) = 0.

Analogously

h> (X, Ox (£>')) - h1 (X, Ox (D + D')) = 1.

This yields the needed inequality. •

3.18. LEMMA. Let X be α ΑΓ3 surface and let D and D' be two distinct intersecting curves

on X. Then in the linear system \D + D'\ one can find an irreducible and reduced divisor if

and only if D • D' > 2.

PROOF. Subtracting from the Riemann-Roch equality for D + D' the analogous

equalities for D and D', we obtain that

dim \D + D'\— dim \D\— dim \D'\=D-D'—l,

because the second and first cohomology groups of the sheaves 6X(D), &X(D'),

0x(D + D') vanish. Then using Lemma 3.15 we obtain the assertion. •

3.19. LEMMA. Let X be a K3 surface and let D, D' and D" be three distinct pairwise

intersecting curves on it. Then in the linear system \D + D' + D"\ there exists an

irreducible and reduced divisor.

PROOF. If among the given curves there are two with intersection index > 2, then by

applying Lemma 3.18 twice we get the conclusion. Therefore we may assume that

DD' = DD" = D'D" = 1. If dim|Z>|, dim|Z)'| > 0, then by (3.11.2) the linear system

\D + D'\ has no base points and (D + D')2 > 2. Therefore its general element is

irreducible and reduced. Then Lemma 3.18 for the general elements of \D + D'\ and

\D"\ gives the conclusion. Consequently, we may assume that dim|Z>| > 0 and dim|Z)'|

= dim|Z)"| = 0 (after suitably renaming the curves). By Lemma 3.11, (D')2 = (D")2 =

-2. By the Riemann-Roch theorem,



THE EXISTENCE OF A STRAIGHT LINE ON FANO 3-FOLDS 183

hence dim\D + D' + D"\ > dim\D\. If D" is a fixed component of \D + D' + D"\,

then dim|Z> + D'\ > dim|ZJ|. Then by Lemmas 3.15 and 3.18 we get the conclusion.

Therefore we may assume that \D + D' + D"\ does not have fixed components. If

\D + D' + D"\ is not a pencil, Bertini's theorem proves what we need. If \D + D' +

D"\ is a pencil, then it is of the form \nE\, where \E\ is an elliptic pencil on X. The

general element of \D + D' + D"\ is connected, since h\X, Θχ(-D - D' - D")) = 0.

Therefore η = 1, which completes the proof of the lemma. •

3.20. LEMMA. Let X be a surface with \-Kx\ φ 0 and Kx φ 0, and let D be a rational

curve {perhaps singular) on X with — KXD > 2. Then the family of effective divisors

algebraically equivalent to the divisor D has dimension > 1.

PROOF. X has Kodaira dimension - 1 . If X is a regular surface then by Corollary

(3.12.1) dim|D| > 1. If X is an irregular surface, then by Theorem 4.1 in [2] there exists a

canonical projection -n: X -^> Y, where Υ is a smooth curve of genus q(X) = h\X, Sx)

and the general fiber of 77 is a smooth rational curve. Also every curve in every fiber of π

is a smooth rational curve. Therefore D is a smooth curve from some fiber of π. Then

D2 > 0 and D = 77~ \d) for some point d e Y, since the minimal model of A' is a ruled

surface. By virtue of the algebraic movability of the fiber of π, this completes the proof

of the lemma. •

3.21. LEMMA. Let X c P g be a K3 surface embedded by a very ample linear system \D\

(hyperplane sections of X), and assume that Do G \D\ is a curve which has nondegenerate

quadratic singularities at the points xx, . . . , xn and which is smooth outside of these points.

Then the points xx, . . . , xn are in general position, i.e. dim<2" *,·> = η — 1.

PROOF. Let r = dim<2^ *,->. Obviously r < η — 1. We will show that r > η — 1. Let σ:

X —> X be the sequence of monoidal transforms with center in xt, Ei = a~ 1(xi), and Do

the proper transform of Do. Do is a smooth curve of genus pa(D0) — η = g — n, and

since

Moreover, Kx ~ Σ" Et, and by the adjunction formula Κβο — (Do, DQ + Σ" £,). From

the cohomology sequence of the triple

0 > Ό τ (Κχ) -> Ο7κ \D0 + S Ε(\ -> O~Da (K3) - 0

we have the inequality

£ | ^ | 5 i | + | % | + 1 =g~n.
1 = 1

Consequently, g — r — I < g — η and /? — ! < / · .
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3.22. LEMMA. Let X c Pg be a K3 surface embedded by the very ample linear system

\H\, and assume that D is a curve and that D' is a reduced connected divisor on X such

that D + D' e \H\. Then D is fully linearly embedded in <Z> >.

PROOF. If we consider the cohomology sequence of the short exact sequence

we see that to show the surjectivity of

H°(X, OX(H))-+H°{D, aD(D, H))

it suffices to show that hl{X, GX(D')) = 0. The latter is obtained by duality and from

Ramanujan's theorem for regular surfaces (see the remark on page 180 in [1]). •

3.23. LEMMA. Let C be a nonhyperelliptic smooth curve and let D φ 0 be a special divisor

on it (i.e. \KC - D\ φ 0 and \D\ φ 0 ) . Then deg DQ < deg D, and equality holds only

for DQ = D', where DQ is the fixed part of the linear system \D'\ = \KC — D\.

PROOF. By duality and by the definition of DQ we have

h1 (C, Oc (D)) = h? (C, Oc (D')) = hP (C, Oc (D' - D'o)) = h1 (C, Oc (D + D'o));

hence, subtracting the Riemann-Roch formula for the sheaf &C(D) from the correspond-

ing formula for 6C(D + D£), we obtain

A° (C, Oc Φ + DO)) = h° (C, Oc (£>)) + degDO.

Now from Clifford's theorem for the special divisor D + DQ there follows the inequality

deg (D + D')
A» (C, Oc (D)) + deg Do < 2 ° + 1.

Hence we obtain the inequality required in the lemma, because h°(C, 6C(D)) > 1, and,

in the case of equality, by Clifford's theorem either D + £>ά ~ 0 or D + D' ~ Kc (C is

nonhyperelliptic). The former is impossible by assumption. •

3.24. COROLLARY. Let X <z Pg be a K3 surface embedded by a very ample linear system

\H\, and let D be a curve on it such that \H - D\ φ 0. Then deg Z>0 < deg D (the degree

under the inclusion X C P*), and equality holds only for DQ = D', where DQ is a fixed

component of the linear system \D'\ = \H — D\.

PROOF. The general hyperplane section C e \H\ is a smooth canonical curve of genus

g. The linear system \D'\ restricts to the linear system |(C, D')\ on C isomorphically. The

latter follows from the exact cohomology sequence of the triple

and from the vanishing of

h°{X, ax(-D))=h1(X, 0X(-D))=O.

Then we obtain the assertion from the previous lemma. •
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§4. Lemmas on linear systems on Fano 3-folds

4.1. LEMMA. Let D be an effective divisor on a Fano 3-fold V. If D > 0, then

h3{V, Oy (-D)) =/z2(D, OD);

if D = 0, then

h°(V,0v) = l,

V(V, Ov) =W(V, Ov) =h3(V, 0V) =Q.

PROOF. The statement for D = 0 is a direct consequence of the Kodaira vanishing

theorem and Serre duality. The case D > 0 follows from the cohomology sequence of

the short exact sequence 0 —> Θκ( — D ) — > θ κ - » Θ ο — > 0 and from the previous proposi-

tion. •

4.2. COROLLARY. If an element of the linear system Do ε \D\ on a Fano 3-fold V

consists of η connected components, then hx(V, Θν(— D)) > η — 1. If each component of Do

is reduced, then h\V, θ κ ( - D)) = η - 1. •

4.3. Let Η be an effective divisor. We say that D is a divisor from the splitting of the

linear system \H\ if D is an effective divisor and if there exists an effective divisor D' for

which D + D ' e . f f . If D > 0 and D' > 0, we say that D gives a nontrivial splitting

(compare Definition 2.1). The divisor D' will be called residual to D in Η (in the case

\H\ — \-Kv\ simply residual), and the corresponding linear system \D'\ will be called

residual to D in \H\ (respectively, just residual).

4.4. LEMMA. Let Η be a smooth surface on a Fano 3-fold V, and let D be a divisor from

splitting of the linear system Η for which the general residual divisor D' S \H — D\ is

reduced. Then the natural restriction homomorphism

r:H°(V, Ov(D))^Ha(H, OH(H, D))

is surjective for D' = 0 and has a cokernel of dimension < η — 1, where η is the number of

connected components in the general element \D'\ for D' > 0. The map r is injective if

D' > 0, and it has a one-dimensional kernel if D = 0.

We prove this by applying Corollary 4.2 to the exact cohomology sequence of the

short exact sequence

0-*Uv(—D')-+Uv(D)-+<yH(H,D)-+0. Μ

4.5. LEMMA. Let D and D' be two surfaces on a Fano 3-fold V which give a nontrivial

splitting D + D' 6Ξ |—/sTK|, and suppose D is also smooth. Then D is a smooth rational

surface with \-KD\ φ 0 .

PROOF. If D φ Ό', then, using the adjunction formula -KD~ (Z), D') > 0, we obtain

that I-AT̂ I is nonempty when D φ D'. If D = D', the nonemptiness follows by the same
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reasoning with D' replaced by a general divisor in \D'\ (dim|Z)'| = aim\-Kv/2\ > 0; see

Proposition 1.9(ii) in [6]). Therefore to show the rationality of D it is enough to establish

the triviality of h\D, BD) = 0 and h\D, 6D) = 0 (see [2]). The latter follows from

Lemmas 4.1 and 4.2, and from Serre duality:

Λ2 (D, OD) = h3 (V, Ov ( - D)) = h° (V, Ov ( - D')) = 0,

h1 (D, OD) = h* (V, OV ( - D)) = h1 (V, OV ( - D')) = H> (D1, OD>) ~ 1 = 0. •

4.6. LEMMA. Let qv . . . , qn be a set of distinct curves with positive integral multiplicities

kx, . . . , kn on a Fano 3-fold of the principal series such that

(i) dim
1=1

(ii) the general element of \~KV — Σ" ktqt\ is irreducible and reduced, and

(iii) η > 0.

Then

codim

I

" ft?

ι—1

and in the case of equality every base curve q for \-Kv — Σ" A:,?,| coincides with one of the

<7, (1 < /' < n) and has a nondegenerate multiplicity kr

PROOF. We consider a sufficiently general hyperplane section Η e | — Ky\. Also we

may assume that Η is a smooth ΑΓ3 surface ([6], Corollary 1.5) on which are given

Σ" deg qt distinct points x{ (1 < / ' < « , 1 < j < deg qt), the points of intersection of

U ί ft with H. Then by Lemma 4.4 and the nontriviality of Σ" ktqt (see (iii)) it is enough

to show that

codim D Σ Σ (4.7)

where Ζ) is a smooth canonical curve-section of genus g on H. For a sufficiently general

Η the general element of

is irreducible and reduced (see (ii)), and the linear system

injectively to the system

η d e e ii

Σ Σ *ο
f=l /=!

- Kv — Σ" ,| restricts

Therefore

dim - Σ Σ >o
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(see (i)). In this situation (4.7) follows from Lemma 3.1. The last assertion of the lemma

being proved follows from the corresponding assertion in Lemma 3.1. •

4.7. LEMMA. Under the assumptions of Lemma 4.6, if kl = • · · = kn = 1 and

then Σ" deg qt = 2g — 2, and U " <7, is a curve-section of the Fano 3-fold V c Pg+i.

PROOF. Indeed,

codim
£ = 1

Therefore in Lemma 4.6 we have equality. Consequently, the general divisor D ε

\-Kv — Σ" <?,| is a surface which admits only isolated singularities. The intersection of D

with a general hyperplane section is a nonhyperelliptic canonical curve C c P r ' . On it

lie 2 dim< U " <7,> distinct points which generate a subspace of dimension equal to

dim< U 1 <7,>-l < g — 2. The latter, as is known by Clifford's theorem, is only possible

if dim< U J ft) - 1 = g ~ 2, which completes the proof. •

4.8. LEMMA. Let D be a surface from the splitting of the linear system \-Kv\ on a Fano

3-fold V of the principal series. Then deg DQ < deg D, and equality holds only if D^ = D',

where DQ is a fixed component of the residual linear system \D'\ = \—Kv — D\.

By means of a general hyperplane section the proof reduces to Corollary 3.24 just as

3.24 reduces to Lemma 3.23. In addition, to prove that the linear system \D'\ isomorphi-

cally restricts to the linear system \(H, D')\ on the general hyperplane section Η e

\-Kv\ one needs to use Lemma 4.4. •

4.9. LEMMA. Let D be a surface from the splitting of the linear system \~KV\ of a Fano

3-fold V of the principal series such that the general element of \D'\ = \-Kv — D\ is

reduced and connected. Then for any point χ €Ξ V the following assertions are true.

(4.9.1) The general element of \D\ is not a cone with vertex χ if deg D > 3.

(4.9.2) The general element of \D — x\ is not a cone with vertex χ if deg D > 4 and

dim|Z)| > 1.

PROOF. Using 4.4, we reduce this lemma using a general hyperplane section through χ

to 3.19 •

4.10. COROLLARY. Under the assumptions of the previous lemma the following assertions

hold.

(4.10.1) dim| D \ = 0 if and only if dim{D > = deg D + 1, and if deg D > 3 then D is a

smooth surface.

(4.10.2) The linear system \D\ has no base points if dim|Z)| > 1 and its general element

is a smooth surface.

PROOF. By Lemma 4.4 the first half of (4.10.1) is reduced by a general hyperplane

section to Lemmas 3.22 and 3.11. Also we need to use the fact that dim<Ar) = deg X for

a fully embedded smooth rational curve. The second half of (4.10.1) follows from the

previous lemma.
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Let Λ: be a fixed point of \D\, i.e. \D — x\ = D. By the previous lemma (see (4.9.1)) a

sufficiently general element of \D\ and a hyperplane section Η e \-Kv] through χ give

in the intersection a curve from \(H, D)\. Then, by Lemma 4.4 and (3.11.2), dim|Z)| =

dim|(//, D)\ = 0 . This proves the first half of (4.10.2). The last assertion follows from

Bertini's theorem. •

4.11. LEMMA. Under the conditions of Lemma 4.9, suppose that

(i) dim|Z>| > 1 {then by (4.10.2) φ ^ is a morphism),

( i ^ d i m i p i ^ K ) = 3, and

(iii) qpĵ ji does not map any surface S c V to a point.

Then either

(4.11.1) V contains a straight line, or

(4.12.2) the linear system \D\ is ample.

PROOF. D is ample by the numerical criterion if dim <p^\(x) = 0 for every point

χ e<p | / 3 |(K).

Suppose that for some point χ e φ^^Κ) this is not true. We may also assume that

D nt' O.Then it is enough to show that some component of / c φ^>](χ) is a straight line

(the inverse image is considered as a reduced subvariety of V).

Indeed, dim / = 1 by (ii). The general element of \D — l\ is irreducible and reduced by

Bertini's theorem, since it has no fixed components (see (iii)) and is not a pencil (ii). Also

codim|£> — l\ = 1 and dim|Z> — l\ > 0. Using a sufficiently general hyperplane section

Η e |-AV|, we obtain the inequality deg / < 2 by 4.4 and 3.9. The curve / cannot be a

conic, since otherwise by Proposition 4.3 of [7] the image of the morphism φ ^ would be

two-dimensional and its general fiber would be a conic. This ends the proof. •

4.12. LEMMA. Under the assumptions of Lemmas 4.9 and 4.11, // D2D' > 3, then the

following assertions are true:

(4.12.1) V = q>\D\(V) is a smooth 2-fold, and φ ^ : V—>V is the contraction of

nonintersecting ruled surfaces St, . . . , Sn c V whose fiber consist of lines I c V contracted

to a point by q>\D\.

(4.12.2) If V contains no straight lines I with D'l = 1, then \D\ is very ample.

PROOF. (4.12.2) is a special case of (4.12.1). First we show that deg <p,D, = 1. To do this

we consider a sufficiently general divisor Do e \D\. Do is a smooth rational surface (see

Corollary 4.10 and the proof of Lemma 4.5). The linear system \D\ restricts epimorphi-

cally to the linear system \L\ = ](D0, D)\ on Do. The general element Lo e \L\ is a

smooth curve by Bertini's theorem. Let χ e Lo be some point. Then the linear system

\L — x\ has the unique base point χ (see Corollary 3.10), since — KDL = D0DD' > 3.

Hence <P|O| is a birational morphism. If dim φ^*(χ) = 1, then / = φ^\(χ) is a straight

line on V. This is shown by the method used above in Lemma 4.11, only in doing this

one has to note that the general hyperplane Η is mapped birationally and therefore the

general element of the linear system \(H, D)\ on Η is not hyperelliptic. Let χ e V be a

point. We will show the smoothness of the generic element Do e \D — x\. If χ does not

lie on a contractible straight line /, then the linear system |Z> — JC| has a finite number of

base points xx = x, . . . , xm. It will suffice to prove the smoothness of Do at every one of

the points Λ,· (1 < / < m). By Bertini's theorem Do is irreducible, and by Lemma 4.9 it is
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not a cone with vertex at x, since

deg D = DKv - — D2Kv — DD'Kv > — D*Kv = £>3 + D2D' > 4.

Then by Lemma 3.9 the general element of \(H, D) — x\ on the general hyperplane

section of Η through x, is smooth. Thus Do is also smooth at JC(- (1 < / < m). Therefore

by Bertini's theorem in this case the general element Do E. \D — x\ is smooth. Let us

consider the linear system \L\ = \(D0, D)\ on Do. By Lemma 4.4, <p|fl| \Do = <pw ( φ Ι ^

denotes the restriction of the morphism φ to the subvariety ΰ 0 ) . If L is a contractible

curve for φ ^ , then it is a straight line on V. Also, L is an exceptional curve on Z)o

because —IKDQ = ID' = 1. Then from Lemma 3.13 it is easy to show that φ ^ is the

contraction of these exceptional curves to the smooth surface D$ (which is a hyperplane

section of V), since — LKDo = D2D' > 3. Hence follows the biregularity of φ ^ outside

the subvariety S = U " S,·, which is swept by the contractible straight lines. The proof of

the lemma will be complete if we show the smoothness of the general member Do e

\D — x\ = \D - l\ ϊοτ χ lying on the contractible straight line /. Indeed, in this case a

smooth hyperplane section DQ obtained from Do by contracting exceptional curves will

pass through <P\D\(x). Also the number of such curves is equal to K^ — K^o. In order to

show the smoothness of Do it is enough to show that codim|i> — 2x\ > 3 for the general

point χ ε / (the inequality > 2 is proved in the same way as for the points outside of S,·).

A sufficiently general hyperplane Η e \-Ky\ does not contain contractible straight lines,

and the mapping <pw\H = <p[M\ is birational; here \M\ = \(H, D)\. Therefore \M\ is a

very ample system on the K2> surface H. Consequently,

codim|D - 2x\ > codim|M - 2x\ > 3 for χ = Η η /. •

§5. Proof of Proposition 2.5

5.1. Let V a Fano 3-fold of the principal series satisfying the assumptions but not the

conclusion of Proposition 2.5. Then

(5.1.1) every straight line on V intersects S; and

(5.1.2) every divisor D £Ξ \—Kv\ can be represented in the form D = nS + F, where

η > 0 is an integer and F is a surface on V.

Using the method of multiple projection of V with vertex in <S>, we will establish a

contradiction (see 5.13).

5.2. S is an exceptional surface (see 2.7). Therefore rk Pic V > 2. If g < 5, then Κ is a

complete intersection in P g + 1 (see [7], Proposition 1.3), and Pic F « Z . Consequently

g > 6 and dim|5"| = g - 5 > 1, where | 5 ' | = \~Ky - S\.

53. The general element of the linear system \S'\ = \-Kv — S\is irreducible and reduced

and ψ 0. Because of 5.2 and (5.1.2) a fixed component of \S'\ has the form nS (n > 0),

and nS <*< S'. Then η = 0 (see 4.8), and 5.3 follows from (5.1.2).

5.4. The linear system \S'\ gives a morphism <p\S'\'. K-»P d u n ' l S ' with a three-dimensional

image. By Corollary 4.10, |S ' | has no base points. On the other hand, S(S')2 = K% > 8.

Therefore the image of <jP|S-| has dimension > 2. If dim ςΡ|5<|( V) = 2, then, because of the

linear normality of φ ^ and the rationality of the general smooth surface So £ | S ' | (see

4.5), φ,5Ί(Κ) is a surface of degree dim|S'| - 1 in p^H5 ' !, dim|S'| = g - 5 = 5, since

(S")3 = 2g - 12 - Kg (see [6], Lemma 2.11), and (S')3 = 0. On the surface ψ|5 Ί(Κ) the

linear system of hyperplane sections of <P|S.|(K) has a nontrivial splitting D + D' e \L\

with dim \D\ > 1 and dim|Z)'| ^ 1· This contradicts (5.1.2), which completes the proof

of 5.4.
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5.5. The linear system \S'\ is very ample. The linear system \S'\ restricts to an ample
linear system \(S, S')\ = \-Ks\ on S. Therefore φ^ Ί does not map to a point surfaces that
intersect S; hence by (5.1.2) and because of the connectedness of any divisor in \-Ky\
(see [12], Lemma 2.1) we obtain that <ρ̂ ,| does not map any surface to a point. Also
(S')2S = Kg > b. Consequently, <p|S.| is a contraction of mutually nonintersecting ruled
surfaces Sx, . . . , Sm whose fibers consist of straight lines / c V which are contracted to
a point by φ^-| (see Lemma 4.13).

V = <P\siv) C Ρ* 5 has degree (S')3 = 2g - 12 - A | > 0, i.e. g - 5 > 5. If
<P\s-\(V) contained a movable family of planes, then as in 5.4 we would reach a
contradiction with (5.1.2). This means that

deg<P\s>\(V) = 2g-12-Ks>g-7

(see [6], Lemma 2.8) and g — 5 > Kg. Therefore <jp|S,|(5) is contained in a hyperplane in
Pg~5. Any contractible surface 5", lies outside of S, intersects S and is contracted to
<p\sn(S). Consequently, \J" Sf lies in the splitting of \-Kv - S\. Then m < 1. If m = 1,
then nS + S{ G \-Kv\ for some η > 2 (see (5.1.2)). Also <P\S-\(S) is a smooth hypeφlane
section, η = 2 and — Ky, ~ 2{φ^{Ξ)), i.e. V is a Fano 3-fold of index 2 with (— Ky/2)3

= Kg > 8. The latter is impossible because of Theorem 4.2 of [6]. This means that
m = 0 and |5"| is v e r y ample.

5.6. The linear system \S"\ = \S' — S\ is nonempty, and its general element is represen-
table in the form kS + G, where aim\G\ = dim|5"'| > 1, k is an integer > 0 and G is a
surface in V.

In proving 5.5 it was shown that g - 5 > Kg and that ψ^Ξ) is contained in a
hyperplane. Hence we obtain the nonemptiness of \S' — S\. If g — 5 = AT| + 1, then
deg V = 2g - 12 - Kg = K%, S" ~ 0 and φ|5 Ί(5) is a hyperplane section of V c
P*~5. The latter contradicts the fact that S is exceptional. Consequently, g — 5 > Kg +
1 and dim|5"| > 1. This completes the proof of 5.6 (see (5.1.2)).

5.7. The linear system \G\ has no base points. Let χ ε V; then by Lemmas 3.17 and 4.4
the general element Go e \G\ is not a cone with vertex χ under the inclusion φ^ (the
case when Go is a plane is obviously impossible because of the exceptionality of S). Also
the linear system \S"\ restricts isomorphically to the linear system \(SQ, S")\ for the
general hyperplane section SQ €Ξ \S'\ through x. The linear system \(SQ, G)|,and therefore
also G, has no fixed points, since ~(SQ, G)KSi = GS'S > 2 (see 3.12).

5.8. The general element of \S"\ is irreducible and reduced, i.e. k = 0 in 5.6. By 5.7 the
general element Go 6Ξ \G\ is a smooth surface. Also we may assume that Go and 5
intersect transversally and give a smooth curve Β in the intersection. By the adjunction
formula, (k + 2)B e \-KGo\- Therefore k + 2 < 3, and for k + 2 = 3 we have Go s» P2

and Β « Ρ1 (see [8], §2). This last case is impossible since a smooth rational curve does
not lie in the linear system \(S, S" — 5)| on S. Consequently, k = 0.

5.9. The surface S is fully linearly embedded by the map <P|5»||5. From the cohomology
sequence of the triple

0 -> Ov (S" — S) -y Ov (S") -»- Os (S, S") - 0

it is enough to show that h\V, 6y(S" - S)) = 0. The latter follows from duality, the
ampleness of \S' + S"\ (see 5.5-5.8) and Kodaira's vanishing theorem. Indeed,

hl (V, Ov (S" — S)) = h2 (V, Ov(—S' — S')) = 0.
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5.10. dim φ^-\(ν) > 3. In the opposite case we would have <P|S»|(K) = <P|S»|(5). The
latter leads to a contradiction with (5.1.2) because of 5.9, since 5 « P 2 is embedded by
the complete linear system of curves of degree 4 and 5 « Ρ 1 Χ Ρ1 is embedded by the
system \3b0 + 2so\.

5.11. The linear system \S"\ is ample. The absence of surfaces contracted to a point is
shown exactly as it is shown for | 5 ' | in 5.5. If q is a contracted one-dimensional
subvariety, i.e. q = <p^~s\{x), χ Ε <f\S-\{V), then by Bertini's theorem the general element
of | 5 " — q\ is irreducible and reduced (see 5.10). Consequently, q · 5 ' = 1 (see 4.4 and
3.10), since dim|5" - q\ > 0 and codim|5" - q\ = 1, while

for the general hyperplane section 50 Ε |S' | . On the other hand, qS" = 0 and
dim(q η 5) < 0 (see 5.9).

Also, by 5.5 and (5.1.1) there are no lines on V which do not lie on 5. Therefore q is a
conic. Conies on V form at most a two-dimensional set (see [7], Proposition 4.3),
contradicting 5.10. This means that \S"\ is ample.

5.12. The general element 50" Ε \S"\ is a smooth surface intersecting 5 transversally
along a smooth curve Β (see 5.7 and 5.8). Also g(B) > 0 (see the end of 5.10), and
25 £ |-#y»|. Consequently 50' is a nonrational ruled surface, and hl(S", Ss») > 0 (see
§2 of [8]). °

5.13. By Kodaira's vanishing theorem and the ampleness of | 5 " | we have
h2(V, 0 K (-S")) = 0. Thus h\SO', <9S») = 0 according to 4.1. The latter contradicts
5.12. •

§6. Proof of Proposition 2.4

6.1. Let Κ be a Fano 3-fold of the principal series which contains a conic. Let us also
assume that V does not satisfy (2.4.2) and (2.4.3), i.e. that the following conditions are
satisfied:

(6.1.1) All the divisors of the linear system \-Ky\ are irreducible and reduced.
(6.1.2) V does not contain a straight line.
In order to prove Proposition 2.4 it is sufficient to establish the truth of (2.4.1), which

will be done below (see 6.16).
6.2. Let q c V be a conic and let σ: V —* V be the monoidal transform with center q.

Denote by π the rational map w: V »ps~2 corresponding to the linear system \-Ky\. m
has a simple geometric meaning. It is the lifting under σ of the projection of V from <<?),
since \-Ky\ = \σ*(-Κν) — S\, where 5 = a~l{q) is the exceptional surface.

63. The existence of a straight line on trigonal Fano 3-folds and on Fano 3-folds
which are complete intersections is well known. Therefore V is not a complete intersec-
tion, i.e. g{V) > 6, and also V is not trigonal; consequently V is an intersection of
quadrics which contain it in P«+ 1 (see [7], Proposition 1.7). Hence <<?> η V = q (see
(6.1.1)) and the linear system \-Ky\ has no base points. Also the morphism -π on
V — S « V - q coincides with the projection of V — q from the plane <g>. The latter
assertion will be called in what follows the geometric interpretation of IT.

6.4. Let bn and sn be the standard generators of the Picard group of S za Fn, sn a fiber
of the ruled surface 5 (over q) and bn the base curve. Then
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| (5,-5)!= bn + ^

\(S,-KV)\ = '

where η = 0 mod 2 and 0 < η < 4 (see 4.2 and 4.3 (iv) in [7], 2.11 in [6] and (6.1.1) of

the present paper).

6.5. The morphism π does not map any surface F c V to a point, and dim TT(S) = 2. If

F φ S and v(F) is a point, then by the geometric interpretation dun(a(F)} = 3. The

latter contradicts (6.1.1) since g > 6. If F = S, then 5ΆΓ̂  = 4 (see 6.4) and dim ir{S) =

2.

6.6. dim π( V) = 3 α«ί/ — A"̂  = 2g — 8. It is enough to prove the latter, since g > 6.

Indeed,

zg — ζ = — Ay = — AyO (Av) = — *\ry~r~ iAyO — Α ^ ύ = — AT» -f" ο

(see 6.4).

6.7. If C is a curve on V such that TT(C) is a point, then either

(6.7.1) a(C) φ q and a(C) is a conic on V doubly intersecting q, i.e. q and o(C) are

tangent at some point or intersect in two distinct points, or

(6.7.2) a(C) = q, and in addition S « F 4 and C = b4.

Let a(C) φ q. By the geometric interpretation dim<? υ σ((Γ)> = 3. Then by (6.1.1)

deg a(C) < 2, since V is the intersection of quadrics (see 6.3). Therefore a(C) is a conic

(see (6.1.2)). The second half of (6.7.1) follows from the fact that SC = 2 since

- CKV = 0. If a(C) = q, then C c S and C · Kv = 0; hence it is easy to get (6.7.2) by

6.4.

6.8. Denote by Q the subvariety of w( V) consisting of the points χ ε π( V) such that

dim TT~1(X) > 1. Obviously dim Q < 1 (see 6.6). Also dim •rr~1(x) = 1 for χ ε Q and

2 C i ts ' ) (see 6.5 and 6.7). We will show that over each point χ ε Q there lies precisely

one contractible curve. Let us assume the contrary; then by 6.7 there exist two curves

C, Φ C2 with w(C,) = TT(C2) ε β. If both curves have type (6.7.1), then q, q} = a(C,)

and q2 = a(C2) are three distinct conies on V. By the geometric interpretation of the

map IT we have dim<<7 υ ?, U q2} = 3; this contradicts Lemma 4.7. Consequently one

of the curves C, or C2 coincides with b4. Let C2 = b4. Then on V we have two distinct

conies q = o(C2) and ql = aiC^), and dim< r̂ υ <?j) = 3. By Lemma 4.6 we obtain that

the general divisor D ε \~KV — q — qx\ can have only isolated singularities. Also in the

general point of q all the divisors from \-Kv — q — qy\ have a common tangent plane,

i.e. dim(Tx η (q υ qt)) > 2 for points χ ε #. The general hyperplane section Z> gives a

nonhyperelliptic canonical curve C c P g ~ ' of genus g. On this curve there are 4 distinct

points (the points of the hyperplane section of q υ qx) which span a plane, and two of

these points (the sections of q) lie in this plane together with tangent lines to C. The

latter contradicts Clifford's theorem. This proves the assertion.

6.9. The general element Η ε | — Kv\ is a K3> surface. Indeed, Η is Ά smooth surface

by Bertini's theorem and by 6.3 and 6.5. By the adjunction formula, KH = 0. On the

other hand, for the 3-fold V we have the vanishing

h> (V, O~) - /ι2 (V, OV) = h3 (V, Ov) = 0,
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since it is true for V. By the method used in the proof of Lemma 4.1, we conclude from
this that

h1 (H, OH) = h2 (V\ O~ (Ky)) = 0.

Then by Serre duality and by the above-mentioned vanishing we have hx(H, QH) = 0.
6.10. The linear system \-Kv\ restricts surjectively to the linear system \(H, — Ky)\ on the

K3 surface Η G \-Kv\. This is shown, using the vanishing of hl(V, Qy), by the methods
of Lemma 4.4.

6.11.7Γ is a birational map. From 6.6 it follows that

deg n(V) = -l- (_ fit) = (2g - 8)/deg η > g - 4.
deg η

Therefore deg π < 2. If π is not birational, then -n{V) c P*" 2 is a three-dimensional
subvariety of degree g — 4. From the inequality g — 2 > 4 (see 6.3) and the requirement
(6.1.1) we obtain the absence of a family of surfaces L with dim<(L) < g — 4 on IT{V~).

Hence it follows that g = 6 and -n(V) is a smooth quadric in P 4 (see [6], Lemma 2.8). We
will show that the latter is also impossible. Indeed, a smooth quadric in P 4 does not
contain any planes. Then from 6.5 and 6.4 it is easy to deduce that π(5) is a surface of
degree 2 or 4.

Let us first assume that deg w(5) = 2, i.e. TT(S) is a hyperplane section of IT(V), and
that deg ir\s = 2. Then dim Q > \, since the inverse image of the general point of ir(S)
coincides with S (see 6.10 and [13]) and diml^l = 0. The ramification divisor D of m is
cut out on v{V) by a form of degree 4, and Q is a curve of singularities of D (see [13]).
The fibers of the ruled surface S have degree 1 with respect to — Kv and are mapped
isomorphically onto straight lines which lie on the quadric ττ(5). Therefore the ramifica-
tion divisor of the morphism -π: S -» w(5) consists of two distinct straight lines /„
l2 C <n{S). Also by (6.1.1) we have that /„ l2 <t Q and β is a curve with dim<g > > 3. On
the other hand, /,, l2, Q C D η w(S); hence by the preceeding deg Q < 3. In such a
case β is a smooth curve of degree 3. In the anticanonical system of the 3-fold V we
have the splitting S + F e \-Kv\, where F= IT'\Q) is a surface by (6.1.1). By the
adjunction formula, (5, F) e |-/s:s| = |26n + (« + 2)sJ if 5 « Fn. The surface F is
smooth, since according to 6.8 and 6.7 all of its fibers are smooth rational curves. (To
prove the last fact it is first necessary to show that singularities of F must be singularities
of fibers and then to use the existence of a section, which follows from Tsen's theorem.)
Thus F is a rational ruled surface. Then, on the one hand, FS(F + S) = Kg + K% = 16
by the adjunction formula; and, on the other hand,

FS (F + S) = - SKVF = (bn + (2 + | j srt) (2bn + (n + 2) sn) = 6.

Therefore deg 7r(5) ¥= 2.
Thus degw(S) = 4. Because of the smoothness of TT{V) the surface ir{S) is the

complete intersection of two quadrics. Also π(Ξ) is not contained in a hyperplane section
of w( V) and is not a cone with vertex at a point (i.e. S s>6 F4). The 3-fold V contains a
contractible curve C-otherwise V would be a hyperelliptic Fano 3-fold and Pic V = Ζ
by [6], Corollary 7.6, which leads to a contradiction. We will show that dim Q = 0. In
the opposite case all curves of type (6.7.1) are transformed to singular points of w(S),
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since m is birational on S. Hence Q c sing π(5). On the other hand, it is easy to show
that singularities of w(S) can only lie along a straight line. This contradicts (6.1.1). Thus
Q¥= 0 and dim Q = 0.

Before finishing the proof of assertion 6.11 we will show that V contains only finitely
many contractible curves when g = 6 (compare 6.13).

We have already considered the case when π is not birational from this point of view.
If π is birational, so is v\s (see 6.10, 6.11 and [13]). Therefore Q c n(S), and π(Ξ) is
singular at the points of Q. Suppose dim Q > 1. As we see from (6.1.1), dim<(?> > 3;
hence deg Q > 3. On the other hand, the general hyperplane section of π(Ξ) is a rational
curve of degree 4 by 6.4. Consequently, dim<'n-(5)> < 3. Therefore Q is a smooth curve
of degree 3 and v(S) is a hyperplane section of v{V) c P4. The latter leads to a
contradiction just as in the case deg tr(S) = 2, which we considered above.

Let us return to the case when deg π = 2 and deg ττ(5) = 4. Let C be a contractible
curve. The curve C has type (6.7.1), since S 96 F4. Let us consider the general hyperplane
section Η passing through q υ o(C). The surface Η can be chosen smooth (see the end
of 6.8 and 6.15). We denote by W the cone swept by lines on m(V) through the point
χ = TT(C) Ε π( V). Let Η be the strict transform of Η under a. Then π{Η) cuts out two
straight lines /, and l2 on W if Η is sufficiently general. Also we may assume that /,,
l2 <t "•(•S)· Let /, and l2 be the inverse images of these straight lines on V under m with C
excluded, and let W be the inverse image of W. Then the hyperplane section of σ( W)
cuts out on Η a curve-section (//, σ( W)) whose irreducible components are only q, a(C),
σ(/,) and σ(/2). For a general Η we have deg σ(/,) = deg σ(ϊ2), and by (6.1.2) this
quantity is > 2. From this it follows that /, and l2 are irreducible curves, since the
curve-section (H, a(W)) has degree 10. Also one may assume that the components σ(/,)
and σ(/2) are reduced in (//, σ( W)). Therefore

where η and w are natural numbers. If m = η = 1, then deg σ(/,) = deg σ(/2) = 3. By
(6.1.2), σ(/|) and σ(/2) are curves of degree 3. Let us consider one of them, denoted by R.
The space <<? υ a(C) U R} has dimension 4. Therefore codim| — Kv — q — a{C) — R\
= 5. From (6.1.2) and 4.6 it follows that the general divisor D G | - Kv - q - a(C) -
R | is a surface with isolated singularities. The general hyperplane section of D gives a
nonhyperelliptic canonical curve-section X c P5 of genus 6 on which a certain subspace
of dimension 3 (the section of <<? υ o{C) υ R » cuts out 7 distinct points (the section
q υ o(C) υ /?)· Hence it is easy to see that X is trigonal, which means that so is V. The
latter is impossible. Therefore either η or m > 2. Then σ( if') has singularities along q for
« > 2, or along a(C) if m > 2. Indeed, in the opposite case the general Η is tangent
along q to either a(C) or a(W). From this, arguing as at the end of §6.8, we obtain a
contradiction. Therefore there exists a{W) 6Ξ I-AT̂ I which is singular along q or along
a(C). Since 77(5) is not contained in a hyperplane section of π(Κ), it follows that σ( W) is
smooth along q and singular along a{C). Let us denote by σ': V -» V the monoidal
transformation with center a(C), and by π' the corresponding anticanonical morphism.
Then 7r'(5") is contained in a hyperplane section ir'(V') c P4, where 5" = a'~'(o(C)).
This leads to a contradiction, since there are only finitely many contractible curves and
dim|5"| = 0. This completes the proof that -n is birational.
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6.12. The map π is birational on S, and deg 77(5) = 4. This is an immediate consequence

of 6.10, 6.11 and the results of [13].

6.13. V contains only finitely many curves which π maps to a point.

Let us assume that dim Q = 1. By 6.8 Q c w(5), and w(S) is singular along Q

because every contractible curve of type (6.7.1) is smooth and it intersects S twice. As is

seen from (6.1.1), dim<(2> > g - 3. Therefore deg Q > 3. On the other hand, the

general hyperplane section of π(Ξ) is a rational curve of degree 4 by 6.12 and 6.4; hence

dim<w(S)> < 3. Therefore g = 6, Q is a smooth curve of degree 3 and IT(S) is a

hyperplane section of ir{V) C P 4 . The latter leads to a contradiction (see 6.11).

6.14. There are no contractible curves of type (6.7.1).

Case 1 (g > 8). If C is a contractible curve on V of type (6.7.1), then w(S) is a smooth

surface of degree 4, and it has at least two singular points when 5 « F4 (see 6.8 and 6.7).

Hence it is evident that S » Fn is embedded in (TT(S)'} by the proper subsystem

\bn + (2 + n/2)sn\. Therefore dim<7r(S)> < 4. Let q' = a(C) be a conic on V. Then

I — Kv — 2q\ = I — Kv — 2q — q'\ and codim| — Kv — 2q — q'\ < 8. Therefore by

Lemma 4.6 and the conditions (6.1.1) and (6.1.2) the general element Η G | — Kv — 2q

— q'\ can only have a curve of quadratic singularities q. Let Η be the strict transform of

Η under a. The surface Η gives a splitting Η + S €Ξ |-Α"^|. Let us resolve the singulari-

ties of Η by means of monoidal transforms with centers in the singular sets. We denote

this resolution by σ': V —* V and the strict transform of Η by H'. At the general point

of C the surface Η is smooth, and its strict transform will be a smooth rational curve C"

on H'. From the canonical class formula for V we have the splitting a'*{S) + H' + H"

e |-ATK.| and also a'{H") c sing(^) (sing( ) denotes the set of singular points). Hence

C φ σ'*(5) υ Η" and Η' φ a'*{S) υ Η". By the adjunction formula and the con-

nectedness of the elements of |—Α^.| we have

^\~KB-1 and h2(H',

Also

Consequently C" is algebraically movable on H' by Lemma 3.20; hence by the projec-

tion formula the number of contractible curves is not finite. This contradicts 6.13. Hence

for g > 8 there are no contractible curves of type (6.7.1).

Case 2. g = 7. Let us assume the existence of a contractible curve of type (6.7.1). Just

as in the previous case we get that v(S) must be a surface of degree 4, and dim<7r(S)) <

4. In any hyperplane section of -n{V) which passes through w(S) there also lies a surface

of degree 2, since deg π{ V) = 6. By the geometric interpretation of π the existence of

such a surface of degree 2 contradicts (6.1.1). This completes the analysis of this case.

Before completing the proof of assertion 6.14 and the proof of the proposition, we

establish the following result.

6.15. LEMMA. Let V be a Fano 3-fold of the principal series of genus 6 which satisfies the

condition of §6.1. Then for every one-dimensional reduced and connected subscheme R C V

of degree 4 we have dim</? > = 4.

PROOF. Let us assume that dim</? > < 3. Then, because V is not trigonal (see 6.3), we

have dim</?> = 3, and R c </?) is a complete intersection of two quadrics. Also
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dim Tx η (R) < 2 for every point χ e R. This follows from (6.1.2) and from Proposi-
tion 1.7 (iii) in [7]. For the general point χ e R we have dim(7; η (R » = 1. The latter
is shown using the methods of the end of §6.8, where one also has to remember that the
degree of every component of Λ is > 2 by (6.1.2). Hence one can pass through R a
smooth hyperplane section Η e \-Ky\, because R η <Λ > = R- Being the complete
intersection of two quadrics, R has arithmetic genus one. Knowing the splitting types of
R on H, by 3.11 and 3.18 we obtain the existence of a smooth elliptic curve of degree 4
on Η c V. For the rest of this proof, R will denote such an elliptic curve.

Let σ': V —> V be the monoidal transform with center R. We will show that V is a
hyperelliptic Fano 3-fold of genus 2. Following the ideas explained in 6.2-6.6, we
establish the absence of base points in the linear system, the three-dimensionality of the
image and the absence of surfaces contracted to a point. Let C be a contractable curve,
i.e. -C· Kv. = 0. We assume first that C φσ'~'(Λ). Then a'(C) =£R is a curve, and
dim<i? υ <J'(C)> = 4 (the latter follows from the fact that IT' = <P|_#K,| *

s a projection
from </?> at the points F' — σ'"'(/?) κ» V — R). From Lemmas 4.6 and 4.7 we deduce
that deg a'(C) < 3. If deg a'(C) = 3, then by 4.6 we can pass through R υ a'(C) a
hyperplane section which can have at most only isolated singularities and also is
irreducible and reduced. Cutting this section by another general one, we obtain in the
intersection a smooth canonical curve-section X c P 5 of genus 6 on which there lie 7
distinct points (the intersection with R υ o'{C)) which span a subspace of dimension
< 3. From this it is easy to deduce that X is trigonal. (Consider the residual linear system
for the given seven points with respect to the canonical system ΙΛΓ̂ Ι.) The latter is
impossible. Hence a'(C) = q is a conic. Further we use the already-proved results for the
monoidal transformation with center in the conic q.

Let R be the strict transform of R under a. Then, by the geometric description of IT, TT
maps the elliptic curve R onto a straight line. Consequently, deg(7r|C) > 2. In such a
case, by 6.10, the results of [13] and the birationality of IT we have the inclusion
"•(<?) C Q- The latter contradicts 6.13. Therefore if C is a contractible curve for TT', then
C c a'~l(R), i.e. a'(C) = R (since C is not a fiber of σ'~'(/?)). Let us consider the
4-dimensional projective space Τ c P 7 which contains R and which projects to the point
w'(C). By Lemma 4.6 and the condition (6.1.2) the general hyperplane section through Τ
cuts out on V a surface Η which can at most have isolated singularities. Also such
general surfaces are tangent along R, because their strict transforms on V will be
elements of \-Kv, - C\. Therefore dim(7; η <Λ» > 2 for the points χ e R. Intersect-
ing Η with a general hyperplane section, we obtain a monomial nonhyperelliptic
curve-section X of genus 6 on which there are 4 distinct points (intersection with R)
which are in a three-dimensional subspace together with tangents to X. By Clifford's
theorem this is impossible. Consequently there are no contractible curves, V is a
hyperelliptic Fano 3-fold, and rk Pic V > 2. This contradicts Corollary 7.6 of [6]. •

End of the proof of Proposition 6.14. Case 3 (g = 6) is an immediate corollary of the
previous lemma, since dim<^ υ o(C)} = 3 and deg(# υ o(CJ) = 4 for a curve C of
type (6.7.1).

6.16. The linear system \-Kp\ is very ample if S » F4, i.e. Nq\v «=> Θ^-2) θ 0,(2) (see
Proposition 4.4 in [6], and 6.14, 6.11 and 6.7 above). By Proposition 4.3 in [7], a
sufficiently general conic on V satisfies the last condition, since V does not contain
two-dimensional quadrics. Indeed, from (6.1.1) and the inequality g + 1 > 7 it follows
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that Ν ,v ~ θ θ θ and S « Ρ 1 Χ Ρ 1 for the general conic q. It remains to show that

dim<7r(5)> = 5. As in §5.2, we show that g - 2 - 1 > 6, i.e. g > 9. As in §5.3, we show

that the general element of | 5 " | = | - Ky - w(5)| is irreducible and reduced. By Lemma

3.22 a hyperplane section of w(S) is a fully linearly embedded curve. On the other hand,

deg TT(5) = 4. Therefore dim<77(5)> = 5, which completes the proof of Propo-

sition 2.4. •

§7. Proof of Proposition 23

7.1. Let V be a Fano 3-fold of the principal series which does not satisfy the

requirements (2.3.2), (2.3.3) and (2.3.4), i.e. let the following conditions hold:

(7.1.1) All the divisors in the linear system \—Kv\ are irreducible and reduced.

(7.1.2) V does not contain a straight line or a conic.

Then in order to prove Proposition 2.4 it is enough to show the truth of (2.3.1), which

will be shown below (see §7.17).

The methods of proof in this section are in many ways analogous to the methods of

§6. Therefore some details will be omitted. For complete understanding it would be

useful for the reader to recall them.

7.2. Let χ e V be a point, and let σ: V -* V be a monoidal transformation with center

x. Let π: V-* P g ~ 3 be the rational map corresponding to the linear system \-Kv\. Then

\-Kv\ = \a*{ — Ky) — 2S\, where S = ir~1(x) is the exceptional surface.

7 3 . The 3-fold V is not trigonal, and g > 6 (compare 6.3). If y e V η Tx and y φ χ,

then the straight line <{x} υ {y}} lies in V, since V is given as the intersection of

quadrics that contain it. This contradicts (7.1.2). Therefore Κ η Τχ = χ, and ·π is the

projection from Tx for the points V — S s» V — x. The last statement will be called the

geometric interpretation of -π. Let tv e Tx be the tangent straight line corresponding to a

point ν £ 5.

Let us consider two sufficiently general hyperplane sections Hx, H2 e \-Kv\ through tv

which cut out a smooth canonical curve section X. The latter curve is not trigonal. That

means that there exists a hyperplane Η through Tx for which the intersection index of H,

Hy and H2 at the point χ is equal to 2. The proper transform H' of Η with respect to σ

will be an element of \-Kv\ which does not pass through υ. Therefore ν is not a base

point of |-A"^|. Then from the geometric interpretation it follows that π is a morphism.

7.4. Let 5 be the standard generator of the Picard group S za P 2 . Then

7.5. The morphism π does not map any surface into a point, and dim TT(S) = 2. The

proof is analogous to 6.5.

7.6. dim ir( V) = 3 and — Κρ = 2g — 10. This is a direct consequence of 7.4 and the

inequality g > 6.

7.7. If C is a curve on V such that w(C) is a point, then either

(7.7.1) a(C) is a rational curve of degree 4 with a single singular point χ of degree 2, i.e.

SC = 2, or

(7.7.2) a{C) is a rational curve of degree 6 with a single singularity of degree 3, i.e.

SC = 3.
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From the geometric interpretation of w we have dim(Tx υ o(C)) = 4, and a(C) is a

curve since C cj: S by 7.4 and 7.3. Then, by Lemmas 4.6 and 4.7, deg a(C) < 8 since

g > 6. On the other hand, by the projection formula deg a(C) = 0 mod 2. By assump-

tion V does not contain conies; hence we obtain the assertion. The rationality and the

assertion about singularities in case (7.7.1) follows from the fact that dim<a(C)> = 3 (V

is not trigonal), and in case (7.7.2) from Lemma 4.7.

7.8. We are now ready for the proof that g > 7. Indeed, let g = 6. Let us assume that

V contains a curve C for which w(C) is a point. Then by Lemma 6.15 C has the type

(7.7.2). From assumption 7.1 it follows that any curve-section through <o(C)> splits into

two curves a(C) and R, where deg R = 4. (We recall that in this case the curve section

has degree 2g - 2 = 10.) On the other hand, by Lemma 4.6 we may assume that through

a(C) υ R there passes a hyperplane section without singular curves. Intersecting this

hyperplane section without singular curves. Intersecting this hyperplane section with

another sufficiently general one, we obtain a canonical curve-section X of genus 6. The

curve X contains 2 effective divisors Px (section with a(C)) and P2 (section with R),

where Ρλ consists of 6 distinct points, dim<_P,> = 3 and P2 consists of four points. Also

Ρ χ + P2 ε \KX\. By the Riemann-Roch theorem it is easy to deduce that dim < P2 ) =

2. Consequently dim</?> = 3. The latter contradicts Lemma 6.15. Therefore IT does not

contract curves into a point, the linear system \-Ky\ is ample and V is a Fano 3-fold. Of

course V is hyperelliptic, since the index of V is equal to the index of V, i.e. equal to one.

This too is impossible by Corollary 7.6 of [6]; hence g > 1.

7.9. If there exists a curve C of type (7.7.2), then it is unique and there are no other

curves contracted to a point. Let C" be another contracted curve. Then from the

geometric description of IT we have

d i m < o ( C ) [ J w ( C ' ) X 5 and dega(C) O ( C ' ) ^ 10.

The latter contradicts Lemmas 4.6 and 4.7.

7.10. Let us denote by Q the subvariety of ir{V) consisting of the points χ e TT(V)

with dim w~l(x) > 1. Then, just as in §6.8, we have dim Q < 1, dim w~'(x) = 1 for

χ e Q, and Q c π(Ξ). From the geometric interpretation of π and Lemmas 4.6 and 4.7

it follows that over every point χ EL Q there lies exactly one contracted curve. Arguing as

at the end of §6.8, we can show that there exists a smooth hyperplane section Η through

a(C) if C is a contracted curve of type (7.7.1). The curve a(C) is a complete intersection

of two quadrics in (a(C)} = P3, and pa{o(C)) = 1. Therefore a(C) c Η has at χ a

nondegenerate quadratic singularity. Thus every curve of type (7.7.1) will be smooth.

7.11. The mapping m is birational. By 7.8, g > 7. Furthermore, as at the beginning of

§6.11, we conclude that π may fail to be birational only in the case g = 7. Then w(F) is a

smooth quadric in P4. We will show that Lemma 6.15 is true for a Fano 3-fold of the

principal series of genus 7 which satisfies the assumptions of 7.1. Let us assume the

contrary. Then, just as in Lemma 6.15, we find a smooth elliptic curve R of degree 4.

Further we show that the 3-fold V obtained by a monoidal transformation with center R

is a Fano 3-fold. In contrast to Lemma 6.15, in our case for every contracted curve

C c V we have deg a'(C) = 3, a'(C) ^ R, and dim<a'(C) υ R> = 4. The contradic-

tion in this case follows from the fact that on a nontrigonal nonhyperelliptic curve X of

genus 7 there does not exist a special divisor D of degree 7 with Λ 0^, 6X(D)) > 4 (a

special divisor D' — Kx — D has degree 5, and dim h°(X, 6X(D')) > 3). This means
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that V is a Fano 3-fold, \-Kv\ has no fixed points, rk Pic V > 2 and the index of V is
1. It is easy to show that this is impossible. Therefore for g = 7 there can exist no more
than one contracted curve, and the contracted curve has type (7.7.2). Further, just as at the
end of 6.11 we show that deg 77(5) φ 4, i.e. that n(S) is a hyperplane section of a
quadric. This contradicts the exceptionality of S, since there are only finitely many
contracted curves. Hence follows the birationality of tr.

7.12. The mapping π is birational on S and deg TT{S) = 4, as in 6.12.

7.13. There are finitely many contracted curves. Let us assume that dim Q = 1. The
surface π(5) is singular along Q, since every contracted curve is of type (7.7.1) (see §7.9),
is smooth by 7.8 and intersects S with multiplicity 2. On the other hand, dim<g> > g —
4 by (7.1.1), and deg Q > 3. Then, as in 6.13, dim<7r(S)> < 3. Therefore g = 7, and in
this case the finiteness has already been established in §7.11.

7.14. // C is a contracted curve of type (7.7.2), then dim<7r(5)) < 3. We consider the
linear system \ — Kv — C\. It restricts to the subsystem {S, \ — Kv — C\) c |25|, which
has no fixed components and is not a pencil. The latter follows from w(S) being a fourth
degree surface and therefore not a cone (an element of |2S| does not contain more than
two components!). Therefore the general element q E. (S, \ — Ky — C\) is a smooth
conic o n S « P2. Then the linear system | — Kp — C \ restricts on q to the linear system
(q, | — Kv — C\) D |4>>|, where y is a point of q, and it has at most a fixed divisor with
support in C η S c q of degree > 3. Consequently dim(̂ r, | - Kv — C\) < 1; hence

dim (5, | — % — C|)<^2 and dim (S, | — Kv |)<ζ3,

which was to be shown.
7.15. There are no contracted curves of type (7.7.2). Let C be a contracted curve of type

(7.7.2).
Case 1 (g > 8). Since dim<7r(5)> < 3, we have that

codim|— Kv—3x— a(C) | < 8

( — 3x means that all the elements of | — Kv - 3χ — o(C)| have singularities of degree
> 3 at x). Then by Lemma 4.6 on the general element Η G | — Kv — 3x — a(C)\ the
curve o(C) is not a curve of singularities. Let Η be the strict transform of Η under σ. We
have a splitting kS + Η G \-Kv\ with k > 1. Further, as in the analysis of Case 1 in 6.14
(with kS in place of 5) we obtain that there are finitely many contracted curves. This
contradiction completes the analysis of the present case.

Case 2 (g = 7). Then ττ(5) is a hyperplane section of a quartic π(Ϋ) c P4. This
together with 7.13 leads to a contradiction.

7.16. There are no contracted curves. If C is a curve contracted to a point, then it has
type (7.7.1).

Case 1 (g > 9). Since C is a smooth curve and SC = 2, it follows that TT(S) is a
singular surface of degree 4 and dim<7r(5)) < 4. Hence codim| — Kv — 3x — a(C)| <
9. Then by Lemma 4.6 the general hypersurface Η e | - Kv - 3x — a(C)| has in the
worst case a nondegenerate quadratic singularity along a(C) and perhaps also finitely
many isolated singularities. The surface Η cannot be singular along a(C), since
dim<o(C)> = 3. (For the proof consider the general hyperplane section H' e \-Kv\ and
apply to it Lemma 3.21 with Do = (//', H).) Therefore the general Η is smooth along
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a(C). Now we show that dim Q > 1, as in Case 1 in §§7.15 and 6.14. This gives a

contradiction.

Case 2 (g = 8). This is proved using the method of Case 2 in §6.14.

Case 3 (g = 7). This is an immediate consequence of 7.11 and 7.15.

7.17. The previous subsection completes the proof of the ampleness of | — Ky\. Then

by Proposition 4.4 of [6] and our assertion 7.11 V is a Fano 3-fold of the principal series.

It remains to show that dim<w(S')> = 5; this is done just as at the end of §6.16. •

§8. Proof of Proposition 2.2

8.1. Let F be a Fano 3-fold of the principal series for which the requirements

(2.2.1)-(2.2.4) are not fulfilled, i.e., suppose that the following conditions hold:

(8.1.1) V does not contain a line.

(8.1.2) V has index one.

(8.1.3) K ^ P 1 X P 2 .

(8.1.4) V does not contain a Veronese surface S «Β Ρ 2 of degree 4.

Then in order to prove Proposition 2.2 it is necessary to establish nonsplitting in the

anticanonical linear system \-Kv\, which will be shown below (see (8.10)). In all the

assertions of this section we consider a fixed 3-fold V which satisfies the above

assumptions.

8.2. LEMMA. In the splittings of the system \~KV\ there are no irreducible and reduced

divisors D of degree dim^D} — 1.

PROOF. From the classification of surfaces D of degree η — 1 in </)> = P" (see [10])

there follows the existence of a line on D (therefore also on V) except for the case when

D « P 2 is a Veronese surface of degree 4. The latter is impossible by (8.1.4). •

8 3 . LEMMA. Suppose that the surface D gives a nontrivial splitting of \-Kv\ and that the

general element of the residual system \D'\ = | — Kv — D\ is reduced and connected. Then

the linear system \D\ has no base points.

This follows from Corollary 4.11 and Lemma 8.2. •

8.4. LEMMA. Suppose that the surface D gives a nontrivial splitting of \-Kv\ and that all

the divisors of the residual linear system \D'\ are connected. Then the linear system \D'\ has

no base points and consequently, by Bertini's theorem, its general element is irreducible,

reduced and smooth.

PROOF. Consider the general element of the residual linear system DQ e l- '̂l- Let us

intersect the divisor DQ with a sufficiently general hyperplane section Η so that the

number of components of the divisor (H, DQ) on Η and their multiplicities should be the

same as for DQ, i.e. so that every irreducible and reduced component of DQ should

restrict to the same kind of component of (H, DQ). If the divisor DQ has two distinct

mutually nonintersecting irreducible and reduced components, then by (8.1.1) they

intersect along a one-dimensional subvariety of degree > 3. Then the divisor (H, DQ) on

the K3 surface Η contains two distinct curves which intersect at least in two distinct

points. By Lemmas 4.4 and 3.18 and the generality of D'Q, the latter is impossible.

Therefore, because of the connectedness of all the members of \D'\, the general divisor

DQ is of the form DQ = nS, where 5 is a surface on V.

We will show that η = 1. Let us assume the contrary, i.e. η "> 2. Then dimj/iS1! = 0. By
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the considerations of the previous paragraph and by Bertini's theorem one can show that
the general element of the linear system \D + (« — 1)51 is of the form Σ" k/F^ where
Fx, . . . , Fm are nonintersecting surfaces, and kiFi is a fixed component of
\D + (n - 1)51 for ki> 1. The divisor D + (n - 1)S is connected by Lemma 2.1 of
[12]. Therefore the fixed part of the linear system \D + (n — 1)51 is of the form wS,
where 0 < w < η - 1. In the case w > 1 the divisor Σ™ A:,F; as well as \D + (n - 1)5| is
connected, i.e. \D + (n — 1)51 = |H>5|, which is impossible. Consequently, \D + (w —
1)51 does not have fixed components. If the latter linear system is not a pencil, then by
Bertini's theorem its general element is irreducible and reduced. In this case, by Lemma
8.3 we obtain a contradiction to the fact that 5 is fixed. Consequently, the system
\D + (« — 1)5| is a pencil. By Lemma 4.4, under restriction to the general hyperplane
section we obtain a pencil \(H, D + (n — 1)5)|. This pencil has no fixed components on
the K3 surface H. Therefore \(H, D + (n - 1)5)| = \IE\, where \E\ is an elliptic pencil
on H. In the linear system \IE\ the divisor (H, D + (n — 1)5) is present. The latter
divisor is connected, as is D + (n - 1)5. Also, (H, D) φ (Η, 5), since D φ 5 by (8.1.2).
Consequently 1=1, and the general element of the linear system \D + (n — 1)51 is
irreducible and reduced. This, as above, leads to a contradiction with Lemma 8.3. This
means that η = 1. Then \D'\ = \S\, and by Lemma 5.3 it has no fixed points. •

8.5. LEMMA. In the splittings of the linear system \-Kv\ there are no divisors whose linear

system is a pencil without fixed points.

PROOF. Let us assume the contrary. Since Pic0 V = 0, in the splittings of \-Ky\ there
exists an irreducible and reduced divisor D whose linear system \D\ is a (projectively)
one-dimensional pencil with no fixed points.

By the Bertini-Zariski theorem the general divisor Do e |Z>| is irreducible, reduced
and smooth. Also - KDg = (Do, D') = (D, - Kv), where D' e | - Kv - D\, and there-
fore Do is a del Pezzo surface. On a del Pezzo surface, as on a Fano 3-fold, every
effective anticanonical divisor is connected. From the connectivity of the elements of
\~Ky\ and the movability of D we obtain the connectedness of all divisors in \D'\. Then,
by Lemma 8.4, \D'\ has no fixed points.

Let us show that any divisor in |Z>| is irreducible and reduced. Indeed,

degD = (D, D + D', D -f D') - (D, D'2) = Kl s?9.

Any surface of degree < 3 contains a straight line. Therefore by (8.1.1) only the
following nontrivial splittings of |Z>| are possible: 2E &\D\ and Ε + Ε' e \D\, where Ε
and £", Ε Φ Ε', are irreducible and reduced. The general divisor D$ e \D'\ is irreducible,
reduced and smooth by Lemma 8.4. From the connectedness of the members of \-Kv\
we can deduce that DQ correctly and nontrivially intersects Ε (under a suitable naming
of the divisors of the second splitting). Then by Lemma 4.2

and all the elements of the system \DQ + E\ are connected. Therefore by Lemma 8.4 the
linear system \E\ or \E'\ (corresponding to the cases of possible splitting) is movable.
This leads to a contradiction, snce dim|Z)| = 1 and \D\ has no fixed components.

Since (D, D')2 = K% > 1, the linear system \D'\ cannot be a pencil. By Lemma 4.5 the
general divisor DQ £= \D'\ is a smooth rational surface with |-A^,,| Φ 0 .
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We will show that dim π(Κ) = 3 for the mapping w = q>\D,f. V -+ pdim\D'\> given by the

linear system \D'\. For this it is enough to show that the restriction of the linear system

\D'\ to DQ is not a pencil. Indeed, in the opposite case |(Z>0, D')\ = \nE\, where Ε is an

irreducible and reduced curve whose linear system \E\ is a one-dimensional (projec-

tively) pencil without fixed points. The latter assertion follows from the triviality

Pic0 DQ = 0 and from the absence of fixed points in \(DQ, D ') | (Lemmas 4.4 and 8.4). By

the adjunction formula for the canonical class of - KDis ~ (DQ, D) and the fact that

D(D')2 > 1 we deduce that — EKD, > 1. Therefore by the adjunction formula for the

canonical class of Ε the curves of \E\ are a pencil of rational curves. These rational

curves are conies on V, since deg Ε = -EKV = ED = -EKD. = 2. Then by (8.1.1) the

surface will be a ruled rational surface. Consequently K£. — 8. On the other hand,

Kp, = D2D' = 0. The latter contradiction shows that the image TT(V) is three-dimen-

sional.

The mapping π does not contract surfaces into points. Let 5 be an irreducible and

reduced surface, and let w(S) be a point. Since DD'2 > 0 and any element of \D\ is

irreducible and reduced, it follows that S £ \D\ and the general member Do ε \D\

correctly and nontrivially intersects S. Hence by the ampleness of — KD on Do we

obtain that the general element D$ £ \D'\ correctly and nontrivially intersects S.

Therefore n(S) is not a point. Then by Lemma 4.11 we obtain the ampleness of \D'\. We

will show that \D'\ is very ample. To do this, by Lemma 4.12 it is enough to establish the

inequality (D')2D = K% > 8, which follows from the absence of exceptional curves of

the first kind on a general del Pezzo surface Do ε \D\, i.e. Do « P 2 or Do « Ρ 1 Χ Ρ 1 .

Indeed, every such exceptional curve / would be a straight line on the Fano 3-fold V:

deg / = -IKV =/£»' = -lKDo = 1.

We will show that D gives a splitting in the linear system \D'\ which is nontrivial by

(8.1.2), i.e. there exists an effective divisor D" > 0 such that \D'\ = \D + D"\. Let us

assume the contrary. Then by Lemma 4.1 and duality we have

h2 (2D\ Οφ.) = h3 (V, Ov (—2D')) = h° (V, Ov (D' — D)) = 0.

By Lemma 4.1 and the Kodaira vanishing criterion, for an ample sheaf tQv(D') we have

hl (2ZT. OiD.) = h2 (V, Ov (— 2D')) = 0.

Also, h°(2D', Θ2β.) = 1 by the ampleness of By(D'). Hence 1 = X(F) = 2X(DQ - X(C)

= 2 - (1 — g(C)) = 1 + g(C) and g(C) = 0, where C is a general curve-section under

the embedding of V by the linear system \D'\ and F is a general divisor of the system

|2Z>'|. From Lemma 4.4 and from the regularity of the surface Ζ>ό ̂  i s e a s v t o deduce

that the curve C is fully linearly embedded. Consequently, degw(F) = dim|.D'| - 2.

This means by [10] that Ζ>ό « Ρ 2 or DQ^ Fn. The latter is impossible, since Kp, = 0 .

Hence we obtain the splitting \D'\ = \D + D"\, D" > 0.

Let us show that the general member of the linear system Z>0" e \D"\ is a smooth

surface. Since

h° {D", OD«) = hl (V, Ov (— D")) = h2 (V, Ov {—ID))

= /ι1 (2D, C o ) = 2hl (D, OD) - 0,

by Lemma 4.2 any divisor in \D"\ is connected. By Lemma 4.4 the linear system \D"\

restricts isomorphically to the linear system \(DQ, D")\ on DQ. For the general divisors
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DQ e \D'\ and D$ G \D"\ the number of irreducible and reduced components of
divisors Do" and (DQ, DQ) on DQ is preserved under restriction, because \D'\ is very
ample. Suppose DQ has two irreducible and reduced intersecting components S, φ S2-
By Lemma 3.17 these cannot simultaneously intersect the general member of \D\
correctly and nontrivially. Consequently one of these divisors lies in \D\, because all the
elements of |Z>| are irreducible and reduced. Suppose, for example, that S, e \D\. Then
S2 correctly and nontrivially intersects the general member of \D\; hence S,S2A) =

S2DQD > 2, since on P 2 the anticanonical class intersects every curve at least triply and
on Ρ1 Χ Ρ1 at least doubly. In such a case, by Lemma 3.17 we obtain a contradiction
with the generality of the divisor Z)o". This means that the general element DQ" ε \D"\ is
irreducible because of the connectedness of all the elements of \D"\. If DQ is irreducible,
then DQ = nS, where η > 2, S is a surface in V and dim|S| = 0. The curve (DQ, S) is
also linearly fixed on the general DQ. By (8.1.2), S correctly and nontrivially intersects
the general divisor in\D\. Hence, as above, SDQD > 2 and -KDi(D& S) = SDQD > 2.
The latter by (3.12.1) contradicts the linear immovability of (DQ, S). Hence the general
divisor in \D"\ is irreducible and reduced. Then from Lemma 3.12 we obtain the absence
of fixed points χ e V in \D"\, provided that for the general \DQ\ e \D"\ this point χ is
not the vertex of the cone DQ" under the inclusion φ|Ο Ί, since -KD^(DQ, D") = D"D'D
= Κβ > 8. This is shown by introducing a general hyperplane DQ e \D'\ through χ
under the embedding w. The surface DQ" nontrivially intersects the general element of
\D\. Hence by Lemma 3.17 the general Do" e \D"\ cannot be a cone with vertex at a
point χ e V except in the case when DQ is a plane under the inclusion IT. The latter case
is analyzed just as the nonconical case, since a general hyperplane section DQ e \D'\
through the fixed point χ gives a curve on DQ. Consequently the linear system \D"\ has
no base points, and its general element DQ" is irreducible, reduced and smooth by
Bertini's theorem.

The general Do" m Ε Χ Ρ1, where Ε is an elliptic curve. Indeed by the adjunction
formula for the canonical class of the surface DQ we obtain that the linear system |-ATD»|
has no fixed points, and its general element has at least two connected components.
Hence from the classification of surfaces with I-A^-I φ 0 and KD φ 0 (see, for
example, [2] and [8]) we obtain the assertion. We will denote by L the class of the factor
P1 in the Picard group Pic DQ'.

Let μ = φ | Ο Ί : V^> pdim\D"\. Obviously \D"\ is not a pencil, since (D")2D = (D')2D >
0. Let us assume that the image μ(ν) is two-dimensional. Then by Lemma 4.4 the
restricted linear system |(DQ', D")\ on DQ is a pencil without base points. Then it is easy
to show that |(D0", D")\ = \nL\ and η = K%o (from the inequality (D")2D = K%a > 0
there follows the rationality of the smooth components of this pencil). Let us now
establish the surjectivity of the restriction of the linear system \D"\ to the system
|(D0, D")\ on the general surface Do c \D\. To do this it is enough to show that
h\V, ev(D" - D)) = 0. By duality,

hl (V, Ov {D"—D) )=h*(V, av {—D'—D")).

The pencil &y(D' + D") is ample, since \D"\ has no base points, and the pencil 6y(D')
is ample. Hence by Kodaira's vanishing theorem we have h2( V, Θ y( — D' — D")) = 0.
Consequently we have the surjectivity of restriction indicated above. The restricted linear
system |(D0, D ")| is the anticanonical linear system on Do. Hence under the assumption
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that μ{¥) is two-dimensional the linear system \D"\ gives a mapping μ onto μ(Υ) « DQ,
i.e. μ(Κ) « Ρ 2 or μ{¥) = Ρ1 Χ Ρ1. If the surface S lies in a fiber of μ, then dim^l = 0
and therefore its intersection with a general element of \D\ is non trivial. Also S must not
intersect the general element of \D"\. The latter contradicts the ampleness of the
anticanonical class on the general Do. Consequently the fibers of the morphism μ are
one-dimensional. The general fiber of μ is a curve L on DQ . Therefore it will be a conic
in V. Hence by (8.1.1) all the fibers of the morphism μ are conies; therefore V fa Do X
P 1 and the fiber product structure is given by the projections θ = tp\D\: V~* P1 and by μ.
Consequently either K « Ρ 2 Χ Ρ1 or F w P ' x P ' x P 1 . Because of conditions (8.1.2)
and (8.1.3) the index of V is equal to one and V is not isomorphic to Ρ1 Χ Ρ2. This
contradiction completes the proof that dim μ(¥) = 3. In the course of the proof, without
using the assumption that dim μ( V) = 2 we showed the surjectivity of the restriction of
the linear system \D"\ to Do and the vanishing h\V, 6V(-D'-£>")) = 0. Hence by
Lemma 4.1 we have h\D' + D", 6o- + z r ) = 0.

Now we will show that D gives a splitting in the linear system \D"\, which is non trivial
by (8.1.2), i.e. there exists an effective divisor D'" > 0 and \D"\ = \D + D'"\. Indeed, in
the opposite case, by duality and Lemma 4.1 we have

0 = h° (V, Ov (D" — D)) = h2 (£>' + D", Op> ^ΰ»).

Then by the ampleness of \D'\ there exist irreducible and reduced smooth surfaces
DQ G \D'\ and Z)o" e \D"\ transversally intersecting each other along an irreducible,
reduced and smooth curve C. Therefore χ(£>ό) + χ(Ι>ό') - x(C) = χ(Ι>ό + Do) = 1. In
addition, χ(Ζ>ό) = 1 because of the rationality of the surface Do; and χ(£>0") =
χ(Ε X P1) = 0. This means that x(C) = 0 and g(C) = 1. By the adjunction formula for
the canonical class of the surface Z)o" we have |(i>0", ^)l = 1̂ 1· On the other hand, since
\D"\ does not restrict to a pencil on Z)o", it follows that

\(DB", D")\ = \mE+ ^ L t \ ,

where m > 0 and η > 0. Therefore

η

Ce|(Z? 0 ", D')\ = \(D0", D" 2L\

Consequently

since Αβ» -—2E. Hence 2mn = 0, which is impossible for m, η > 0. Consequently there
exists a divisor Z)'" > 0 which gives a splitting \D'" + D\ = \D"\.

The linear system \D'"\ does not have fixed components. Since the morphism μ does
not contract surfaces and the linear system \D'"\ by Lemma 4.4 restricts to the system
|(Z)0", D'")\ on DQ isomorphically, it is sufficient to show the absence of fixed compo-
nents in the system

\(D0,D'")\= (m—l)E + ^Lt



THE EXISTENCE OF A STRAIGHT LINE ON FANO 3-FOLDS 205

on the surface Z)o", where η = DD'"DQ = K% > 8. Obviously in the latter system

\(m — \)E + Σ" Lf\ there are not even fixed points, since every divisor of degree > 2 on

an elliptic curve has no fixed points.

The linear system D'" is a pencil. Indeed, assume the contrary. Then the general

element DQ" e \D"'\ is by Bertini's theorem an irreducible and reduced surface. The

restriction of \D'"\ to the system {H, \D'"\) on the general hyperplane section Η e.

| — Ky\ has by Lemma 4.4 codimension < 2 in the complete linear system \(H, D"')\, i.e.

by Lemma 3.1 the general surface D^" has on the hyperplane section Η at most one

nondegenerate quadratic singularity. Thus, for the general divisor Z>0" the curve of

singularities can only be a straight line. From (8.1.1) it follows that Do" is a surface with

finitely many isolated singular points. The latter easily leads to a contradiction. To see

this, resolve the singularities of DQ" and obtain the surface DQ", which by the adjunction

formula has a divisor in the anticanonical system which consists of at least three

connected components (corresponding to the intersection of DQ" with |3D|).

Because of the triviality Pic0 V = 0 and the absence of fixed components in \D'"\ we

have \D'"\ = \nS\, where S is a surface giving the one-dimensional pencil \S\. We will

show that | S\ is a linear system without base points. The general element of | S | correctly

and nontrivially intersects the general member of \D\; hence by Lemma 4.2 we have

hl(V, 0v(-3D— (n-\)S)) =Q

for η > 2, which implies the connectedness of all divisors of the linear system

|3Z> + (n — 1)5"]. The case η = 1 is impossible (see the previous paragraph). Then,

because the divisors in \3D + (n — 1)51 are connected (see Corollary 4.2 and Lemma

8.4), the system | S | has no base points. Consequently \D'"\ is a pencil without base

points. The latter contradicts the inequality (D'")2D = K^a > 8, which completes the

proof. •

8.6. LEMMA. Let Ό be a divisor from the splitting of the anticanonical linear system

| — Kv\. Then the linear system \D\ has no base points.

PROOF. Let us choose among the divisors which give the splitting of \-Kv\ a nontrivial

divisor with base points of minimal degree. We denote it by D. Obviously D is

irreducible and reduced. By the choice of D and Lemma 4.8, the residual linear system

\D'\ has a fixed component only if dim|£>'| = 0 and, for the surface D', deg D' = deg D

= g — 1. By Lemma 8.3 this is impossible. Therefore the linear system \D'\ has no fixed

components. By Bertini's theorem and Lemma 8.3 the linear system \D'\ is a pencil.

Then by the triviality of Pic0 V we obtain that \D'\ = \nS\, where S is a surface which

gives a one-dimensional pencil \S\, and η > 2 by Lemma 8.3. Using Lemmas 4.2 and 2.1

of [12], we show that

hl{V, Ov(—D—(n—\)S)=0

and that all the divisors \D + {n — X)S\ are connected. Then by Lemma 8.4 the pencil

\S\, and therefore also \D'\, will be pencils without base points. By Lemma 8.5 this is

impossible. Consequently there are no divisors D with the properties noted in the

beginning of the proof. •

8.7. LEMMA. Let D be a nontrivial divisor from the splitting of the anticanonical system

\-Kv\. Then the linear system \D\ is not a pencil and has no base points. Therefore by

Bertini's theorem its general element is irreducible, reduced and smooth.
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This is an immediate consequence of Lemmas 8.5 and 8.6. •

8.8. LEMMA. On a Fano 3-fold V every nontrivial divisor D from the splitting of the
anticanonical system is ample if the mapping φ ^ corresponding to it has a three-dimen-
sional image.

This is an immediate consequence of condition (8.1.1) and Lemmas 8.7 and 4.12. •

8.9. LEMMA. On a Fano 3-fold V an arbitrary nontrivial divisor D from the splitting of
the anticanonical linear system \-Kv\ is ample.

PROOF. Obviously we may assume that D gives a nontrivial splitting. If the linear
system \D\ has nontrivial splittings, then by Lemma 8.6 it is sufficient to show the
ampleness of some nontrivial divisor from the splitting of \D\. Therefore we may assume
that all the elements of \D\ are irreducible and reduced. By Lemma 8.8 it is enough to
establish the three-dimensionality of the image of V under the map φ>|Ο|, or, equivalently,
that \D\ does not restrict to a pencil on its general member Do ε \D\. Let us assume the
contrary. Then, by Lemma 4.4, on the surface Do the linear system \(D0, Z))| is a pencil
without base points. By Lemmas 8.7 and 4.5, Do is a smooth rational surface with
\-KDo\ ¥= 0, since by assumption D' > 0. Then \(D0, D)\ = \nL\, where L is a smooth
curve with a one-dimensional pencil \L\ with no base points; L2 = 0 and

2g(L)—2= LKDa = - i - Z W = ^ D % / < 0 .

Consequently, L is a smooth rational curve and LKD = -2, so that L is a conic on V
since LD = 0. From (8.1.1) it follows that the surface Do is rational and ruled. The ruled
structure on Do is given by the pencil \L\. We will show now that η = 1, i.e. |(Z)0, D)\ =
\L\. Indeed, by Lemma 4.4 the linear system \D\ gives a mapping into projective space of
dimension η + 1 onto a surface of degree n. From the classification of such surfaces [10]
we have splittings in the system | D | in all cases except η = 1. This means that η = 1 and
D2D' = 2.

The residual linear system \D'\ = \-Kv — D\ is ample. By Lemma 8.8 it is enough to
prove that the image under the map (p\D.\ is three-dimensional. If that is not the case,
then, just as in the case of \D\, we obtain that the general element DQ ε \D'\ is a rational
ruled surface and D2D' = A"j, = 8. The latter contradicts the equality D2D' = 2 ob-
tained above.

We will show that D gives a splitting of the linear system \D'\. We assume the
contrary. Then by Lemma 4.1 and by duality

h2 (2D\ O2D-) = h3 (V, Ov (— 2D')) =-- h° (V, Ov (£>' — D)) = 0.

By Lemma 4.1 and Kodaira's vanishing theorem we have

hl (2Dr, O%D.) = Λ2 (V, Ov (-2D1)) = 0
and

h" (2£>\ C2D') -= Λ1 (V, Ov (-2/?')) + 1 = 1.

Consequently 2χ(ΰ') - x(C) = x(2D') = 1, where C is a smooth curve-section of \D'\.
By Lemma 4.5, x(D') = 1; hence x(C) = 1 and g(C) = 0. The system \D'\ is very ample
by Lemma 4.13, since D(D')2 = K% = 8 > 3. It is easy to deduce the full linear
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embedding of the rational curve-section C under the embedding <p|Z>,] from the fact that

h\V, Θν) = h\DO, 6 B i ) = 0. Consequently by [10] the general hyperplane section D'Q e

\D'\ will be either a ruled surface or isomoφhic to P 2 . Both cases are impossible, since

Kl.a = D2D' = 2. Therefore we have a splitting D + D" e |Z>'|, and £>" > 0 by (8.1.2).

By Lemmas 8.7 and 4.5 and the classification of rational surfaces the general surface

D£ e | D " | is a rational ruled surface, since D3 = 0 and

Kl. = (2D)2D" = 4D'(D" + D) = 4£>2(Z>" + Z>) = 4£>2£>' = 8.

The linear system \D"\ has nontrivial splittings. To prove this, let us assume the

contrary, i.e. that every divisor from \D"\ is irreducible and reduced. We first show that

\D"\ is ample. Indeed, in the contrary case, arguing as in the case of the linear system

\D\, we obtain the relation 2{D"fD = 2 and the ampleness of \2D\ = | - Kv - D"\.

On the other hand, the system \2D\ is not ample since D3 = 0. This contradiction proves

the ampleness of the system \D"\. By duality and Kodaira's vanishing theorem we have

hl(V, Ov(D"—2D)) =h2{V, Or 0—2D")) =0.

Since D" ^ D by (8.1.2), we have \D" - D\ = 0. Consequently h\V, 6y(D" - D)) =

0. Then by the cohomology sequence of the short exact sequence

0->C\-(I>"—2D)-+Or(D"—D)-+OD i i(Da, D"~D)-»0

we obtain the vanishing

h°(D0, OD0(D0, D"—D))=0.

By the adjunction formula and by the canonical class formula for the surface Do « Fn

we have |(£>0, D" — D)\ = \2bn + nsn\ Φ 0, where sn is a fiber and bn is the base curve

of Fn. This contradicts the vanishing just obtained. This means that \D"\ has a nontrivial

splitting.

Splittings of the form \D"\ = \D'" + D\ are impossible. Otherwise for the general

smooth rational surface £>ό" e \D'"\ we would have

Kp0 = (3D)2 D'" = 9D 2 D" = 9D2D' = 18.

Consequently there is a splitting \D"\ = |£>," + D2"|, where £>,", Oj' > 0 and the divisor

D does not give a splitting \D\\, |£>2"l· Therefore the restriction of the linear systems |£>,"|

and |Z)2"| to Z>0 are injective. Therefore, by Lemma 8.7, dim|(Z)0, D")\ > 2 and

dim|(Z>0, Dj')! > 2. Using the adjunction formula and the canonical class formula for the

ruled surface Do « Fn, we have

(Do, DO -f (Do, Ds) ~ 2bn + (n + 1) sm

where b^ = -n, bnsn = 1 and s^ = 0. Then, because of the absence of base points in D"

and therefore also in 2bn + (n + l)sn, we have η < 1. On the other hand, since 2b0 4- s0

cannot be decomposed into the sum of two two-dimensional systems, it follows that

η > 1. Hence Do « F, and (D o, £>,") ~ (Do, D£) ~ i>, + s,. The latter systems do not

split further into two-dimensional ones. Therefore the linear systems \D['\ and |Z)2"| do

not have nontrivial splittings. Also D'{ ^ D![, because V has index 1. If D" is ample,

then, since D does not appear in the splittings of \D"\, we may as above prove that

h°(D0, &Do(Do, D" - D)) = 0. The latter leads to a contradiction, since !(/)„, D" - D)\

= |26, + 5,|. Consequently, \D "\ and together with it also the systems |D,"| and |Z)2'| are



208 V. V. SOKUROV

not ample. Then, as above, we show that the general divisor Z>," is a ruled rational
surface Fx. By the adjunction formula the anticanonical system |-A"D.| = |2£>, + 3sx\
contains a divisor (D{', D) + (D{r, D) + (D{', £>2") whose every summand has dimen-
sion > 2 because of Lemma 8.7 and because of the injectivity of restriction. But the
latter is impossible. Consequently the divisor \D\ is ample. •

8.10. LEMMA. The linear system \-Kv\ has no splittings.

PROOF. Let there be a nontrivial splitting D + D' e |-A^|. We may assume that \D\
has no nontrivial splittings. Then by (8.1.2)

h°(V, ar(D—D'))=0.

We will show that D gives a splitting of \D'\, which is nontrivial by (8.1.2). We will
assume the contrary, i.e. that h°(V, 6y(D — D')) = 0. By Lemmas 4.4 and 8.7 we have
an isomorphic restriction of the linear systems \D\ and \D'\ to a general hyperplane
section Η e \-Kv\. We consider the exact sequence of sheaves

C-*-C?v (—2D)-+Cv (D'—D)^OH(H, D'—D)^Q.

Because of ampleness (Lemma 8.9), in the corresponding cohomology sequence we have
h\V, 6y(~2D)) = 0. Therefore h°(H, <3H(H, D' - £>)) = 0. Analogously

h°(H, 6H(D - D')) = 0.

Consequently, by duality and the Riemann-Roch theorem on the ΑΓ3 surface Η we have

— hl (Η, ΟH {Η, Ό' — D)) = (D> ~~ D ? H + 2.

Since Η ~ D + D', we get

- V (H, OH (H, U - D» = *VjzEl + (g')'(Q'-P) + 2

2 2 '

By the adjunction formula and by Lemmas 8.7 and 8.9 the general divisor Do e \D\ is a
del Pezzo surface. The general element Dx φ Do of D cuts out on Do a smooth curve C
by Lemma 8.7. Therefore D\D - D') = D0Dl(Dl - D') = 2g(C) - 2 > -2. Conse-
quently in the relation obtained above we have

A1 (//, OH{H, D'—D)) = 0, D2(D—D1) = (/)')2{D'—D) = — 2;

hence D2D' > 3 and (D')2D > 3. Then by Lemmas 4.12 and 8.9 the sheaves \D\ and
\D'\ are very ample. The curve-sections of the corresponding embeddings are rational and
fully embedded. Then by [10] the general divisors from \D\ and \D'\ are either ruled
surfaces or isomorphic to P2; hence ATj. = D'D2 = 8 or 9. Therefore Z>3 = 6 or 7,
because of the relation D\D — D') = -2 obtained above. This means that the very
ample divisor | D \ embeds V in P* or P 9 as a smooth, irreducible and reduced 3-fold of
degree 6 or 7, respectively. Hyperplane sections of such 3-folds split. This contradicts the
choice of D. Therefore we have a splitting 2D + D" e | - Kv\, and D" > 0 by (8.1.2).
Then the general element Z>0" G \D"\ is a del Pezzo surface by Lemma 8.9. The del Pezzo
surface Z>0" has index 2, i.e. its anticanonical divisor is effectively divisible by two.
Consequently Z)o" « P1 X P1. By the ampleness of |£>"| the restriction of \D"\ to Z)o" can
be represented in the form |(Z)0", D")\ = \nb0 + mso\, where m, η > 1 and b0 and 50 are
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general curves for the projection of the product Ρ 1 Χ Ρ 1 « DQ. By the adjunction

formula and by the canonical class formula for P 1 X P 1 we have \(DQ, D)\ = \b0 + so\.

We consider the exact sequence

0 - * Ov (— D) -*- Ov (D" — D)^ OD-> (DO, D" — D)
0

^ OD- ((n -\)bo + (m— 1) s0) -• 0.
0

By the ampleness of D we have

hl (V, Ov (— D)) == h° (V, Ov ( - D)> = 0.

Therefore from the cohomology sequence we obtain that \D" — D\ φ 0 , since

|(« - \)b0 + (m - 1)J O | =̂  0 for w, η > 1.

Consequently we have the splitting 3Z> + D'" ε | - AV|, and £>"' > 0 by (8.1.2). Then

as above the general element DQ" ε |Z>'"| is a del Pezzo surface of degree K}^.» =

(3D)2DO" > 9. This means that Do" « P 2 . Also, \DO", D'"\ = \nl\, where / is a straight

line on P 2 ss DQ" and η > 1, by the ampleness of D'". Using the same exact sequence as

above but replacing Z>0", D" and (n - l)b0 + (m - 1) s 0 by Γ>ό", />'" and (« - 1)/, we

obtain \D'" - D\ φ 0 . Hence we have the splitting 4£> ^ £>IV ε | - Kv\, where D I V >

0 by (8.1.2). Then the general element of £>0

IV e | i ) I V | is a del Pezzo surface of degree

KD'V = {^D)2D™ > 16. Such surfaces do not exist. This completes the proof. •
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