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V. V. SHOKUROV

ABSTRACT. We prove that 3-fold log flips exist. We deduce the existence of log canon-
ical and Q-factorial log terminal models, as well as a positive answer to the inversion
problem for log canonical and log terminal adjunction.
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§0.

Let X be a normal algebraic (or analytic) 3-fold with a marked Q-divisor Β = Βχ
(the boundary of X); we write Κ — Κ χ , and consider the log canonical divisor K+B
as in Kawamata-Matsuda-Matsuki [8]. Suppose that / : X —* Ζ is a birational
contraction of X such that Κ + Β is numerically nonpositive relative to / . A flip
of / is a birational (or bimeromorphic) modification

X -?Λ X+

Ζ

where / + is a small birational contraction whose modified log canonical divisor
Kx+ + B+ is numerically positive relative to / + ; it is known (see [25] (2.13), and
[8], 5-1-11) that the flip t r / is unique if it exists.
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96 V. V. SHOKUROV

Theorem. The flip of f exists if \B\ = 0 and Κ + Β is log terminal.

Corollary. Let f:X—>Z be a projective morphism of algebraic (or analytic) 3-folds,
and suppose that \_B\ = 0 and K + B is log terminal. Then for every extremal face R
of the Kleiman-Mori cone ~NE(X/Z) (in the analytic case, of NE(A'/Z ; W), where
W c Ζ is compact) contained in the halfspace Κ + Β < 0, the contraction morphism
contR associated with R is either a fiber space of log Fanos over a base of dimension
< 2, or has a flip VCR (respectively, the same statement over a neighborhood of W).

The proof of the theorem, or more precisely of the equivalent Theorem 1.9, con-
sists of a series of reductions. First of all, in §6, the construction of the flip reduces
to the special case, which is classified according to its complementary index. This
classification is similar, and in fact closely related to, Brieskorn's classification of
log terminal surface singularities (see [2] and [4]). Index 1 special flips exist, and
correspond to the flops or 0-flips of [7], (6.1), or [11], (6.6). Next, in §7, we con-
struct exceptional index 2 flips, and carry out a reduction of the existence of the
remaining exceptional flips of index 3, 4, and 6 to the case of special flips of index
1 or 2. The proof is completed by the reduction in §8 of special index 2 flips to
exceptional index 2 flips. Here a significant role is played by a result of Kawamata
on the minimal discrepancy of a terminal 3-fold singularity; this proof is given in
the Appendix kindly provided by Professor Kawamata. Furthermore, as we will see
in the proof, a flip can be decomposed as a composite of resolutions of singularities,
birational contractions given by the eventual freedom theorem and the contraction
theorem ([8], 3-1-2 and 3-2-1), and flips of types I-IV, defined in §2. We note also
that the proof does not use Mori's flips ([16], (0.2.5)) in the case 5 = 0 when Κ
itself is terminal, and so gives a new approach to proving the existence of Mori's flips.
In addition to the definitions and related general facts, the introductory § 1 contains
a statement of the main results proved in §§6-8; applications of these are given in
§9. The main technique is contained in §§2-5.

This research has been supported in part by the Taniguchi Foundation, the Max
Planck Gesellschaft, the NSF, the Deutsche Forschungsgemeinschaft SFB 170, and
the Hironaka and Kajima funds. This paper was completed during a stay at the
Institute for Advanced Studies, Princeton, and I would like to thank the I. A. S. for
hospitality and support.

§ 1. SINGULARITIES AND MODELS

We generally use the terminology and notation of [8], [25] and [26]. The geometric
objects we work with are either normal complex analytic spaces or normal algebraic
varieties over a base field k of characteristic 0. The first is the analytic case, the
second the algebraic case. For example, a morphism is either a holomorphic or a
regular map; and a modification is assumed to be bimeromorphic in the analytic
case, and birational in the algebraic case.

A contraction is a proper morphism / : X —> Υ with f»<fx = @γ , and is projective
if / is. If / : X —» Υ is a contraction between varieties of the same dimension, that
is, dim X = dim Υ , then / is one-to-one at the generic point, and is a modification;
such an / is a birational contraction or blowdown when Υ is viewed as constructed
from X , or an extraction or blowup when X is viewed as constructed from Υ (see
(10.8.4) for notes on terminology). An extraction or birational contraction whose
exceptional set has codimension > 2 is small.

We write p(X/Y) (or p(X/Y; W) in the analytic case) for the relative Picard
number of / (respectively, of / over a compact analytic subset W c Y). As a
rule, in the analytic case, we work infinitesimally over suitable neighborhoods of W ,
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even when we do not say so explicitly; W is often projective, the fiber of a projective
morphism, having tubular neighborhoods over Stein domains. (This condition is a
particular case of weakly l-complete in the sense of [18], (0.4); it means in particular
that Serre vanishing can be used e.g. in the proof of Corollary 5.19 below.) An extrac-
tion or birational contraction / is extremal (over W) if p(X/ Y) = 1 (respectively
p(X/Y;W)=l).

A divisor is usually understood as an M-Weil divisor D = Σ diD,, with Z), distinct
prime Weil divisors on X and d,• € Ε, called the multiplicity of Z), in D. This
terminology will be generalized later to include the multiplicity of D at prime divisors
of an extraction Υ —* X; see just before Lemma 8.7, and (10.8.5). We say that D is
a Q-divisor (respectively, an integral divisor) if dt e Q (or dt e Z) for all Z),. Note
that a Q-divisor is Q-Cartier if and only if it is K-Cartier. More-or-less by definition,
E-Cartier divisors with support in a finite union (J Z), form a vector subspace defined
over Q of the space φ EZ)(- of all divisors supported in |J Z), (in the analytic case,
in a neighborhood of any compact subset of X).

1.1. Negativity of a birational contraction. Let f:X-+Z be a birational contraction
and D an R-Cartier divisor. Suppose that

(i) / contracts all components of D with negative multiplicities;
(ii) D is numerically nonpositive relative to / ; and for each D,, either D, has

multiplicity 0 in D, or D is not numerically 0 over the general point of f{D,).
Then D is effective. Moreover, for each £>, either D = 0 in a neighborhood of the

general fiber of f: Z), —> /(A) or d,• > 0.

Proo/(compare [Pagoda], (0.14)). First of all, passing to a general hyperplane section
(that is, a general element of a very ample linear system) and using induction on the
dimension of X reduces 1.1 to the assertion over a fixed point Ρ e Ζ ; that is, after
replacing Ζ by a suitable neighborhood of Ρ if necessary, we can assume that all the
components D with di < 0 are contracted to Ρ. It is enough to prove the assertion
on some blowup of X. Since the assertion is local over Ζ , we can also assume
that X has an effective divisor Ε contracted by / that is numerically nonpositive
and not numerically 0 over Ρ; for example, we could take Ε to be the difference
f*H - f~lH, where Η is a general hyperplane section through Ρ. (Throughout
the paper, / or /~' applied to a divisor denotes its birational image or birational
transform, never the set-theoretic image, see below and (10.8.3).)

Using resolution of the base locus by Hironaka, we can assume that \f~lH\ is a
free linear system, which guarantees that Ε = f*H - / " ' Η is numerically nonposi-
tive. Ε is not numerically trivial over Ρ since \f~xH\ intersects /~ λ Ρ ; it follows,
of course, that Supp£ D f~xP. If there exists a prime divisor D, contracted to
Ρ and with negative multiplicity d[ in D, then there is a minimal value of ε > 0
such that D + εΕ is an effective divisor satisfying the assumptions (i) and (ii); if
D — ̂ djDi and Ε = 5Ze,-Z),· where all e,• > 0, then ε = min{-i/;/e, | d, < 0}, and
some d, < 0 by assumption. Then since ε is minimal, by (i) there is an exceptional
divisor over Ρ with multiplicity 0 in D + εΕ. But f~lP is connected since Ζ
is normal. Now D + εΕ is effective and numerically nonpositive over Ρ , so this is
only possible if D + εΕ = 0 in a neighborhood of f~xΡ , hence is numerically 0.
By the choice of Ε and since ε > 0, this contradicts (ii). Hence D is effective. By
the same argument the multiplicity d, > 0 if D is nontrivial on Dt. Q.E.D.

We write Bx or simply Β to denote a divisor Β = Σ biDl with 0 < b, < 1 ,
called the boundary of I . A reduced divisor Β, with all b,•- = 0 or 1 , is of this
form. The divisor 5" = [B\ is the reduced part of the boundary; the reduced divisor
Supp Β = \B] is identified with the support of the boundary. Β is viewed as an
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extra structure added to X except where stated otherwise. The log canonical and log
terminal conditions discussed below are restrictions not just on the singularities of X,
but also on those of the boundary Β. Boundaries are generalized to subboundaries
in §3 by dropping the restriction b,•• > 0.

Consider a correspondence between X and Υ, that is, a partially defined, possibly
multivalued, map / : X —> Υ, and a prime divisor D, on X. The image of Dt

under / is the divisor /(£>,) = Σ-Ρ;/ > where /",·_,· are the divisorial components of
the image under / of the generic point of A . This map extends to a homomorphism
of divisors

D = Σ diDi ~ f(D) = Σ dif{Di);

f(D) i s t h e image o f D. F o r a m o d i f i c a t i o n / , w e u s u a l l y ca l l t h i s t h e birational

transform o f D. A d i v i s o r D w h o s e i m a g e i s 0 i s contracted o r blown down b y

/ , o r i s exceptional f o r / , b u t w e s o m e t i m e s a l s o s a y t h a t D i s extracted o r blown

up b y / . A contracting modification f is a m o d i f i c a t i o n s u c h t h a t / ~ ' d o e s n o t

c o n t r a c t a n y d i v i s o r s ; a n e x t r a c t i o n o r b i r a t i o n a l c o n t r a c t i o n is o f t h i s k i n d . S i m i -

l a r l y , a m o d i f i c a t i o n / i s small i f n e i t h e r / n o r f~l c o n t r a c t s a n y d i v i s o r s ; s m a l l

c o n t r a c t i o n s a n d s m a l l e x t r a c t i o n s a r e o f t h i s n a t u r e .

The modified boundary Β γ of a boundary Β of X under a modification / : X
—y Υ can be defined in various ways even under the restrictions 0 < bt• < 1 . One
usually takes Β γ to be the birational transform f(B), although we could also take
a divisor of the form

where Et are divisors on Υ contracted by / " ' and all the multiplicities satisfy
0 < e, < 1 . In what follows Βγ will denote this divisor with et = 1 for each /; this
is the log birational transform, see (10.3.2).

We write Κχ or simply Κ for a canonical divisor of X . A log divisor is a sum
of the form Κ + D , where D is arbitrary. However, we are mainly interested in log
divisors of the form Κ + Β , where β is a boundary, assumed to be log canonical
unless otherwise stated. This means in particular that Κ + Β is an M-Cartier divisor,
and hence its pullback g*(K + B) by any morphism g: Υ —» X is defined. If g is
an extraction, and Κγ a suitable canonical divisor of Υ, the pullback g*{K + B)
on Υ only differs from Κγ + Βγ at exceptional components, that is,

KY + BY = g*(Kx + Β) + Σ α'Ε-

Each a, is real, and is independent of the model Υ , as long as £,· appears as a
divisor on it; we call it the log discrepancy of Κ + Β at Et. It is independent
of the choice of the canonical divisor Κχ , since although the divisors Kx and
Κγ are only defined up to linear equivalence, they can be intrinsically compared
across a birational modification: there is an intrinsic identification of the sheaves
tfx(mKx) = (Ργ(ηιΚγ) outside the exceptional sets. The log discrepancy coefficient
a, of Κ + Β at Et is 1 + its ordinary discrepancy . (') For nonexceptional prime
divisors D,, it is natural to define the log discrepancy by the relation a,• = 1 - b,,
and the discrepancy to be —6,·. Thus for a log canonical divisor Κ + Β , the log
discrepancy of all blown up divisors is > 0. Moreover, it is enough to verify this

(') The intention here is: if Β χ = 0 , and every divisor in sight is Q-Cartier, you can compare Κ γ
and Κχ and get the (genuine) discrepancy, canonical etc. Even when Bx = 0 it still makes sense to work
in the log category, define the log birational transform of 0 = Bx to be Βγ = (g~])] ·log(0) = X) £/ , and
define the log discrepancy by Κγ + Βγ = g*(Kx + Β) + Σ a,Ej . Then the statement in the text is true; if
ί ^ 0 the birational transform of Β has multiplicity 0 at each Ε, , so one could also fix up a category
of "birational pairs" in which it holds (Iitaka did this kind of thing around 1980).
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inequality for exceptional divisors £, of a resolution of singularities g on which
the irreducible components of [BY] are nonsingular and cross normally.

The divisor Κ + Β is log terminal if a, > 0 for every exceptional divisor of one
such resolution; Κ + Β is strictly log terminal if in addition X is Q-factorial. The
definition of log canonical and log terminal given here is somewhat wider than that
of [8], 0-2-10, and in particular we do not assume that the b, are rational, or the
inequality ft, < 1 in the log terminal case (compare [8], 0-2-10, (i) and (ii)). This
leads to an asymmetry between the given notions: for a log terminal K+B we do not
always have all a, > 0, even for the exceptional divisors of the resolution indicated
above (compare [8], 0-2-12). However, if all the exceptional divisors have a, > 0
then Κ + Β is purely log terminal. This holds for log terminal K + B precisely
when on the normal crossing resolution the birational transforms of the irreducible
components of the reduced part of the boundary do not intersect, which happens in
particular if the reduced part of the boundary is irreducible or empty. Purely log
terminal is Kawamata's notion of log terminal (compare [8], 0-2-10, (i)), except for
the rationality of bi; the Utah seminar ([Utah], (2.13)) uses the terminology

\B\ = 0 and purely log terminal = Kawamata log terminal,

strictly log terminal = Q-factorial and log terminal.

Example. To understand what's going on here, calculate the log discrepancy for the
blowup of Ρ e Β c X, where Ρ is a node of a curve β on a nonsingular surface X.
This X with Β is (strictly) log terminal but not purely log terminal. This problem
goes back to Iitaka around 1975: Β c X has infinitely many different log minimal
models over Ρ, and one needs to refine the definition to minimal minimal models.

Weakly log terminal is here understood as in [8], 0-2-10, (ii), although we do
not assume that the boundary Β is a Q-divisor. Strictly log terminal is obviously
stronger than weakly log terminal.

For adjunction, the following weakened version of weakly log terminal is impor-
tant. The divisorial notion of log terminal is obtained when the exceptional set
appearing in its definition is assumed to be divisorial. In this case, the reduced
components of g~l(\_B\) do not have any double or higher order crossing on the ex-
ceptional set of g. Say that / : Ε —>· X maps at general points to normal crossing of
L-SJ if f(E) c X is defined at its generic point by components of \B\ crossing nor-
mally; the image in codimension k is given by intersection of k components. Thus
log terminal is divisorial if and only if the exceptional divisors with log discrepancy
0 map at general points to normal crossing of reduced components of [B\ , and the
exceptional set does not lie over general points of normal crossings. In particular, if
X is a 3-fold, for the divisorial log terminal property, exceptional divisors with log
discrepancy 0 lie over double or triple normal crossings. Note that if X is not Q-
factorial, it can happen that two reduced components of \_B\ can intersect in a point
only, and then for K + B to be divisorially log terminal, the log discrepancy over
such a point must be > 0 . Since strictly log terminal is stronger than divisorially log
terminal, if it holds then exceptional divisors with log discrepancy 0 lie over normal
crossings of \_B\ and they only occur for \_B\ , as we will prove in Corollary 3.8.

1.2. Example. If X is nonsingular and if the irreducible components of \B~\ are
nonsingular and cross normally, then Κ + Β is strictly log terminal.

1.3. Properties of log divisors.

(1.3.1) Convexity. The set of boundaries Β for which Κ + Β is log canonical
(respectively nef, numerically positive or ample) is convex.
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(1.3.2) Rational polyhedral. The set of boundaries Β with support in a finite
union (J Dj for which Κ + Β is log canonical is a rational convex polyhedron in
φ RD, (in the analytic case, in a neighborhood of any compact subset W c X).

(1.3.3) Monotonicity. If Β > Β' are such that Κ + Β is log canonical (or log
terminal) and Κ + B' is K-Cartier (automatic if X is Q-factorial), then Κ + Β'
is also log canonical (respectively log terminal). Moreover, the log discrepancies of
Κ + Β and Κ + Β' at an exceptional component Ej satisfy a\ > a,, and a\ > a, if
Ej lies over the locus where Β > Β', that is, if Ej is contracted into the support of
B-B'.

(1.3.4) Stability. If Β and B' are boundaries such that B' has support in
Supp5, K + B is log terminal, K + B' is E-Cartier (automatic if X is Q-factorial),
and B' is close to Β, then K + B' is also log terminal (in the analytic case, in a
neighborhood of a compact subset W c X). If in addition Κ + Β is purely log
terminal and B' has support in a finite union \J Dj then K + B' is also purely log
terminal.

(1.3.5) Rational approximation. The set of rational boundaries Β is dense
among all boundaries for which Κ + Β is log canonical (in the analytic case, in
a neighborhood of a compact subset W c X). If X is Q-factorial, the set of ratio-
nal boundaries Β with [B\ — 0 is dense among all boundaries for which Κ + Β is
log terminal.

Here, except where stated otherwise, log terminal can be taken to be any of the
notions introduced above, and distance between divisors is measured coefncient-by-
coefficient.

Proof. (1.3.1) and (1.3.3-4) come directly from the definitions. By Example 1.2,
(1.3.2) holds if the Dj are nonsingular and cross normally; the polyhedron will be
the cube 0 < b, < 1. In general, consider a resolution g: Υ —> X on which Ej
and g~lDi are nonsingular and cross normally; the set of exceptional divisors Ej
is finite (in the analytic case, in a neighborhood of W c X). The inclusion g*
of M-Cartier divisors of X extends in the numerical sense to divisors D such that
g~xD + ΣάίΕί is numerically 0 relative to g for some real d,·. The d, with this
property are uniquely determined, as follows from negativity of a contraction, 1.1.
Defining the numerical log canonical property of K+B for g, it is not hard to check
the rationality of the corresponding convex polyhedron in 0 R.D,. This polyhedron
is the image under the rational projection D >-> g(D) of the analogous polyhedron in
{®Rg-lDj)®(®REj), cut out in the polyhedron {D = YJdjDi + YJeiEi \ 0 < d, < 1
and et < 1} by the relations (KY + D) · C = 0 for all curves C contracted by g.
But the divisors D = J3 <̂i A f° r which Κ + D is R-Cartier form an affine linear
subspace of φ ED, defined over Q. Intersecting the polyhedron with this gives what
we want.

Without the assumption [B\ = 0 , (1.3.5) follows from (1.3.2) and (1.3.4) in
the log canonical (log terminal) case. When X is Q-factorial and [B\ = 0, it is
obvious. Q.E.D.

A proper morphism / : X —• Ζ is log canonical, or X is a log canonical model
over Ζ , if Κ + Β is log canonical and numerically ample relative to / . The mor-
phism / : X —• Ζ is log terminal, or a log minimal model over Ζ , if Κ + Β is log
terminal and Κ + Β is nef relative to / . And / is strictly log terminal, or a strict
log minimal model over Ζ , if in addition Κ + Β is strictly log terminal and / is
projective. Here an M-Cartier divisor D is numerically ample if it is ample in the
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sense of Kleiman [10] (in the analytic case, in a neighborhood of any compact subset
Ζ c X), and nef (respectively numerically positive, numerically negative, numerically
nonpositive, numerically 0) if D · Γ > 0 (respectively Z> · Γ > 0, < 0 , < 0, = 0 )
for every curve Γ of X/Z . Here curves of X/Z means curves of X contracted to
points in Ζ , that is, Γ c X is contained in a fiber of / . The vector space N\ (X/Z)
is the M-vector subspace of N\ (X) spanned by such curves, see [8]. For Q-Cartier
divisors, numerical ampleness of / is equivalent to ampleness in the usual sense
(in the analytic case, in a neighborhood of any compact subset Ζ c X) by [10]. If
/ is a small contraction and X a 3-fold, then the fibers of / are curves (possibly
reducible), and / is numerically ample if and only if it is numerically positive.

There are two absolute cases. If / is a map to a point then X is log canonical
(respectively log terminal, strictly log terminal). If / is the identity, then to say that
/ is log canonical (respectively log terminal, strictly log terminal) just means that
K + B has log canonical (respectively log terminal, strictly log terminal) singularities.

1.4. Properties of morphisms.

(1.4.1) Convexity. The set of boundaries Β for which / is log canonical is con-
vex.

(1.4.2) Rational approximation. The set of rational boundaries Β is dense in all
boundaries for which / is log canonical (in the analytic case, over a neighborhood
of any compact subset W c X).

(1.4.3) Projectivity. If / is log canonical then it is projective (in the analytic
case, over a neighborhood of any compact subset W <z X).

Under our assumptions Β is rational if and only if Κ + Β is Q-Cartier. Thus
in the study of log canonical morphisms / , we can manage with only Q-divisors Β
and K + B (compare [8], 0-3-10).

Proof. (1.4.1) follows from (1.3.1), (1.4.2) from (1.3.2), and (1.4.3) from (1.4.2) and
[10]. Q.E.D.

A modification of a proper morphism f: X -> Ζ to a proper morphism g: Υ -* Ζ
is a commutative diagram

X - U Υ

Ζ

with t: X —> Υ a modification; we say that g is a model of / . Obviously a
model of a birational contraction is again a birational contraction. A log canonical
(respectively log terminal, strictly log terminal) model of a proper morphism / : X —>
Ζ (with K + B not necessarily log canonical, or indeed R-Cartier) is a modification
g: Υ —t Ζ of / such that g is log canonical (respectively log terminal, strictly log
terminal), and the log discrepancy coefficients a, of Κγ + BY satisfy

a, > 1 - bi (respectively a,• > 1 - 6,·)

for all divisors A c X that are exceptional with respect to t.
Note once again the two absolute cases: if / is the identity morphism, then a log

canonical (respectively log terminal, strictly log terminal) model g: Υ —> X of /
is a relative log canonical (respectively log terminal, strictly log terminal) model of
X for K + B (compare [20], (6.3)); this is a partial resolution of the noncanonical
singularities that leaves K+B nef relative to g . If Ζ is a point, then a log canonical
model (respectively strictly log terminal model) Υ is projective.
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1.5. Properties of log models.

(1.5.1) Well defined. A log canonical model is unique if it exists.

(1.5.2) Log birational invariance. If no component D, c X is contracted on a
model g: Υ -> Ζ , that is, the Z), also appear as divisors on Υ, then the log canonical
(respectively log terminal, strictly log terminal) model / for Κ + Β coincides with
the corresponding model of the modification g for KY + BY .

(1.5.3) Characterization as Proj. If Κ + Β is log canonical, Q-Cartier and g
is the log canonical model of / , then 31 {f, Κ + Β) = ®n>of*<fx{n(K + Β)) is a
finitely generated sheaf of graded (fz -algebras, and

Υ =

(in the analytic case, the same over any compact subset of Z ) .

(1.5.4) Equivariance. A birational selfmap of X that lies over a biregular auto-
morphism of Ζ and maps each generic point of Β to Β induces a regular automor-
phism of the log canonical model g of Κ + Β (holomorphic automorphism in the
analytic case).

(1.5.5) Behavior in codimension 1. If Κ + Β is log canonical, then the modifica-
tion t to the log canonical model g is contracting; a modification to a log terminal
model is not necessarily contracting, but the log discrepancy of Κ + Β does not
exceed the corresponding log discrepancy for KY + BY .

(1.5.6) Discrepancies decrease. If / is a birational contraction, and K + B is log
canonical and numerically nonpositive relative to / , then the log canonical model g
is a small contraction. Moreover, the log discrepancies of Κ + Β do not exceed the
corresponding log discrepancies for KY + BY , and are strictly smaller for divisors
lying over the union of the fibers of / where Κ + Β is not numerically 0. If in
addition Κ + Β is (purely) log terminal and numerically negative relative to / ,
then the log canonical model g is in addition (purely) log terminal. (Compare [25],
2.13.3.)

(1.5.7) Let / : Υ —> X be a weakly log canonical model of X for Κ + Β , that is,
an extraction such that KY + BY is log canonical on Υ and nef relative to / . Then

f*(K + B) = KY + BY +

with di > 0 for all the exceptional divisors E, of / . Moreover, all di = 0 if and
only if K + B is log canonical. / is the identity if and only if / and K + B are both
log canonical. / is small and purely log terminal if Κ + Β is purely log terminal. /
is the identity if Κ + Β is purely log terminal and X is Q-factorial, that is, K + B
is purely and strictly log terminal.

In view of the fact that the log canonical model of / is well defined, it can be
constructed locally over neighborhoods of points of Ζ . Note that if in the formula
(1.5.7) we take the sum of exceptional divisors £, over to the left, we get a result
that is the exact opposite of the definition of log canonical: all a, — -dj < 0. An
extraction with all di = 0 is log crepant (compare [20], (2.12)).

Proof. (1.5.2) holds by definition, (1.5.3) is well known (putting together (1.5.2) and
[8], 0-3-12), and (1.5.1) follows from (1.5.3) by taking a nonsingular model of /
according to (1.5.2) and (1.4.2). (1.5.4) follows from (1.5.1). (1.5.5-6) are proved
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as in [25], (2.13), using a Hironaka hut

W

X -'-> Υ

here W is nonsingular, so that / ' : W —> X and g': W —> Υ are resolutions. (The
Russian usage domik Hironaka is traditional, domik = little house, hut.) In the
analytic case, the same over a neighborhood of a compact subset of Ζ . If g is
log canonical, g'*{KY + By) is nef relative to g ° g' = f ° f and / ' . Thus the
difference Δ = f'*{K + B) - g'*{KY + BY) is nonpositive relative to / ' and its
support is contained in divisors that are exceptional for both / ' and g'. If £, is
exceptional for g' but not for / ' , its multiplicity in Δ is b,• — 1 + α,, which is > 0
by definition of the log canonical model, where a, is the log discrepancy in £,- of
KY + BY . By negativity of a contraction, 1.1, Δ is an effective divisor. Moreover,
if Ei is exceptional for / ' but not for g', then Δ or -Δ has maximal numerical
Kodaira dimension on Ε ι, is not numerically 0 over the generic point of f'E,, and
its multiplicity 1 - a,· — 1 = —a, at Ej is > 0 by negativity of a contraction, 1.1; here
at is the log discrepancy of Κ + Β at £ , . This is impossible, and the modification t
is contracting. The log discrepancy of KY + BY at a prime divisor D c W is greater
than the corresponding log discrepancy of Κ + Β by the multiplicity of Δ at D,
since Βψ < (BY)w .

In (1.5.6), g'*(KY + BY) is nef relative to g ° g1 = f ° f • Hence the difference
Δ = f'*(K + B) - g'*{KY + BY) is nonpositive relative to / ' , and is supported in
divisors that are exceptional for / ' or g'. As above, it is effective on divisors E,
that are exceptional for g' but not for / ' . Again by negativity of a contraction 1.1,
the difference is effective and does not involve the Ej that are not exceptional for / '
and g'. If the image g'(E,) is exceptional for g then also f'{E,) is an exceptional
divisor for / . This is impossible by negativity of a contraction, 1.1, and since Δ is
not numerically 0 over the general point of g ο g'E,. Therefore g is small.

The multiplicity of Δ at D is 0 only if Δ is trivial over the general point of
/ ο f'D, that is, f'D is not contained in the union V of fibers of / on which
Κ + Β is not numerically 0. Thus by what we have said, the log discrepancies of
Κ + Β are less than the corresponding log discrepancies of KY + BY for divisors
over V . If Κ + Β is log terminal and numerically negative relative to / then the
points of indeterminacy of t land in V , which in this case is the union of positive
dimensional fibers of / , and t is an isomorphism outside this set. Hence, outside
V , we can take as resolution g' a suitable resolution of X as in the definition of log
terminal and resolve its indeterminacy over V . Finally, the relation of (1.5.7) follows
immediately from the definition of the extraction / and negativity of a contraction,
1.1, and the remaining assertions of (1.5.7) also follow easily from this. Q.E.D.

[8], 0-4-5, states the conjecture that log terminal models exist in the general case.
To construct the log canonical model from a log terminal model g: Υ —• Ζ one
must contract the curves Γ c Υ with (KY + By) ·Γ = 0 ; when the boundary By is
a Q-divisor, the existence of this model is equivalent to the conjectured abundance
of KY + BY (see [8], 6-1-14).

There is a general philosophy—Mori theory, or the theory of extremal rays—of how
to go about constructing a log terminal model of a projective morphism / : X —>
Ζ over Ζ (in the analytic case, over a neighborhood of any compact projective
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subvariety of Ζ ) . First, (2) resolving the singularities of X and of the boundary
Β to a nonsingular variety and a divisor with normal crossings, we can assume that
/ is projective and Κ + Β strictly log terminal by (1.5.2). By the theorem on the
cone ([8], (4-2-1), or [18], (4.12), in the analytic case), if there exists a curve Γ
of X/Z (that is, P e l is contained in a fiber of /) on which Κ + Β is negative,
then the Kleiman-Mori cone NE{X/Z) has a locally polyhedral extremal ray R with
(K+B)R < 0. By the contraction theorem ([8], (4-2-1), or [18], (4.12), in the analytic
case), there exists a contraction cont«: X —> Υ of R over Ζ . (In applying these
theorems, if it is not already so, we first perturb Β slightly to make it a Q-divisor.)
If cont/{ is not birational it is a nontrivial fiber space of log Fanos, and the minimal
model program comes to a stop.

Otherwise cont« is a birational contraction. Then one carries out a modification
t: X —> X+ from X to X+ over Ζ ; the modification will be simply X+ = Υ if
cont/? is a divisorial contraction. Otherwise, it will be a flip X+ —> Υ over Ζ , if
this exists (see Lemma 1.7). As is well known (see [25], (2.13)), the modification
t: X —• X+ does not decrease the log discrepancies of Κ + Β , and for a divisorial
contraction of £, the log discrepancy increases: a\ > 1 - b,•. Hence by (1.5.5),
the log terminal (log canonical) models of X and X+ over Ζ coincide. However,
K+ + B+ is again strictly log terminal, /+ is projective, and one conjectures that
X+ is simpler than X in some measurable respect, which means that any sequence
of such modifications eventually terminates. Hence as a result of a sequence of
modifications, / either becomes a nontrivial fiber space of log Fanos, or becomes a
log terminal morphism. Therefore the problematic ingredients of this construction
are the existence and termination of flips. On the other hand, starting from a terminal
model / , by the theorem on eventual freedom of [8], 3-1-2, we get a log canonical
model when β is a Q-divisor with [B\ = 0 and Κ + Β is big relative to / ; big
relative to / means that the restriction of Κ + Β to a general fiber of / has Kodaira
dimension equal to the dimension.

LSEPD divisors. The trouble with the above general philosophy is that, in the proce-
dure we have just described, even if we start with no reduced boundary components,
these may appear at the time of the initial resolution, and may not be contracted
by subsequent modifications. However, we now introduce a systematic method of
decreasing Β, while preserving the intersection number of Κ + Β with all curves
of X/Z and preserving rationality, under an extra condition. Let f:X—>Z be
a contraction and Κ + Β a log divisor on X . We say that Β is the support of an
effective principal divisor locally over Ζ or is an LSEPD divisor if in a neighborhood
of any connected component of Β there exists an effective Cartier divisor D on X
which is /* of a principal divisor on Ζ , and such that

IB\ < SuppD < [B] = Supp5.

The point is that locally over Ζ , which is sufficient for the construction of the log
canonical model, D contains all the reduced components of Β with b,• = 1 , and all
the components of D are contained in Β , so that perturbing the boundary from Β to
B-eD with 0 < ε < 1 leaves it effective, but pokes out the reduced components. (3)
Moreover, by what we have said, the condition on D can be weakened to numerically

(2) In Utahn dialect, this is called "running the MMP" (minimal model program, [Utah], 2.26).
(3) I have slightly edited this section. See my commentary (10.4) for a brief explanation of the special

role played in the log category by the reduced boundary components (with b, = 1) and the condition
[BJ = 0 (that is, no i>, = 1 are allowed) in the Kawamata-Shokurov technique. As explained there,
the LSEPD device Shokurov introduces in this section extends the Kawamata technique to the reduced
case in important cases, e.g., the theorem on eventual freedom for nef and log big divisors. Shokurov



3-FOLD LOG FLIPS 105

0 relative to / , even if / is weakly log canonical, that is, Κ + Β is nef relative to
/ , Β is a Q-divisor, and Κ + Β is big relative to / (compare (1.5.7)). In this case
we say that Β is numerically LSEPD.

Returning to the general philosophy, we note that the whole picture is somewhat
simplified if we assume that / is finite over a general point of Ζ , for example,
a birational contraction. First of all, this ensures that the final model of / will
be a strictly log terminal birational contraction, and not a fiber space of log Fanos.
Secondly, any Q-Cartier divisor on X , and in particular Κ + Β , will be big relative
to / . Hence under the given assumption, in the process of constructing the log
canonical model, it is natural to assume that the original / has boundary Β that
is an LSEPD Q-divisor. Moreover, if / is strictly log terminal, it is enough to
assume that Β is numerically LSEPD; when / is extremal, this holds if and only
if Supp Β either has only components that are numerically 0 relative to / , or has
both components that are negative and components that are positive relative to / .
Thirdly, if X is nonsingular outside Β, then LSEPD divisors are preserved both by
the initial resolution of singularities and by subsequent modifications. Moreover, in
(4.5), we perfect our general philosophy so that, in order to be able to construct a
log canonical model from a strictly log terminal model, it will be sufficient to know
that on the original model X (whose boundary Β is not necessarily a Q-divisor)
there exists an LSEPD divisor B' with [B\ < B' < \B] , such that Κ + Β is log
terminal outside B'. Thus the task remaining is to achieve a strictly log terminal
model of / , and by the above discussion, we must succeed in the construction and
the termination of flips. For a surface X , flips and their termination are OK, so that
we get the next result.

1.6. Example. If / : X —> Ζ is a morphism of a surface X , finite over the general
point of Ζ , then there exists a strictly log terminal model of / , even if Κ + Β is
not log canonical; respectively, there exists a log canonical model of / provided that
Β passes through all points at which Κ + Β is not log terminal. In this case, the
birational contraction to a log canonical model can be transformed to the numerically
negative case using negativity of a contraction, 1.1, and then its existence can be
proved using the contraction theorem ([8], 3-2-1). In particular, X has a strictly log
terminal model; respectively, a log canonical model provided that Β passes through
all the points at which Κ + Β is not log terminal. From this and from (1.5.7),
in the 2-dimensional case any notion of log terminal is always strict; since, quite
generally, for a purely log terminal Κ + Β a strictly log terminal model is small, but
for surfaces is the identity. By [8], 1-3-6, this follows anyway from the rationality
of weakly log terminal singularities, which in the surface case is equivalent to log
terminal. Note also that a strictly log terminal model, or a model as a fiber space
of log Fanos exists for any projective morphism / : X —» Ζ from a surface. (The
material here is all elementary and well known. It's an exercise to understand all
this in terms of collections of curves on surfaces and Zariski decomposition of a log
divisor Κ + Β on the resolution; compare [Kawamata].)

According to Lemma 1.7 below, the previous considerations can also be used to
construct the flips themselves, provided that termination is known, and that in con-
structing a flip we need only flips of a simpler type. We only note here that a flip of
a birational contraction / with respect to D (where in general D is an R-divisor of

calls this property supports a fiber relative to / , and later allows this to degenerate to forms a fiber;
his equivalent definition is that there exists a boundary B' with \_B\ < B' < Supp β such that each
connected component of B' equals the support of a fiber of a composite morphism (not necessarily
proper) X —• Ζ —> C of X to a curve. Compare [Utah], Definition 2.30.
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X) is defined as a modification

X «± X+

f \ / /+ ,
Ζ

where / + is a small contraction for which the modified divisor D+ = tr/(D) is
numerically ample. (Modified divisor D+ means the birational transform; it moves
under linear equivalence if D does.) A flip is obviously unique if it exists. For this
reason it follows that it is equivariant: that is, automorphisms of X/Z preserving
D act biregularly on X+ .

In applications, D is usually negative, and even antiample relative to / , and
the contraction / itself is small and even extremal. In the case of an extremal
and projective / , D is negative relative to / if and only it is antiample, and the
flip does not depend on the choice of such Ο if 7 has rational singularities, and
is also extremal if X is Q-factorial. If / = cont« is a small contraction of an
extremal ray, then / or R or the curves contracted by / axe, flipping, and otherwise
divisorial. However, when X is not Q-factorial, a flip of a divisorial contraction
may differ from it, that is, it may not be regular (see [25], (2.11) and (2.9) and [8],
5-1-6): if the contracted divisor is not Q-Cartier then Kz is not Q-Cartier, and a
flip is needed to return to the inductive category. Thus the above extension to any
birational contraction of the notion of flip is quite natural.

1.7. Lemma, Let f: X -> Ζ be a birational contraction such that K + B is numer-
ically nonpositive relative to f; then a log canonical model of f is a flip with respect
to Κ + Β, and conversely. A flip or log canonical model of f is also a log canonical
model of Ζ for Kz + f(B).

Proof. (4) If g: Υ -> X is a log canonical model of / then by (1.5.6) and by
definition g is a small contraction, with Κ + Β numerically ample relative to g ,
that is, g is a flip of / . The converse follows from standard properties of flips (see
[25], 2.13 and the properties of log flips in §1.12, below). The case of a log canonical
model is treated similarly. Q.E.D.

1.8. Example (Tsunoda). Suppose that / : X —* Ζ is a projective birational con-
traction of an algebraic (or analytic) 3-fold X , and that the boundary Β is semistable
relative to / . This means that Β is linearly 0 relative to / and has a projective res-
olution of singularities g: Υ —> X such that g*B = g~lB + Y^Ei, which is the sum
of nonsingular prime divisors with normal crossings, where Σ Ε, is the exceptional
set of / . The minimal number d of exceptional divisors of such a resolution is the
depth of Β . I assert the existence of a flip of / with respect to a numerically non-
positive K+B when the exceptional set of / is contained in Β . By Lemma 1.7, this
coincides with the log canonical model of / . Composing with the above resolution,
we can assume that X is nonsingular, and the boundary Β is linearly 0 relative
to / , reduced, and consists of nonsingular prime divisors with normal crossings. It
is enough to construct a strictly log terminal model of / . The existence of flips of
extremal rays with K + B negative is known in this case by [23], Theorem 1, or [7],

(4) Explanation: The alternative to / being a divisorial contraction is that cont^: X —> Υ is a small
or flipping contraction over Ζ ; then Λ is a flipping ray. The required modification is a relative log
canonical model X+ —> Υ of Υ ; if this exists, the results of Proposition 1.5 are applicable to it, so
that by (1.5.6), X+ —> Υ , if it exists, is a small extraction. Then t: X —> X+ is a flip over Ζ ; in
the 3-fold case, contRiA"—» Υ contracts a curve Γ (possibly reducible), the flipping curve of R , and
X+ —» Υ extracts a curve Γ+ , the flipped curve, so that the modification /: A* —> X+ just replaces the
neighborhood of a flipping curve Γ c X by that of a flipped curve Γ+ c X+ .
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(10.1). Moreover, the semistability of Β is preserved by such flips, and its depth
increases by at most 1 under a divisorial contraction, and decreases under a flip
(see [26], (9.1), and [28]). Hence termination holds and the log terminal model of
/ exists. If we discard Β, termination also follows by termination in the terminal
case for Κ (see [25], (2.17)).

The main theorem of §0 is equivalent to the following result.

1.9. Main Theorem. Let f:X—>Z be a birational contraction of an algebraic {or
analytic) 3-fold X; suppose that Κ + Β is log terminal outside Β and nonpositive
relative to f, and that the boundary of Β is LSEPD. Then the flip of f exists.
Proof of equivalence. By the uniqueness of a flip, we can restrict to the local situa-
tion. If / is the birational contraction of the theorem of §0 and Η a hyperplane
section containing /(Supp.fi), then by stability (1.3.4), for small rational ε > 0 the
log divisor Κ + Β + ef*H satisfies all the requirements of Theorem 1.9. For the
converse, subtracting off a multiple of the principal divisor provided by the LSEPD
assumption ensures that [B\ = 0, and by monotonicity (1.3.3) makes Κ + Β log
terminal. Q.E.D.

The proof of Theorem 1.9 and Theorem 1.10 below makes up the bulk of this
paper; this is obtained first in a jumbled form in §6, and then, in an organised form,
in §§6-8 after reducing to special flips.

1.10. Theorem. A small proper morphism f: X —> Ζ of an algebraic {or analytic)
3-fold X that is finite over the general point of Ζ has a strictly log terminal model
for Κ + Β {in the analytic case, over a neighborhood of a projective subset W c Ζ ) ,
even if X is not Q-factorial and Κ + Β not log canonical.

In the analytic case, over a neighborhood of W also means that the strictly log
terminal property of the model is preserved on shrinking the neighborhood of W.

1.11. Corollary. A small proper morphism f:X—>Z of an algebraic {or analytic)
3-fold X that is finite over a general point of Ζ has a log canonical model for Κ + Β,
even if X is not ^-factorial and Κ + Β is not log canonical, provided that Β is
LSEPD, and K+B is log terminal outside the principal divisor provided by the LSEPD
assumption.

The final condition is satisfied, for example, if the boundary Β is LSEPD and
Κ + Β is log terminal outside Β. If we apply Theorem 1.10 and Corollary 1.11
to the identity morphism \άχ then we get respectively the log canonical and log
terminal model of X for K + B (see §9). Moreover, the local divisor D supports
a fiber relative to idjr , or, as we will also say, simply is a fiber, when locally there is
an effective Cartier divisor D' having the same support, Supp D' = Supp D. This
holds, for example, if D is effective and Q-Cartier, and by rational approximation,
even when it is M-Cartier. Note that the corollary holds for the boundary Β, as
soon as Theorem 1.10 is established for it (see the proof in §4). From this we get the
following proof.

Proof of the corollary of §0. The cone NE(X/Z) (respectively NE(X/Z; W)) is
locally polyhedral in the region Κ + Β < 0, by [13], (5.4). The contraction cont/}
then exists by [8], 3-1-2 (in the analytic case we can use the arguments of [18], (5.8)),
rational approximation (1.3.5), and stability (1.3.4) of purely log terminal divisors.
It is known that contj? is either a nontrivial fiber space of log Fanos or is birational,
that is, a birational contraction. In the final case, the flip exists by the theorem of
§0. Q.E.D.

To conclude § 1 we give some facts that will be needed later.
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1.12. Properties of log flips. Let g+: X+ —> Υ be a flip over Ζ of a birational
contraction g: X —> Υ with respect to the divisor Κ + Β . Then K+ + B+ is log
canonical if Κ + Β is numerically nonpositive relative to g . Respectively, K+ + B+

is divisorially log terminal if Κ + Β is divisorially log terminal, and the exceptional
locus of g does not contain any generic points of normal crossing of [B\ (compare
the paragraph before Example 1.2). Moreover, if in addition Κ + Β is log terminal,
respectively purely or weakly log terminal, and negative relative to g then

(1.12.1) D+ = K+ + B+ is log terminal, respectively purely or weakly log terminal.

(1.12.2) If a Q-Cartier divisor D is numerically 0 relative to g, then D+ =
trf(D) is a Q-Cartier divisor, numerically 0 relative to g+ and having the same
index as D (in the analytic case, over a neighborhood of any compact subset of Z ) .

(1.12.3) X+ is projective over Ζ (in the analytic case, over a neighborhood of
any compact subset of Z) if X is projective over Ζ and g is extremal.

(1.12.4) If X is Q-factorial and g is extremal then X+ is Q-factorial; if in
addition g is small then g+ is extremal. Moreover,

+ /7-. j P(X/Z) - 1 if g is a divisorial contraction;

I p{X/Z) if g is a small contraction

(in the analytic case, p{X+/Z;W) = p(X/Z;W) - 1 or p{X+/Z; W) =
p(X/Z;W)).

Proof. This is either known, or can be obtained by modifying [25] and [8] (see also
the properties of log models in §1.5 together with Lemma 1.7). Note that in the 3-
fold case, the condition that the exceptional locus of g does not contain any generic
points of normal crossing of [B\ is satisfied if it does not contain any triple points,
double curves or prime components of [B\ . Q.E.D.

§2. THE COVERING TRICK

Let / : X —> X be a quasifinite morphism between normal varieties. A prime
Weil divisor D on X defines an integral effective divisor f*D = £) w,-£,- with E,
prime. f*D is meaningful, since D is Cartier in codimension 1, where / is a
finite extension of DVRs. This a "birational transform" construction; in terms of
divisorial sheaves, (9~{f*D) is the double dual ^~(/*D) = {f*(&x(D)))**.

The coefficient m, = mult£,(/) is the multiplicity of / at (or along) E,•. The
number r, = rEi(f) = m, - 1 is the ramification index of / along E,:. Divisors
with positive ramification indices are called ramification divisors of / ; these form
the support of the ramification divisor R = £ rE(f)E, and the reduced divisor

*red= Σ Ε

rE(f)>0

is the ramification locus of / .

2.1. The pullback formula.

K~ + f-lD = f*(Kx + D) + Y, Σ (1-<W?;
i f(Ej)=D,

for any Weil divisor D = Σ ^ / Α on X , where f']D = J2dif~lDi and / " ' A are
the reduced divisors J] Ej obtained as the set-theoretic inverse image of Supp A ·
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Proof. The relation

f*D = T, Σ d'mJEJ
i f(Ej)=D,

reduces the verification to the particular case when D = 0. Then the pullback
formula becomes a higher-dimensional analog of the Hurwitz formula for canonical
divisors [27], K~ — f'Kx + R, where R is the ramification divisor of /. By
the same argument, it is also equivalent to the log analog of the Hurwitz formula
K~ + f~lB — f*(Kx + B) when β is a reduced divisor containing the ramification
locus f{RKd) c X. Q.E.D.
Remark. Grothendieck duality provides a less pedestrian definition of R and proof
of (2.1): since /*ω~ = H o % , ( ^ ~ , αχ), there is an intrinsic evaluation homo-
morphism f*o~ —> ωχ, hence an intrinsic homomorphism / : ω~ —> f*a>x, ex-
tending the map Q~ —> f*£ln

x defined on the nonsingular locus by the determinant
of the Jacobian matrix; div(7) is the ramification divisor.

The pullback formula can also be conveniently expressed in the form K~ + B~ —
f*(K + B), where

i f(Ej)=Di

= Σ Σ {bimj-r})Ej.
i f(Ej)=D,

Here Β = D = Y^bjDi is a boundary of X. The inequality bitrij - rj < 1 follows
from bj < 1. Hence to ensure that B~ is a boundary of X, we need only the
inequality bjirij - η > 0, or equivalently

(2.1.1) b i > l L = !Hl^l.

2.2. Corollary. For a finite morphism f, the divisor K~ + B~ is log canonical (re~
spectively purely log terminal) if and only if Κ + Β is.

Proof (compare [Pagoda], (1.9)). First of all, I claim that Κ + Β is an R-Cartier
divisor if and only if its pullback K~ + B~ - f*(Kx + B) is. This follows from

Λ Λ.

t h e f a c t t h a t t h e p u l l b a c k / * a n d p u s h f o r w a r d / » b y a finite m o r p h i s m / p r e s e r v e

E-Cartier divisors, since the composite /, ο /* multiplies divisors by deg / .
The pullback of a finite morphism / by a birational contraction g: Υ —> X fits

in a commutative diagram

Ϋ -^ Υ

11 in

Χ Λ Χ
where / is again a finite morphism, and g a birational contraction. I can assume
by the above that Κ + Β and K~ + B~ are K-Cartier divisors. By the final version

Λ. Λ

of the pullback formula and the definition of the log discrepancies α,, we have

K~ + B~ = f*(KY + BY) =

Thus the log discrepancy 27· of a prime divisor Ej contracted by g can be computed

by the log discrepancy a, of Dj = f{Ej):
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where w7 is the multiplicity of / at Ej. Hence the inequalities 2,· > 0 and a, > 0
(or uj > 0 and a, > 0) are equivalent. It only remains to check that each divisor
contracted by X appears as an exceptional divisor of g for a suitable g . Q.E.D.

2.3. Construction of cyclic cover. Let D be a primitive principal divisor on X.
Then for any natural η there is a finite cyclic cover / : X —* X of degree η (a
Galois cover with Galois group Z/(«)) such that the pullback f*D is divisible by
η as a principal divisor. Indeed, D = div(^) is the divisor of a function φ . Here
primitive means that D is not divisible by m > 2 as a principal divisor, which
implies that the polynomial xn - φ is irreducible over the function field 3$(X)
(respectively, the meromorphic function field J£(X) in the analytic case). For /
we can take the normalization of X in the finite extension £%{-γφ). (See [14]; in
the analytic case, the normalization of X in a finite extension 2" of ^#(X) is a
finite holomorphic map / : X —> X such that for every Stein open U of X the
ring T{f-xU,(f~) is the integral closure of T{U, ffx) in S? ®j?{X) J?{U), where
Jf{U) is the field of meromorphic functions on U.) The name comes from the
fact that X is the normalization of the graph Γ , c Ι χ Ρ' of the function ψ =
ς[φ , a many-valued function on X that becomes single-valued on X. Locally, the
normalization is uniquely defined by D. By definition f*D - div(f*(p) = άίν{ψ") =
η div(^). The irreducibility of X comes from the irreducibility of x" - φ over Μ .
By construction / is ramified only over components D, of D = Σ djDj and has
ramification multiplicity

w, = multD,(/) =
i, n)

along Di. The cover / is called taking the nth root of D. Of especial interest is
the case when η = lcm(i/,) (in order for the l.c.m. to exist in the analytic case, we
must assume that D is finite, which holds in a neighborhood of any compact subset
of X). In this case m, = n/\di\ for d, Φ 0, hence

η

I n p a r t i c u l a r , i f D i s e f fect ive t h e n (\/n)f*D i s a p r i n c i p a l r e d u c e d d i v i s o r .

2 . 4 . E x a m p l e s o f cyc l ic covers.

(2.4.1) Suppose that Κ + Β is a log divisor, not necessarily log canonical, with
boundary Β of index η such that n(K + B) ~ 0 is linearly 0 on X. The cor-
responding finite cyclic cover / : X —<· X of degree η is ramified only over the
components D, of Β, and bj = kj/mi is a proper fraction, with /c, < m, and «?,
the multiplicity of / at Z),. Indeed,

= = ' = ' = rrii
hcf(nki/nij, n) hcf(«/c,, nmi) hcf(fc,, m,-)

By (2.1.1), B~ is a boundary if and only if bi — I or (m, - l)/m, for some natural
number w,, and the boundary B~ = f~l [B\ is reduced in this case. This / is
the index 1 cover of the log divisor Κ + Β . By Corollary 2.2, for such covers the
divisor K~ + B~ is log canonical (or purely log terminal) if and only if the same
holds for Κ + Β . However, by construction K~ + B~ has index 1 . The divisor
Κ + Β is purely log terminal and b,• = {m,•• - l)/«i,· if and only if B~ = 0 and K~
is canonical. The following two particular cases are of special interest.
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(2.4.2) Suppose that Κ + Β is a log canonical divisor of index 2 for which
2(K + B) is linearly 0. Then B~ = f~l [B\ is a boundary and K~ + B~ is log
canonical of index 1. If moreover Κ + Β is log terminal and [B\ = 0 then B~ — 0
and K~ is canonical, that is, in this case X is Gorenstein with canonical singularities.

(2.4.3) Suppose that X is Q-Gorenstein, Β = 0, and Κ has index η . Then a
cyclic cover f:U—*U is denned over a suitable neighborhood U of any point of
X, known as the index 1 cover (see [20], (1.9)). Here / is etale in codimension 1 ,
and Ku is log canonical or log terminal if and only if K~ is. But by construction
K~ has index 1 and K~ is log terminal if and only if it is canonical, or by [8],
0-2-16, if and only if it is rational and Gorenstein. In particular this allows us to
reduce the study of log terminal singularities to the case of canonical singularities of
index 1 . This approach to the study of singularities, introduced by M. Reid ([20],
(1.9)) and independently by J. Wahl, is called the covering trick.

(2.4.4) Suppose now that / : X —» Ζ is a proper morphism, and the boundary
Β is a reduced LSEPD divisor, that is, locally over Ζ , there is an effective primitive
principal divisor D = Σ djDj with support Β . Then according to the construction,
locally over Ζ there is a finite cyclic cover π: X —> X of degree η = lcm{d,},
ramified only over components of Β, and such that, locally over Ζ , π~ιΒ is a
reduced principal divisor. By Corollary 2.2, under such a cover the log canonical (or
purely log terminal) property of Κ + Β is preserved and the index of K~ + π~ιΒ =
π*(Κ + Β) divides that of Κ + Β .

The covering trick is also used in the construction of flips (see [7], (8.5), and [16],
(0.4.4)). Its use is based essentially on the equivariance of flips. Let / : X -* X be a
finite cover and g: X —> Ζ a birational contraction. Then in the category of normal
varieties or complex spaces, / is obtained as the pullback

X -U X

of a finite cover / : Ζ —> Ζ , the normalization of Ζ in a finite extension
where 31 and 3i are the rational (meromorphic) function fields of X and X
respectively. Note that the rational (meromorphic) function field of Ζ or any other
modification of X is just 31. The pullback g is also a birational contraction, and
is small if g is.

2.5. Lemma. The flip of g with respect to a divisor D exists if and only if the flip
of the birational contraction g with respect to f*D exists.

Proof. Suppose first that a flip t: X —> X+ exists. Then it has a pullback

J \ * Λ .

( 2 . 5 . 1 ) 7 | i r

X - ' - > X +

w h e r e / + : X + - > X + i s t h e n o r m a l i z a t i o n o f X + i n t h e f u n c t i o n field 3 1 . L e t

g+: X+ —* Ζ be the pullback of the birational contraction g+: X+ —> Ζ . Since Ζ
is finite over Ζ and X+ finite over X+ , it follows that g+ is a small contraction,
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and {f*D)+ = (f+)*D+ is ample relative to g+ . Hence 7 is a flip of g with respect
to f*D.

Conversely, suppose that a flip 7 is given. By the above, after normalizing / in
the sense of Galois theory, which corresponds to the normal closure of 31 j,9i , we
can assume that / is a Galois cover with Galois group G. Then the divisor f*D is
invariant under G. Hence by equivariance of the flip 7, G acts biregularly (in the
analytic case, biholomorphically) on X+ , and the diagram

X -Ux+

71
χ

can be completed to a pullback (2.5.1), where / + : X+ -> X+ = X+/G is obtained by
taking the quotient by the action of G. It is not hard to check that the modification
X+ obtained in this way is the flip with respect to D. Q.E.D.

2.6. Proposition. Flip of Type I. Suppose that X is a 3-fold, f: X —> Ζ abirational
contraction, and Κ + Β a log divisor such that

(i) Κ + Β is nonpositive relative to f;
(ii) the boundary Β is a reduced LSEPD divisor and contains the exceptional of

/ ;
(iii) X is nonsingular outside Β.
Then the flip of f relative to Κ + Β exists.

By the eventual freedom theorem ([8], 3-1-2), in order to ensure that the boundary
is LSEPD, both here and in Propositions 2.7-8 below, it is enough to assume it is
numerically LSEPD.

Proof. Since the construction of a flip is local in nature, we can restrict to a neigh-
borhood of a fiber of / , and by the above, after contracting curves on which Κ + Β
is numerically 0 if necessary, we can assume that the birational contraction / is
projective with Κ + Β antiample relative to / (compare [25], Proposition 2.3). By
the semistable reduction theorem (see [9], and [Shokurov]), after possibly shrink-
ing X to a suitable neighborhood of the contracted fiber, there exists a finite cover
g: X —> X, ramified only over Β , on which the boundary g~xΒ is semistable (as
in Example 1.8). Hence by Corollary 2.2, K~ + g~lB = g*(K + B) is log canonical,

and by (i) is nonpositive relative to the pulled-back contraction f:X—>Z. Then by
Example 1.8 there exists a flip of / with respect to g*{K + Β), so that descending
by Lemma 2.5 we get the required flip of / . Q.E.D.

2.7. Proposition. Flip of Type II. Suppose that X is a 3-fold, f: X -» Ζ a bira-
tional contraction, and Κ + Β a log divisor such that

(i) Κ + Β is numerically 0 relative to f;
(ii) the boundary Β is a reduced LSEPD divisor;
(iii) X has log terminal singularities outside Β .
Then the flip of f relative to any Q-divisor exists.

Proof. Again we can restrict to a neighborhood of a fiber of / . By the theorem on
eventual freedom and (i)-(iii) it follows that Κ + Β is linearly 0 relative to / , that
is, K+B descends relative to / as a Q-Cartier divisor. Thus it is enough to consider
the case that / is the identity. By (2.4.1), (2.4.3) outside Β , and Lemma 2.5, the
assertion reduces to the case that K + B has index 1 ; then in (iii), log terminal
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is replaced by canonical singularities outside Β. In the same way, by (2.4.4) we
can also assume that Β is a reduced Cartier divisor. Then Κ is Gorenstein and
has canonical singularities by monotonicity (1.3.3). Hence the required flip exists by
Kawamata ([7], (6.1)) or Kollar's version ([11], (6.6)). Q.E.D.

2.8. Proposition. Flip of Type III. Suppose that X is a 3-fold, f: X -• Ζ a bira-
tional contraction, and Κ + Β a log divisor such that

(i) Κ + Β has index 2;
(ii) the reduced part of the boundary S = [B\ is LSEPD;
(iii) Κ + Β is numerically 0 relative to f;
(iv) Κ + Β has log terminal singularities outside S = \_B\.
Then the flip of f relative to any Q-divisor exists.

Proof. As in the preceding proof we can restrict to the local assertion and assume
that / is the identity and K + B has index 1 or 2 . By Proposition 2.7, I need only
consider the case of index 2. Then by (2.4.2) and Lemma 2.5, after making a double
cover, the existence of the required flip again reduces to a flip of Type II. Here under
the conditions (ii) and (iv) the reduced part of the boundary S = [B\ is replaced by
the full boundary Β , and log terminal in (iv) by canonical outside Β . Q.E.D.

2.9. Proposition. Flip of Type IV. Suppose that X is a 3-fold, f: X -> Ζ a bira-
tional contraction, and K + B a log divisor such that

(i) K + B is purely log terminal and of index 2;
(ii) K + B is numerically 0 relative to f;
(iii) the components of [B\ are not exceptional relative to f.
Then the flip of f relative to any Q-divisor exists.

Proof. As above, we can restrict to the local assertion and assume that / is the
identity. To prove that K + B descends as a Q-Cartier divisor we must apply the
eventual freedom theorem of [8], 3-1-2, having first, as a preliminary step, made a
extension of the boundary Β by adding to it ef*H for some small ε > 0 , where Η
is a hyperplane section such that Β + f*H is an LSEPD divisor. To construct Η,
we take a general hyperplane section H' of Ζ through /(\_B\). Then it is enough
to take Η to be a general hyperplane section through H' - /([B\).

If S = \_B\ has a reduced component, it can be replaced in the boundary Β by
the divisor jD, where D is a general element of the linear system \2S\. Indeed,
for any fixed resolution g: Υ —* X ,

g*{{D - S) - g~\\D - S) -

where all e,• > 0, since every function in tf(2S), possibly after adding a constant,
does not have a 0 along the exceptional divisors E-t . Hence the log discrepancy of
K + B with the new boundary differs by a contribution e, at £, , and is again > 0 .
Now D is reduced by Bertini's theorem, and hence the new log divisor Κ + Β is
purely log terminal and [B\ = 0 . Since 2(K + B) is linearly 0, the existence of the
flip again reduces by Example 2.4.2 to [7], (6.1), or to [11], (6.6). Q.E.D.

The construction of flips of type IV may at first sight seem to be a inessential
generalization of Kawamata's sufficient condition ([7], §8) for the existence of flips.
However, these flips plays an important role in what follows.

§3. ADJUNCTION OF LOG DIVISORS

Consider a prime Weil divisor S c X and its normalization ν: S" —» S c X.
For an arbitrary divisor D o n I whose support does not contain S, the restriction
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D\gv = v*D can be defined as a divisor on 5" as follows. Taking general hypersur-

face sections reduces the definition to the case when X is a surface; let / : Υ —* X
be a resolution of singularities of X, which also resolves the singularities of 51, and
hence normalizes S. Then the numerical pullback of D is defined (following Mum-
ford) by f*D = f~lD + E, where Ε is the exceptional Q-divisor for / determined
by f*D-Ei = (f-lD + E)-Ei = 0 for all exceptional curves £, (/" 'D is the bira-
tional transform). The existence and uniqueness of Ε follows from the fact that the
intersection matrix {£,£}} is negative definite; this also implies that Ε is effective
if D is (by negativity of a contraction, 1.1).

By construction, the normalization ν can be identified with / on Sv — f~[S.
Hence it is natural to set Dig» = f*D\§v . It is easy to check that the map \gv = v* is

well defined, and is a partially defined homomorphism of Weil divisors of X to those
of 5" , and on R-Cartier divisor is the Ε-linear extension of the pullback of Cartier
divisors under ν . In the case of log divisors, we have the pullback f*(K + S + D) =
KY+S"+D', where D' = f~xD+E is defined by the equations (KY+Sv+D')-El = 0
on the exceptional components £ , . We call the restriction £>(„„ the different of D

on S" , and denote it by Ds* . One can check that the different does not depend on
the choice of the canonical divisor Κ or on the choice of the resolution / , and that
its definition extends naturally to higher dimensions. (5)

3.1. Adjunction formula. If S is not contained in SuppD, then

for a suitable canonical divisor Ks». In the general case, this should be understood as
equality of linear equivalence classes: (See (10.6).)

Proof. Again it is enough to prove the formula for surfaces. But then, by the adjunc-
tion formula in the nonsingular case and the construction just discussed,

K& + Ds» = [KY + S" + D')|S"

Q.E.D.

Differents have certain remarkable properties when D = Β is a boundary, or a
divisor of the following more general type. A subboundary is a divisor D = Σ d,D,
with d, < 1 ; thus effective subboundaries are boundaries. If we write the definition
of log discrepancy for a birational contraction / : Υ —> X in the form

f*{K + B) = KY + BY ,

where BY = Βγ — ^ α-,Ει, then the condition a, > 0 for Κ + Β to be log canonical
means that BY is a subboundary. Similarly, a log divisor Κ + D is log canonical
if it is M-Cartier and for any extraction / the divisor DY defined in the same way
is a subboundary. In particular, D itself is a subboundary. One sees easily that
it is sufficient that this condition should hold for a resolution of singularities of /
on which all the exceptional divisors E, and irreducible components of f~' D are
nonsingular and cross normally. If for one such resolution DY is a subboundary,
and has multiplicities < 1 for all exceptional divisors of / , then Κ + D is log
terminal. In a similar way, we transfer to the case of subboundary the definitions of
strictly, purely, weakly and divisorially log terminal. By what we have said, for genuine
boundaries the given definitions are equivalent to the usual notions of log canonical,
log terminal and the various flavors of log terminal. Note also the following obvious

(5) See 10.6. and [Utah], Chapter 19.
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fact: if Κ + D is R-Cartier, then for any extraction / , Κ + D is log canonical if
and only if KY + DY is.

3.2. Properties of the different.

(3.2.1) Semiadditivity. DS" = O5, + £ W ·

(3.2.2) Effectivity. Ds« > 0 if D > 0.

(3.2.3) Log canonical {divisorially log terminal). If Κ + S + D is log canonical
(divisorially log terminal) then the divisor KSv + As- is also log canonical (respec-
tively divisorially log terminal). If moreover D is a boundary, then Ds» is also a
boundary. If moreover D is a boundary and Κ + S + D is purely log terminal, then
DSv is a boundary and KSv + Ds» is purely log terminal with \DS»\ = 0.

Note that when X is a 3-fold (3.2.3) holds for weakly and strictly log terminal,
since by Example 1.6 all the flavors of log terminal coincide on a surface. For purely
log terminal Κ + S + D (3.2.2-3) together with the necessary definitions generalize
to the case that 5" is a reduced, but possibly reducible divisor (compare Lemma 3.6).

Proof. All the assertions are local, and the first two reduce to the surface case. By
the additivity of /* we get

f*(K + S + D) = f*(K + S) + f*D = KY + S" + 0' + f*D

(where 0' is defined as in the paragraph before adjunction formula 3.1 by
f*{K + S) = KY + SI/ + 0'), hence

Hence it is enough to prove effectivity (3.2.2) for £> = 0. If we take / to be
a minimal resolution of singularities of X and S, then 0' > 0 by negativity of
a contraction, 1.1, since KY + S" is nef on exceptional curves of this resolution.
Indeed, for (-l)-curves Et we have KYE, — -1 and S"Ej > 2, and for the other
exceptional curves KYEj > 0.

We have to check the final property in complete generality. By the adjunction
formula Kg» +DS» is an R-Cartier divisor on Sv . To compute the log discrepancies,
consider the resolution of singularities f:Y—>X from the definition of Κ + S + D
log canonical (respectively divisorially log terminal). In particular, f~lS is then
nonsingular, so that we have the commutative diagram

f~lSc Υ
*/

S" f\f-,s

S cX

where g: f~lS —> S" is a resolution of singularities of S" . By definition of a log
canonical divisor,

KY + (S + D)Y = f*{K + S + D),

where (S + D)Y is a subboundary (and in the log terminal case its multiplicities for
the exceptional components of / are < 1). By the adjunction formula

= g*(K + S + D)\SV = g*(Ks» + D
s.).
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Thus

•D)Y-f~lS), ,_!£,) and (Ds,)
} = ({S + D)Y - f~lS), ,_xs.

But f~lS appears in (S + D)Y with multiplicity 1. Hence by the preceding relation
we have

where (ZV) is a subboundary: all its multiplicities are < 1 (and, in the log
terminal case, < 1 for the multiplicities of the intersections with exceptional divisors
for / , and moreover these intersections contain all the exceptional set of f~lS over
S" and after an additional blowup the intersection of the exceptional set of f~lS
becomes divisorial over S"), by normal crossings of f~lS with the components of
the divisor (S+D)Y-f~lS. But this is the definition of Ks» +DS* being log canonical
(respectively, divisorially log terminal). It remains only to note that the fact that the

components of (ZV) and of the exceptional divisors of the form Er, r^x <-, are

nonsingular, and that they cross normally, follows from the same requirements for
the resolution / . The remaining assertions now follow from (3.2.2). Q.E.D.

The following stands out among the standard problems concerning log models:

3.3. Inversion of adjunction (inversion of the log canonical and log terminal prop-
erties). Does the implication (3.2.3) between the log canonical (respectively log
terminal) conditions for K + S + D and KS" + Ds<> have a converse?

Let D = Σ diDi be an effective divisor with S <£ Supp D such that
(i) K + S + D is K-Cartier;
(ii) Λ> + Ds* is log canonical (respectively log terminal and [Ds»\ = 0, or

divisorially log terminal and normal crossings of reduced components of Dg« extend
generically in a neighborhood of S).

The problem of inversion of adjunction asks whether (i) and (ii) imply that Κ +
S + D is log canonical (respectively purely log terminal and [D\ = 0, or divisorially
log terminal) in a neighborhood of S, and in particular S + D is a boundary.

Here the condition on extending normal crossings of Ds* in the third case of (ii)
means the following: whenever Π D[ c Sv is a generically normal intersection of k
reduced components D\ < Ds*, then we require that in a neighborhood of S, there
exist k reduced divisors A < D extending the D\ and having normal crossing with
S:

D\ = D, \SV and f] D\ = S η f] Dt

with generic normal crossings at general points, which includes the normality of -S
at the given general points. In particular, this includes the requirement that each
component of Ds» with multiplicity 1 is generically the normal intersection of S
and a component of [̂ J · Note that the inversion problem is certainly false in the
log terminal version if we do not assume the above restriction (see Corollary 3.16,
and Examples 3.5 and 3.17).

Our results on this problem for 3-folds are contained in Proposition 5.13 and
Corollary 9.5.

3.4. Conditional inversion of adjunction. Suppose that, in addition to the assump-
tions of 3.3, X locally has a weakly log canonical model for K + S+B in a neighbor-
hood of any point of 5 , where Β = |^min{l , if,-}£>; (for any boundary B). Then
the inversion problem 3.3 of the log canonical (respectively log terminal) conditions
has a positive answer for K + S + D (for any D).
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Proof. The required assertion is local. Hence in the arguments that follow we can re-
strict to a neighborhood of a point Ρ e S. Take the boundary Β = Σ m m { 1» ^;}A ·
Then by the assumptions, there exists a weakly log canonical model f:Y—>X for
Κ + S + Β. By (1.5.7), negativity of a contraction, 1.1, and the numerical nonposi-
tivity relative to / in a neighborhood of f~xP, we get that

Ε = (S + D)Y - (S + B)Y = f*(K + S + D)-(KY + f-]S + By)

is effective. Moreover, either it is zero, or some exceptional divisor Ε meeting /~' Ρ
appears in it with positive multiplicity. In the first case, Κ + S + D log canonical in
a neighborhood of Ρ follows from KY + f~lS + BY log canonical.

The second case is impossible. We prove this below using an almost obvious
property of the different (see Corollary 3.11 and the end of the proof after it). On
the way, we establish other properties of the different that we need in our subsequent
treatment.

3.5. Example. Let Ρ € X be a surface singularity, P e S c I a curve through Ρ,
and suppose that / : 7 - > I is a resolution of Ρ e X having a unique exceptional
curve Ε = Ρ1 with m = -E2 that intersects f~lS normally in one point. Then Ρ €
S is a nonsingular point, the divisor Kx + S is log terminal at Ρ , and the different
0s at Ρ has multiplicity [rn-\)jm. If moreover there is another nonsingular curve
S' through Ρ whose birational transform f~lS' meets Ε transversally in one point
and is disjoint from f~lS, then Κ + S + S' is log canonical at Ρ , S's = 1, and by
(3.16) below K+S+S' is log terminal only if m = 1 . In the example just described,

0)c A2)/(Z/m),

where Z/ra acts by χ, y H-+ ex, ey , with ε a primitive wth root of 1 .

In the general case we have a similar result.

3.6. Lemma. If Κ + Β is purely log terminal, then the reduced part of the bound-
ary \_B\ is normal. In particular, there are no selfintersections and the connected
components of \_B\ are irreducible.

Proof. Let / : Υ —> X be the resolution of singularities of X from the definition of
Κ + Β log terminal. Then / is proper,

-f*(K + Β) = -Κγ-Βγ + Σ atEi

is big relative to / , and all the components of the fractional divisors
{-f*(K + Β)} = {-Βγ + Σ aiEi) c r o s s normally. Hence by the Kawamata-Viehweg
vanishing theorem ([8], 1-2-3),

E) = Rxf^Y (\-Βγ + Σα<
l = 0,

where Ε is an effective divisor, and the first equality holds by the log terminal
assumption: all a, > 0. Note that by the pure log terminal assumption the irreducible
components of f~l([B\) are disjoint. Now applying the direct image functor /, to
the short exact sequence

0 - <?Y{-f-\\.B\) + E) - <?r(E) - ^/-.(Lej^iy-idflj)) - 0

gives

E)
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By normal crossings and (3.2.3) the multiplicities of {B}^By are equal to appropriate
multiplicities of the subboundary BY = Βγ - Σ^Εί, and by (3.2.2) are > 0. In
other words, a, < 1 when £/ι/--ΐ/ι DI\ is not exceptional on f~l([B\). Hence the

support of the divisor Ε and its restriction -̂ i /·-1 (ι »ι \ a r e exceptional for / . From

this by negativity of a contraction, 1.1, it follows that for any open subset U c X
we have

and

Thus we can omit Ε in the final exact sequence, to get the exact sequence

0 - <?x{S) -@x^ f.0f-i{VB\) ""> 0.

Hence (fs = f*&f->s > t n a t is, the irreducible components of S are normal and
disjoint. In the analytic case by [18], (3.6), the arguments we have given work over
a neighborhood of any point X, which is enough to verify what we want. Q.E.D.

3.7. Corollary. If Κ + S + B is strictly log terminal, and S in a neighborhood of Ρ
is nonsingular and does not pass through codimension 2 singular points of X, then
the index of S at Ρ is 1 and Ρ € X is nonsingular.

Proof. By monotonicity (1.3.3) we can assume that K+S is purely log terminal, and
it is enough to check that the index of S at Ρ is 1. In the opposite case, by (2.4.4)
there is a finite cover π: Υ —> X ramified over Ρ and unramified in codimension 1
near Ρ on S . Moreover, KY + n~lS is purely log terminal, so that by Lemma 3.6,
π " 1 S is normal. Then since Ρ e S nonsingular, the cover π is locally trivial in the
analytic sense over Ρ on S, and is hence unramified over Ρ on X. Q.E.D.

3.8. Corollary. If Κ + Β is divisorially log terminal and all the irreducible compo-
nents of Β are Q-Cartier, then these components are normal and cross normally. In
particular this holds if Κ + Β is strictly log terminal.

The condition that a divisor has normal crossing includes that its components
are normal varieties (or analytic spaces) and cross normally at generic points of
intersection of k components. Hence by the corollary, exceptional divisors with log
discrepancy 0 lie over the intersections of the reduced part of the boundary. For
example, in the 3-fold case components with 0 log discrepancy coefficients for K+B
lie over triple points and double curves of \_B\ ; in the final case it is assumed that the
image of the exceptional divisor is a component of such a double curve. From this it
follows that the restriction of Κ + Β to a reduced component is purely log terminal
outside triple points (in the higher-dimensional case, outside triple and higher order
crossings).

Proof. By monotonicity (1.3.3) and Lemma 3.6 we get that the irreducible compo-
nents S of the reduced part of the boundary Β are normal. By (3.2.3) the restriction
(K + B),g is divisorially log terminal, and by the proof of (3.2.3) generic normal

crossings extend in a neighborhood of 5 . Hence to do an induction on the dimen-
sion, it is enough to check that 5 [ c is normal for every irreducible component 5" φ S

of the reduced part of the boundary Β ; we can restrict ourselves to a boundary with
just two such components [B\ = S + S'. In this case, since generic normal crossings
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extend in a neighborhood of S, the log divisor (K + B)ig is purely log terminal and

the reduced part of its boundary coincides with S η S'. Hence by Lemma 3.6 this
intersection is normal and its connected components are disjoint. Q.E.D.

We say that Κ + Β is log terminal in codimension 2 if it is log terminal along any
codimension 2 subvariety W c X (in the analytic case, analytic subspace). Here
and in what follows, along means at the generic point.

3.9. Proposition (Properties of the different). Suppose that K+S+B is log terminal
in codimension 2. Then

(3.9.1) for a prime divisor PcS the multiplicity of Ρ in the different 0$ is of
the form (m - \)/m, where m is a natural number, the index of Κ + S along Ρ ;

(3.9.2) X is nonsingular along Ρ if and only if m — 1 ;

(3.9.3) the index of any integral divisor along Ρ divides m.

By Example 1.6 and Corollary 3.8, S is normal at a codimension 1 point Ρ.
Thus S = SU along Ρ.

Remark. The proposition is elementary, since at a general point of Ρ , by the classifi-
cation of surface log canonical singularities [Kawamata], S c X is transversally (x =
0) C A2 divided by the action of Z/m by (x, y) >-* (εχ, eay) with hcf(w, a) = 1 .
What follows is contained in a more explicit form in Hirzebruch's continued fractions
treatment of these quotient singularities, see for example [Oda], (1.6), and [Utah],
§3. Compare (5.2.3) below.

Proof. All the assertions are local, and taking general hypersurface sections reduces
them to the case of I a surface. Let f:Y—*X be a minimal resolution of singu-
larities in a neighborhood of Ρ e S C X . By Example 1.6, and monotonicity (1.3.3),
since S is irreducible, Κ + S is purely log terminal, so that

KY + / " ' 5 + Y^Ei = f*{K + S)

where Ε, are the exceptional curves and all a, > 0. It is not hard to check that
in this case, the curves f~lS and £,· are nonsingular, cross normally, and form a
chain f~lS, E{, ... ,En, and E, 3 P 1 (see [7], (9.8)). That is,

/~ S · E\ = E\ · E2 = • • • — En_ ι · En = 1 ,

and all other intersection numbers of f~lS and Et are 0 . Thus the multiplicity of
Ρ in 0s equals 1 - a,•, and we must check that a\ = \/m . Note now that

0 if 1 <j < η - 1;

Thus the a, can be found by solving the system of linear equations

a\E\ + a2 = 0

~ + a-x = 0

α η _ 2 + αη-ιΕη_ι2 + an = 0

an-\ + anEn

2 = - 1 J

Successively expressing a2 , a^, ... , an in terms of ax from the first η - 1 equa-
tions, we get that a, = k,a\ with integers k, . Then from the final equation An_i<2i +
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kna\En

2 = - 1 we get that a\ = \jm with m the integer m = —kn_\ -knEn

2, hence
a,· = ki/m (taking /q = 1). All a,> 0, and m and kt are natural numbers. Thus
m is the smallest natural number for which all the products mat are integers. It
follows from this by [8], 3-2-1, that m is the index of Κ + S at Ρ.

Since the resolution / is minimal, KY is nef relative to / , from which by neg-
ativity of a contraction 1.1 it follows that all a, < 1 (see [15], Part 2, and compare
Lemma 3.18). Hence if m = 1 then all the at are natural, and this is only possible
for η = 0, that is if Ρ € S c X is a nonsingular point of S and of X. The con-
verse follows from the adjunction formula in the nonsingular case, and this proves
(3.9.2). The proof of the final assertion can be reduced by the covering trick (2.4.1)
to m = 1, when all integral divisors in a neighborhood of Ρ are Cartier. Q.E.D.

The next result follows at once from (3.9.1) and (3.9.3).

3.10. Corollary. If Κ + S is log terminal in codimension 2 and D = Σ diD,, then
the multiplicity of the different D$ at a prime divisor Ρ is given by

TO — 1 v^ ki ,
ρ = + } —di,

m ^ m

where the sum runs over irreducible components A containing Ρ, and ki are natural
numbers such that Dji$ has multiplicity k,/m at P.

If Κ + S + Β is purely log terminal, then by (3.2.3) we have the inequality

Λ m — 1 v^ ki ,
0 < + V —di < 1.

- m *—· m
3.11. Corollary. If Κ + S + Β is log canonical in codimension 2 and Β = Σ bjDj,
then the multiplicity ρ of the different of B$ at a prime divisor Ρ increases compared
to the multiplicity bi of an irreducible boundary component A through P; that is,
bj < ρ . In particular, if the reduced part of the boundary Β passes through Ρ then Ρ
is a reduced component of the boundary of Bs, and there is a unique prime component
of the support of Β passing through P.

Proof. We can obviously restrict to the case b, > 0. Then by monotonicity (1.3.3),
property (1.5.7) of an extraction and the existence of a strictly log terminal model
along Ρ for Κ + S (Example 1.6), we get a purely log terminal model of Κ + S
along Ρ. Hence by Corollary 3.10,

m - \ ι ki , m - I , 1 , ^ C T ^
ρ > h bt— > bt + bi— - bi. Q.E.D.

m m ~ m m
Conclusion of proof of 3.4. In the second case, the support of Ε is nonempty and
by construction is contained in the reduced part of Βγ . Moreover f~lS intersects
the connected fiber / " ' Ρ, and it intersects Ε because Ε is numerically nonpositive
relative to / . The intersection f'^SnSuppE contains a divisor Q on /~'S;this is
obvious if Ε is Q-Cartier, and in the general case one can use rational approximation
to arrange that Ε is Q-Cartier without changing the support (see just before (1.1)).
By Corollary 3.11, the multiplicity of the boundary (BY)f-\S along Q is 1 . But
then the restriction

(KY +f~lS + BY+ £) | y- l 5 , , = (Κγ + (S + D)Y)\f-lsv

= f*(K + S + D)\f.Xsv = ft{Ks. +DS,) = Kf-is* + ( Z V ) r ls"

is not log canonical, at least along Q, where f$: f~xS" —• Sv is the map of the
normalizations induced by the restriction /j/--ic- More precisely, {Ds»Y s" is
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not a boundary, since its multiplicity at Q is > 1. Thus we get a contradiction to
Ks" + Ds" log canonical. In the case when Ks* + Ds* is divisorially log terminal, the
divisor Κ + S + D is at least log canonical.

If the image Μ of an exceptional divisor with log discrepancy 0 passes through Ρ
and the log discrepancy over its intersection with S (more precisely, over v~l(Mr\S)
for Ks* + DSv in a neighborhood of P) is > 0, then by the above Κ + S + D + εΗ
is log canonical for a general hypersurface through Μ in a neighborhood of Ρ ,
because Ks* + (D + eH)s" is log terminal. This contradicts the choice of Μ and Η.
Hence there is an exceptional divisor for S" with image M' in v~x(M C\S) that
passes through Ρ and has log discrepancy 0 for KSv + Ds» . Then since the final
divisor is divisorially log terminal, since normal crossings extend, and Κ + S + D
is log canonical, it follows that the boundary S + D is normal at general points of
M' and the exceptional 0 log discrepancies of Κ + S + D near these general points
lie only over normal crossings, that is, Μ lands in one of them locally. This proves
that Κ + S + D is divisorially log terminal. The same arguments work assuming that
Ks» + Ds" is log terminal and \Ps»\ = 0. Moreover, in the final case there are no
normal crossings, apart from the trivial S, so that \_D\ — 0 near S. Q.E.D.

We get the next result from conditional inversion 3.4, Example 1.6 and Corol-
lary 3.11:

3.12. Corollary. The inversion problem 3.3 holds for surfaces.

3.13. Weak inversion of adjunction. In addition to the assumptions of 3.3, suppose
that X is Q-factorial. Then S+D is a boundary in a neighborhood of S; moreover,
in the case when Ks» + Ds» is log terminal and [Ds»\ = 0, we have [D\ = 0 , as
follows obviously from Corollary 3.12.

3.14. Definition. In the study of log divisors Κ + D, an important role is played
by the locus of log canonical singularities LCS(A' + D), the union of the images of
all divisors with log discrepancy < 0, that is, the union of components of D with
multiplicities > 1 and the images of exceptional divisors with log discrepancy < 0 .
If X is nonsingular and the support of D consists of nonsingular divisors crossing
normally, then LCSfX + D) is the union of components of D with multiplicities
> 1 . It is easy to deduce from this that LCS{K + D) is always a closed subvariety
of X (or analytic subspace in the analytic case). LCS(AT + D) — 0 for an effective
divisor D if and only if [D\ = 0 and Κ + D is purely log terminal.

3.15. Corollary. If D is effective, but K + S + D possibly not log canonical, then the
locus of log canonical singularities of Ks, + Ds, contains the prime divisors Ρ whose
image v(P) is contained in the support of [D\ Π S. If moreover X is ^-factorial
then LCS{KSv + Ds*) contains v~\[D\ nS).

Proof. If the multiplicity of Ds* at Ρ is < 1 then the assertion follows along
Ρ from Corollaries 3.12 and 3.11. In the opposite case the statement is obvi-
ous. Q.E.D.

3.16. Corollary. If D is an effective divisor, then K + S + D is log canonical in
codimension 2 in a neighborhood of S if and only if the different Ds* is a boundary;
K + S + D is log terminal in codimension 2 in a neighborhood of S if and only
in addition every reduced irreducible component Ρ of Ds» lies on a unique prime
component Dt of D, and the intersection S Π A is normal along Ρ.

Proof. This follows from (3.2.3) and from Corollaries 3.12 and 3.11. To verify that
S and Dj cross normally along Ρ if K+S+D is log terminal we have to use the fact
that it is strictly log terminal in codimension 2 , together with Corollary 3.8. Q.E.D.
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From now until the end of §3, X is a surface.

3.17. Example. The inversion of adjunction 3.3, proved in Corollary 3.12 in dimen-
sion 2 , is useful for checking log canonical and log terminal. If the surface X and
a curve S c X are both nonsingular, then Κ + S + Β is log canonical (purely log
terminal) in a neighborhood of a point Ρ e S if and only if (S ·Β)Ρ < 1 (respec-
tively (S -B)p < 1), where (· )/> is the local intersection number at Ρ . Indeed, by
Proposition 3.9 and (3.2.1), in a neighborhood of Ρ

KS + BS = KS + OS + B\S = KS + (S- B)P.

For example if Β = bD with b > 0, and D is a nonsingular curve having simple
tangency to 5 at P , then Κ + Β is log canonical (log terminal) in a neighborhood
of Ρ if and only if b < 1/2 (respectively < 1/2); but by Corollary 3.16 it is not log
terminal if b = 1/2.

3.18. Lemma. Suppose that S and S' are curves through a point Ρ e X, and that
Κ + S + S' is log canonical at Ρ. Then in a neighborhood of Ρ:

(3.18.1) S and S' are irreducible and nonsingular.
On a minimal resolution of singularities f: Υ -* X, the following hold:

(3.18.2) f~lS, E\, ... , En, f~lS' is a chain of nonsingular curves, with E-t =
P1 exceptional curves of f'.

(3.18.3) The log discrepancy coefficients of Et for K + S + S' are all equal to 0;
for K + S they are all contained in (0, 1) Π Q, and for Κ either they are all contained
in (0, 1) Π Q, or Ρ e X is a Du Val singularity of type An for some η > 0, and all
are equal to 1 (that is, the (genuine) discrepancy is 0, the log discrepancy 1).

(3.18.4) Iff*S = f-lS + '£eiEi then e,e(0, l ) nQ.

(3.18.5) If the index of Κ + S equals m and e\ — (m - l)/m then m = η + 1
and all the Et are (-2)-curves, that is, Ρ e X is a Du Val singularity of type An .

(3.18.6) // f*{S + S') = f~lS + f~xS' + Σ?'ι
Ε> then either all e\ e (0, 1), or

they are all equal to 1 and Ρ e X is a Du Val singularity of type An.

(3.18.7) Suppose that we set

f*(S + cS') = f~]S + cf~' S1 + Σ e"E'

for some 0 < c < 1 ; then e" > 1/2 and E\2 < - 3 is only possible in the case when

Ex

2 = - 3 , E2

2 = ••• = En

1 = -2 and c> 1/2.

Note that K + S + S' log canonical implies that

(S + S' c X) = ((xy = 0) c A2)/(Z/m),

where Z/m acts diagonally (see [Kawamata]).

Proof. All the assertions except for (3.18.4-7) are well known ([7], (9.6)), and can
also be deduced easily using the general technique of §1 (Example 1.6). Note that /
is log terminal and is a minimal model of K + S + S'. Here minimal means that
any other log terminal extraction factors through it. (3.18.4-6) follow from (3.18.3)
using the log crepant components of (1.5.7), after possibly interchanging S and 5" .
It follows from the assertion (3.18.7) that the log discrepancy of Κ on contracting
Ει is less than 1/2 , and hence £ , 2 = - 3 . If E2

2 = • • • = £, 2 = -2 and E,+]

2 < - 3
then KY + (l/2)(Ei + • • • + Ei+\) is nef on E\ , ... , En , which is impossible for



3-FOLD LOG FLIPS 123

e'( > 1/2. Hence Ex

2 = - 3 , E22 — ••• = En

2 — -2 and by the same argument
Ο 1 / 2 . Q.E.D.

§4. TWO TERMINATIONS

Except where otherwise stated, X is a 3-fold throughout the remainder of the
paper.

4.1. Theorem on special termination. Let f:X—>Z be a projective morphism; we
consider a chain of successive modifications of f: X —> Ζ in extremal rays with
(K + B)R < 0. Assume that X is Q-factorial and the support of every flipping ray R
of the chain lies in the reduced part of the boundary [B\. Then the chain terminates
(in the analytic case, over a neighborhood of any compact subspace of Z).

Here the support Suppi? of an extremal ray R is the exceptional subvariety (or
analytic subspace) of cont« , that is, the union of curves C with cont^ C = pt.

4.2. Lemma. Suppose that

»i

where «, and k^ are natural numbers, dj is a finite (ordered) set of numbers in the
interval (0, 1), and

m - \ Γ Λ / / ,

ρ = + V —bi < 1,
m ^—' m

i
with natural numbers m and /,. Then substituting the bi gives an expression of the
same type for ρ in terms of the dj.
Proof. If «, = 1 for all / with /, > 1 then this is obvious:

Ρ = \- ̂  — ' ' lJdj.
m t-*1 m J

j
Otherwise, there exists a u n i q u e /o such that «,-0 > 2 a n d /,·„ > 1 , for if there were

2 or m o r e t h e n
m-\ 1 / 1

Now /,0 = 1 for the same reason, since if lio > 2 then

m-\ 2 1
ρ > + — χ - = 1.

m m 2
H e n c e

m- 1
P = ' ' ' Σ

l'kiidj Q.E.D

Proof of Theorem 4.1. In the analytic case, since / is projective, we can shrink Ζ
to a neighborhood of a compact set in such a way that the relative Picard number
P(f) = P(X/Z) is finite. For the proof below, we also need to know that there are
only finitely many components of the boundary and their intersections relative to / .
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As usual (see [8], 5-1), since a divisorial extremal contraction reduces the relative
Picard number p(f) by 1, we can restrict ourselves to a chain consisting of flips
only. Note that by the projectivity of / (and by choice of Ζ in the analytic case),
we can also assume that the reduced boundary [B\ has only finitely many irreducible
components S, and restricts to only finitely many irreducible curves on each S, or,
more precisely, on the normalization S" in the locus of log canonical singularities
of the restriction (K + # W . After a flip in a ray R with (A: + B)R < 0, the

assumption that Κ + Β is log canonical implies that the modified Κ + Β is purely
log terminal along the flipped curves (since discrepancies decrease, see (1.5.6) and
Lemma 1.7, [25], (2.13.3), or [8], 5-1-11 (3)).

Hence if as a result of a flip one such curve again lands on a component S
of the reduced part of the boundary [B\ , then by Corollary 3.11 and (3.2.3), it
does not lie in the locus of log canonical singularities of the modified log divisor
{K + 5) |S" · Therefore the number of irreducible components of LCS(A' + Β)\·ςν
does not increase under modifications, and decreases if one of the flipping curves
happens to be contained in it. Hence we can restrict to the case that the supports of
flipping rays are not contained in LCS(K+B)\£V . By the same arguments, (Κ+Β)<™

is purely log terminal after a modification in a neighborhood of a flipped curve. But
there are only a finite number of points at which (K + B)\gv is not log terminal,

and we can suppose that (K + B)\gv is log terminal at the points Ρ of intersec-

tion of LCS(AT + #Wi/ with the support of flipping rays. Moreover, in a neigh-

borhood of such a point Ρ, the set LCS(AT + 5 W " will be a nonsingular curve

C, and from two applications of Corollary 3.10 on the coefficients of the different,
by Lemma 4.2, the multiplicity of Ρ in the boundary appearing in the adjunction
formula for (K + B)\s>'\C is °f the form

AM — 1 v^ // /
AM t-' AM

;
with m and /, natural numbers; recall that bi are the multiplicities of the boundary
Β. We can again assume that the set of points Ρ with ρ > 0 is finite, and it's
exactly through these points that the flipping curves are allowed to pass. In fact,
ρ decreases under flips, since on the original model it decreases on contracting a
curve Γ with (Κ + Β)ι§ν ·Γ < 0; and on the flipped model, ρ does not increase
on extracting a curve Γ+ with (K + B)igv ·Γ + > 0. By the purely log terminal

condition ρ < 1, and obviously, there are only a finite number of possible decreases
of ρ under flips in curves through Ρ . Thus we can suppose that the flipped curves
are disjoint from LCStA' + #Wi/ . It is not hard to verify that the number Hell

of curves (including nonexceptional curves) (6) not lying in the locus of canonical
singularities, and not contracted to it, and having log discrepancy < 1 (compare
Lemma 8.7 below) is finite. By the proof of (3.2.3) this number Hell(X with Β),
rather like the difficulty of the log terminal case ([25], Definition 2.15), does not
increase under flips, since the log discrepancy coefficients of (K + B)<gv do not

decrease, by standard assertions (see (1.5.6) and Lemma 1.7, [25], (2.13.3), or [8],
5-1-11 (3)), and similarly the multiplicities of the boundary of (K + B)igi, do not

(6) Exercise: Find a better name for the number Hell(X with B) . I wrote Hello referring to the
famous computer program of that name, and Shokurov modified it referring to the works of Dante Alighieri
(1265-1321); neither is particularly logical.
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increase. Thus the multiplicities of the boundary bt of (Κ + Β)\ςν can take only a

finite number of standard values

b = γ > —bi.
m ^ m

ι

N e w m u l t i p l i c i t i e s o f t h i s k i n d c a n o n l y a r i s e w h e n s o m e flipped c u r v e s a g a i n l a n d o n

S ; t h e n t h e i r l o g d i s c r e p a n c y f o r (K+B)\gv i n c r e a s e s . H e n c e i n p r o v i n g t e r m i n a t i o n

w e c a n a s s u m e t h a t a f t e r e a c h f l i p t h e flipped c u r v e s l i e o u t s i d e t h e m o d i f i e d \_B\ .

H e n c e t h e t e r m i n a t i o n f o l l o w s f r o m t h e b o u n d e d n e s s o f t h e r e l a t i v e P i c a r d n u m b e r

p(f\S*). Q . E . D .

F r o m t h e t e r m i n a t i o n j u s t p r o v e d w e g e t t h e f o l l o w i n g r e s u l t .

4 . 3 . P r o p o s i t i o n . Let X be a normal algebraic {or analytic) 3-fold, and suppose that

the log divisor K + B and the boundary Β are such that
(i) Κ + Β is possibly not log canonical;
(ii) the boundary Β is a reduced LSEPD divisor (in the analytic case in a neigh-

borhood of a projective subspace W c X);
(iii) X has canonical singularities (respectively is nonsingular) outside Β.
Then in a neighborhood of Β (in the analytic case, over a neighborhood of W)

there exists a log canonical (respectively strictly log terminal) model f:Y—>X of X
for K + B.

Proof. Recall that a log canonical model of X for Κ + Β is a log canonical model
/ : Υ —> X of the identity morphism of X for K + B (see (1.4-5) above for defini-
tions and properties). As the first approximation to such a model, take a projective
resolution of singularities f:Y—*X (in the analytic case, in a neighborhood of W),
such that all the exceptional divisors Et that contract to Β, and all the irreducible
components of f~lB, are nonsingular and cross normally. Shrinking X if necessary
to a neighborhood of Β, we can assume by the classification of canonical surface
singularities that the exceptional divisors not contracted by / to Β are contracted
by / along a ruling to curves, outside f~lB .

First, we establish the existence of a strictly log terminal model of / for Κγ +
f~lB + Y^Ej, where the sum runs only over the exceptional divisors over Β; we
can omit the exceptional divisors contracted to curves outside Β from the boundary
by assumption (iii). The existence of this model is proved according to the general
ideology explained in §1 after 1.5. Since KY + f~lB + Σ&ί is strictly log terminal,
if Κγ + f~xB + Σ,Εΐ i s n e f relative to / then / will itself be the required model.
Otherwise, by the theorem on the cone and the contraction theorem ([8], 4-2-1 and
3-2-1) there is an extremal contraction g: Υ —> Ζ over X , with Κγ + f~' Β + ^ E,
negative relative to g; it is birational since / is. If g is a divisorial contraction
then Kz + g(f~xΒ + Y^Et) is again strictly log terminal, and the modification / is
projective by the Properties of log flips, 1.12.

Now write Υ for Ζ and / : Υ —> X for its contraction to X. For flipping
contractions g we do the same thing. Thus using termination 4.1, we eventually get
to the model we want provided that flips exist and their curves lie in the boundary.
Now note that by induction on the number of transformations one can check that the
exceptional divisors for / outside /~ ' Β are nonsingular ruled surfaces, and that the
flipping curves of extremal rays lie over Β . In the same way, our modifications leave
Υ nonsingular outside the boundary. Indeed, the boundary f~lB + Y^E, lies over Β
and by (ii) is an LSEPD divisor relative to / , hence also relative to g . Thus flipping
curves always lie on the boundary, both before and after flipping, and it is enough
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to check that nonsingularity is preserved by a contraction g of a surface to a curve
outside the boundary. But by the classification of extremal contractions of surfaces
in the terminal case, and by induction, such a contracted surface is nonsingular
outside f~lB, ruled with fibers negative with respect to Κγ and not intersecting the
boundary, and contracts to a set that is nonsingular outside the boundary.

Suppose now that g is a small contraction over X , on which KY + f~lΒ + Σ Ε ι
is negative. Since the boundary f~xB + Y,Ei is a reduced LSEPD divisor over g,
and X is nonsingular outside it, the flip exists by Proposition 2.6.

By the theorem on eventual freedom ([8], 3-1-2) and by (ii), since the model
/ is strictly log terminal, we get the required log canonical model by contracting
curves Γ over X with (KY + f~xB + ££, ·) Γ = ° · Indeed, by (iii) the boundary
of this model contains all the exceptional divisors. In particular, the exceptional
divisors with multiplicity 0 in the boundary contract outside the boundary to curves
of canonical singularities. Note that if X has no singularities outside Β then we
can choose / such that all its exceptional divisors lie over Β , which allows us to
construct a strictly log terminal model of X for Κ + Β . Q.E.D.

4.4. Corollary. Suppose that Κ + S + Β is such that
(i) Κ + S + Β is R-Cartier but a priori not log canonical;
(ii) the boundary S + Β is a reduced LSEPD divisor, for example is Q-Cartier;
(iii) S is an irreducible surface on which Ks* + Bs* is log canonical;
(iv) X has canonical singularities outside S + Β .
Then Κ + S + Β is log canonical in a neighborhood of S.

This is a first particular case of Problem 3.3 on the inversion of the log canonical
condition, which we prove for 3-folds (see Proposition 5.13 and Corollary 9.5 below).

Proof. The result is local, so we can restrict to a neighborhood of some point S.
But then by Proposition 4.3 there exists a log canonical model of X for Κ + S + Β .
Hence what we want follows from conditional inversion, 3.4. Q.E.D.

We now upgrade somewhat the philosophy of § 1. As a preliminary step, we add
something to the boundary to make it an LSEPD divisor relative to / . Next we
construct a log terminal model for the increased boundary. Then we modify this
model by reducing the additions to the boundary (see Example 4.7 and the proof of
reductions 6.4-5). For this termination 4.1 is sufficient. Hence the main difficulties
here are concerned with the construction of flips, and in particular with flips of 0-
contractions arising when the additions to the boundary are reduced.

4.5. 0-contractions (flops). Let f:X—>Z be a projective morphism that is finite
over the general point of Ζ (in the analytic case we require that there exists a big
Cartier divisor on Ζ in a neighborhood of a compact subset W c Ζ ; this holds,
for example, if Ζ is a Stein space or W is projective). Suppose that / and the
boundary Β + Η satisfy

(4.5.1) Η is an effective divisor possibly having components in common with
B.

(4.5.2) There exists an LSEPD divisor D relative to / with [B + H\ < D <
\B + H\.

(4.5.3) Κ + Β is strictly log terminal (in the analytic case, over a neighborhood
of W).

(4.5.4) For some ε with 0 < ε < 1 the divisor Κ + Β + εΗ is log canonical.
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(4.5.5) Κ + Β + εΗ is nef relative to / .
Here we do not have to assume that X is 3-dimensional. An extremal ̂ -contrac-

tion over Ζ is an extremal contraction g: X —> Υ over Ζ such that

(4.5.6) there exists e' with 0 < ε' < ε for which Κ + Β + ε'Η is nef relative
to / and numerically 0 relative to g.

(4.5.7) Κ + Β is numerically negative relative to g .
Under assumptions (4.5.1-5) I claim that either Κ + Β is nef relative to / , or

there exists a O-contraction (either way, in the analytic case, over a neighborhood
of W). Moreover, a modification of O-contractions relative to Κ + Β (if it exists)
preserves all the assumptions (4.5.1-5). Hence if for a fixed εο with ε > eo > 0 we
know that small O-contractions with ε > ε' > εο can be flipped relative to Κ + Β ,
and that chains of such flips terminate, then eventually we get a strictly log terminal
model / for Κ + Β + ε0Η when ε > ε0 or the initial divisor Κ + Β + ε0Η is log
terminal, and a log canonical model for Κ + Β + ε0Η when εο > 0, or for εο = 0
when (4.5.2) holds with Η = 0.

Proof. Every Cartier divisor on X is big after adding divisors pulled back from Ζ
if necessary, and has effective multiples. Because / is finite over the general point
of Ζ , this statement is equivalent to the existence of a big Cartier divisor on Ζ .
This always holds in the algebraic case (and by assumption in the analytic case).

Suppose that Κ + Β is numerically negative on some curve over Ζ . Then we can
choose a minimal ε > 0 for which all the assumptions (4.5.1-5) hold. Then by the
Kleiman ampleness criterion [10], (Κ + Β + εΗ)± is a supporting hyperplane of the
Kleiman-Mori cone NE(X/Z) (in the analytic case, ~NE(X/Z; W), and similarly
below). I claim that it is rational polyhedral in a neighborhood of the face Μ —
(Κ + Β + ε//)-1 Π ΝΕ(Χ/Ζ). This means that Μ is spanned by a finite set {/?,•}
of extremal rays, the whole cone ΝΕ(ΛΓ/Ζ) is spanned by Μ together with the
complement of some neighborhood of Μ , and there exists a Cartier divisor D which
is negative on Μ \ 0 and such that

NE°(X/Z) = {v e NE{X/Z) | Dv < 0}

is a neighborhood of Μ. Indeed, we can assume by the previous argument that D
is effective. The sets NEK+B+I:H+OD(X/Z) for any δ > 0 are also neighborhoods of
Μ. \ί Κ + Β + εΗ + 3D were strictly log terminal, then the theorem on the cone
([8], 4-2-1) would imply our assertion that NE(X/Z) is polyhedral near Μ. But
by (4.5.2-4) we can reduce the multiplicities of the boundary to get Β' < Β + εΗ
such that Κ + B' is strictly log terminal, [B'\ — 0, and the intersection number of
Κ + Β + εΗ + SD with curves over Ζ is preserved, that is,

(Κ + Β + εΗ + SD) • ν = (Κ + Β' + 3D) · ν for all v e ΛΓ, (Χ/Ζ).

Hence if we replace Κ + Β + εΗ + δΰ by K + B' + 3D for small δ , by the fact that
D is effective and by stability (1.3.4), we get what we want. Note that Κ + Β + ε'Η
strictly log terminal for all 0 < ε' < ε is equivalent to conditions (4.5.3-4). By the
choice of ε and by the polyhedral property of Μ Φ 0 just proved, there exists an
extremal ray R in a neighborhood of Μ , and therefore in Μ, on which Κ+Β+ε'Η
is negative, but (Κ + Β + ε//)/? = 0, since R is in Μ . It follows that HR > 0 and
(K + B)R < 0. This ray defines the required O-contraction because / is finite over
the general point of Ζ .

A modification in a O-contraction relative to K + B preserves assumptions (4.5.1-
2) obviously, and preserves (4.5.3-5) and the projectivity of / by the standard
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properties of flips 1.12; as the new ε we take ε'. Note also that if the divisor Η Φ 0
then it is not contracted by a O-contraction since it is nef with respect to it, and hence
it remains Φ 0 under our modifications. Hence if these modifications with ε' > ε0

terminate, then decreasing ε down to εο, by (4.5.3) we eventually get a strictly log
terminal model of / for Κ+Β+ε0Η. Then for εο > 0, by the polyhedral result just
proved and the contraction theorem ([8], 3-2-1) we get a log canonical model of /
for Κ + Β + εϋΗ. It is obtained by contracting the face Μ. By the same arguments
all R-Cartier divisors numerically 0 on Μ, and in particular Κ + Β + EQH, descend
to this model. When εο = 0, we need to use the additional condition and again the
same arguments with Η = 0. Q.E.D.

From now on X is again a 3-fold.

Proof of Corollary 1.11. First of all, a log canonical model can be constructed locally.
Hence we can assume that Β is an LSEPD divisor such that the principal Cartier
divisor D with \_B\ < D < Γ Ι̂ contains the locus of log canonical singularities of
Κ + Β. Consider a strictly log terminal model g: Υ —• X. By (1.5.5), and since
K+B is obviously purely log terminal outside D, the contraction g fails to be small
only over D. Thus DY is an LSEPD divisor for g and [BY\ < Supply < \BY] .
By the arguments at the end of the preceding proof and the finiteness of g over the
general point of Ζ we get the contraction to the log canonical model of / . Q.E.D.

4.6. Corollary. Under the assumptions (4.5.1-5), for fixed ε > εο > 0, the existence
of flips of small ^-contractions with ε > ε' > ε0 and the fact that the curves contracted
by these lie on the reduced part of the boundary of Β imply that there exists (1) a
strictly log terminal model of f for Κ + Β + ε0Η when ε > εο or the original divisor
Κ + Β + εΗ is log terminal, and (2) a log canonical model for Κ + Β + ε$Η when
ε0 > 0 or when ε0 = 0 and (4.5.2) holds with Η = 0.

Proof. Direct from 4.5 and termination 4.1. Q.E.D.

4.7. Example. Suppose that the boundary β is a reduced LSEPD divisor, but
Κ + Β is not necessarily log canonical. Then to construct the log canonical model of
X for Κ + Β in a neighborhood of Β we complement the boundary to Β + Η in
a neighborhood of a fixed point Ρ e Β by adding a reduced Cartier divisor Η such
that X is nonsingular outside Β + Η and Β + Η is LSEPD in a neighborhood of
Ρ. For Η we can take a general hyperplane through Ρ and through the curves of
singularities of X near Ρ. By Proposition 4.3 there is a strictly log terminal model
/ : Υ —> X for Κ + Β + Η. We can apply Corollary 4.6 to the birational contraction
/ and to the log divisor Κγ + f~lΒ + f~lΗ + Σ Ej, where E, are exceptional for
/ . Here for Η we take f~lH, and for Β we take the remainder of the boundary
f~lB + Y^Ei. (Of course, there are big Cartier divisors on X in a neighborhood of
Ρ.) Since X is nonsingular outside Β + Η, all exceptional divisors of / lie over
B + H. Hence the boundary f~lB + f~lH + ΣΕ· is LSEPD for / , since the same
hold for Β + Η. The remaining assumptions of 4.5 are satisfied by the fact that /
is strictly log terminal for KY + f~lB + f~xH + ΣΕι, with ε = 1 .

Take εο = 0 · Shrinking the neighborhood of Ρ we can assume that all the
exceptional divisors Et that contract to curves have irreducible fibers (in fact, by
Corollary 3.8, nonsingular fibers) outside f~yP, relative to the contraction induced
by / . Hence the curves of small 0-contractions lie on the reduced part of the bound-
ary f~lB + Σ,ΕΪ over Ρ , which is LSEPD for / . Moreover, since the intersection
of such curves with f~xH is positive and Η is Cartier, some exceptional surface
Ej0 has negative intersection with them. But / " ' Β + Σ Ει xs a^° LSEPD for / ,
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and hence f~lB or one of the exceptional surfaces over Β intersects them non-
negatively (positively if /(£,„) C B). (Moreover, positively by Corollary 3.8, since
f~lB + /~ιΗ + ΣΕί is strictly log terminal.)

Thus we need to establish the existence of flips in the case that Κ + Β is strictly log
terminal and negative relative to a small extremal contraction, and the boundary Β
is reduced and has two irreducible components, intersecting the contracted curves, one
numerically negative and the other nonnegative relative to the contraction. In what
follows, in Corollary 5.15 we will establish the existence of such flips. Thus according
to the previous corollary we get a strict log terminal model / : Υ —» Χ for Κ + Β in
a neighborhood of Ρ . If in addition K + B has log terminal singularities outside Β ,
then it is purely log terminal outside Β , and by (1.5.7) all exceptional surfaces of /
lie over Β . Thus the reduced boundary of Κγ + f~l Β + ^ £; is an LSEPD divisor,
hence by Corollary 4.6, X has a log canonical model for K + B in a neighborhood
of P.

4.8. Definition. A limiting chain of length η is an ordered set of real numbers
0 < d\, dj, • •. , dn < 1, for which there exist natural numbers η, Φ 0 and ki} such
that

(4.8.1) Σ,Ρί = 1 or 2

(4.8.2) ρ, = (η, - \)lm + Ejkijdj/rij < 1 , and

(4.8.3) for each j = \, ... , η at least one k,j φ 0.
See Definition 6.1 and Proposition 6.2 for an explanation of the term limiting

chain. We can introduce a partial order on such limiting chains:

. , , r ,,, ί η < m or η = m and
{dj}j=i,...,n>idj}j=i,...,m ^ \dj > d'j for j= I,...,n.

4.9. Second termination (Chicago Lemma). Limiting chains satisfy the a.c.c. with
respect to this partial order.

Proof. Consider an increasing sequence of limiting chains d'j for / = 1, ... of
length «/. Note that when «/ decreases the sequence increases. Hence, restricting
to a subsequence if necessary, we can assume that all chains have the same length
«/ = η . But then all the d'j are bounded below by a positive constant min dj , which
implies that nonzero numbers of the form

are bounded from below by a positive constant, and hence by (4.8.1) are finite in
number.

This finite number is universal: the number of nonzero p\ is bounded by a uni-
versal constant independent of /. Hence, once more restricting to a subsequence
if necessary, and renumbering as appropriate, we can assume that there are always
exactly m nonzero p\:

\>p[,pl

2,...,p'm>0.

I claim that each sequence p] , pf , ... does not have a decreasing subsequence.
Indeed, if there is such a subsequence, then it is bounded by a constant < 1 . Hence
by (4.8.2) in it the n\ are bounded, and hence restricting to a subsequence we can
assume that they are constant: n\ = nt. Thus the fact that the d'j are bounded from
below by a positive constant implies that the natural numbers kjj are bounded and
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finite independently of /. Again restricting to a subsequence we can assume the /c/.
are constant: kfj = &,-_,·. But then the p\ decrease, which contradicts the fact that
d] < dj < • • • is nondecreasing. Moreover, it follows by the same argument that p\
has a constant subsequence if and only if, possibly after passing to a suitable subse-
quence dj , we get n\ — «,, kl

tj = kjj and dj = dj for ktj / 0 . Thus restricting to a
subsequence dj we can assume that all sequences p\ are monotonically nondecreas-
ing, and by (4.8.3), one of them is increasing. But this contradicts the finiteness of
values of the sum £ > f = 1 or 2 from (4.8.1). Q.E.D.

§5. COMPLEMENTARY LOG DIVISORS

In this section X is first arbitrary, then a surface, and towards the end a Q-factor-
ial 3-fold. Except where stated otherwise, we write a subboundary in the form S + D
to distinguish its reduced part:

S = Σ A and D
d, = \ di<\

5.1. Definition («-complement). A log divisor K+S+D, not necessarily log canon-
ical, is η-complementary for a natural number η if there exists a Weil divisor D+

such that

(5.1.1) D+>S + {l/n)[{n

(5.1.2) Κ + D+ is log canonical;

(5.1.3) n(K + D+) is linearly 0.

In particular, D+ is then a subboundary, Κ +_D+ has index η and nD+ is an
integral divisor. The condition (5.1.1) says that D = nD+ - nS - [(n + 1)DJ is an
effective divisor; this is an η-complement or simply complement of Κ + S + D . By
(5.1.3), 25 e I - nK - nS - [(n + l)D\ | , so that Κ + S + D is «-complementary if
and only if there exists 25 e | - nK - nS - |_(« + 1)Z>J | such that

Κ + D+ = Κ + S + (l/n)([(n + \)D\ +D)

is log canonical, where D+ — S + (\/n)([{n + l)D\ + D) . The case we are ultimately
interested in is when the subboundary S + Β is a boundary. Then by (5.1.1), B+ is
also a boundary.

5.2. Examples.

(5.2.1) On P1 , consider a nonpositive divisor Κ + Β with [B\ = 0 , that is,

Β = Σ bip< > w i t h 0 < £,• < 1 and ^ b,•< 2,

where i>, are distinct points of P1 . Then K+B is 1-, 2-, 3-, 4-or 6-complementary.
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Moreover, if we assume in addition that b\ > b2 > • • • , then

Κ + Β is not , , . ^ ι
, , ,. <*=> b\, b2, 03 > 5 ;
1-complementary J - 2 >

Κ + Β is not 1- or b\, b2>\ and &3 > 5 ,
2-complementary or b\ = \, b2 = b3 = \ and b4 = 5;

AT + tfisnot 1-, 2- ^^ b{ > | , b2 > \ and ft3 > \,
or 3-complementary or b\ = \, b2 = 63 = \ and b4 = \\

Κ + Β is not 1-, 2-, , 4 , ^ 2 J L ^ 1
. . , ^ <ί=» σι > ? , o2 > 4 and 03 > 4.3- or 4-complementary · — 5 > ^ — 3 J — 2

Of course, a general element 5 e | - nK - [{η + \)Β\\ will always do as an «-
complement, provided that this linear system is free and \_B\ = 0. But on Ρ1 , the
linear system \D\ of an integral divisor D is free if and only if it has degD >
0. Hence in our example, a divisor Κ + Β is «-complementary if and only if
deg((A: + (l/«) [{n + \)B\) < 0, or equivalent^,

deg L(« + l)Bj = Σ L(" + !)*iJ < 2n.

For example, K + B fails to be 1-complementary if and only if Σ \2bi\ > 2, that is,
b\ , b2 , and b^ > 1/2 . The subsequent more precise statements are proved similarly
case-by-case, and finally we prove that Κ + Β is 6-complementary if b\ > 4/5,
b2>2/3 and b3 > 1/2. (Recall that YJbl < 2.) It is not hard to deduce from what
we have said that if K + B is «-complementary but not 1-or 2-complementary then
the boundary of the «-complement of Κ + Β does not have reduced components for
η = 3, 4 or 6, that is, L#+J = 0.

Note that the special case (2/3, 1/2, 1/2, 1/3) does not occur if Κ + Β is nu-
merically negative, or equivalently £)£,·< 2 .

(5.2.2) Although we usually assume that X is irreducible, we relax this require-
ment in the following example, which will occur in the proof of Theorem 5.6 below.
Suppose that X is a connected, possibly reducible or incomplete curve with nodes
(ordinary double points). The log canonical divisor Κ + Β is then taken to be the
nonsingular canonical divisor Κ (that is, the Cartier divisor corresponding to the
dualizing sheaf) plus a nonsingular boundary Β — Σ bjPj. The nonsingularity of
the divisor means that its support is contained in the nonsingular part of X, and
log canonical is defined by the inequalities 0 < b, < 1 , which is the same as the
definition of boundary. However, we assume more, namely that

[B\ = 0, that is, 0 < bt < 1,

and that Κ + Β is numerically nonpositive on each irreducible component of a
connected complete algebraic subvariety (or analytic subspace) S c X. Then K + B
is 1-, 2-, 3-, 4- or 6-complementary in a neighborhood of S, and is 1-or 2-
complementary if X is singular, in particular if it has more than one irreducible
component. More precisely, if 5 = X is a curve of arithmetic genus 1 , an "elliptic
curve", then K + B numerically nonpositive implies that X is a "wheel", and Β = 0
so that Κ is 1-complementary. In the opposite case, S is a chain of P1 s. \i S = pt.
then the chain is empty and Κ + Β is 1-complementary.

The case when S = X is a chain of a single element P1 in a neighborhood of
S was treated in (5.2.1). If the chain has two or more curves, or one curve and
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S Φ X in a neighborhood of S, then again by numerical nonpositivity of Κ + Β the
boundary Β is concentrated on the two end curves S of the chain when S = X,
and possibly on one of the two end curves when S φ Χ; corresponding to this
the boundary Β breaks up into a sum Β = Β1 + Β" = £ ( > 1 b\P[ + £ ( > 1 b'/P!'
or Β = Β' = Σ;>ι6,'^7> where Ρ/ and Ρ" are points of the~end curves. ~In this
case Κ + Β is 1- or 2-complementary, and if we suppose that b[ > b'2 > • • · and
b" >b'{>··- then K + B fails to be 1-complementary if and only if b[ = b'2 = 1/2
and b" = b'{ = 1/2. In particular, Κ + Β is 1-complementary if one of the extreme
components is missing, or if Κ + Β is negative on one of them.

(5.2.3) Surface quotient singularities. It is well known (see for example [6], (1.9))
that an isolated surface singularity Ρ e X is log terminal if and only if it is a
quotient singularity C2/G with G c GL(2,C). Then Κ is 1-, 2-, 3-, 4- or 6-
complementary. Moreover, except for the canonical surface singularities which have
0 as complement,

Κ is not P e l has graph
1-complementary Dn, E6, ΕΊ or £ 8

Κ is not 1- or Ρ e X has graph
2-complementary E$, Εη or £g

Κ is not 1-, 2- or „ „ , . „ „
3-complementary <=* P £ X h a s & r a p h £ 7 o r £«

^ is not 1-, 2- 3-
or 4-complementary 6 K 8

The singularities having the exceptional graphs Εβ, Εη and £g have been exten-
sively treated [15]. According to Brieskorn's classification (see [2], [4], and [Utah],
Chapter 3) the minimal resolution of a surface quotient singularity has exceptional
curves £, = P1 crossing normally, and the graph of the resolution is one of An ,
Dn, E(,, Εη or £g; it is marked with the selfintersection numbers Et

2 < -2. In the
analytic case, the required assertions comes from this and a case-by-case analysis.

For example, in type An the exceptional set of the minimal resolution / : Υ —» X
is a chain Εχ, ... ,En of P1 s with normal crossings, and it can be complemented by
two curves S and 5" that cross the two extreme curves E\ and En normally (see
Proposition 3.9 above and the remark following it). By the adjunction formula the
Cartier divisor Κγ + S + S' + Σ Et is numerically 0 relative to / , and also linearly
0 since log terminal singularities are rational. Hence the pushdown f(S + S') is a
1-complement in a neighborhood of a singularity of type An . The remaining cases
can be analyzed in a similar way, and the algebraic case reduces to the analytic case
by standard cohomological arguments. By Corollary 5.9 below, the classification of
log canonical surface singularities with boundaries in terms of complements does not
become more complicated.

(5.2.4) {Alekseev, Shokurov, Reid [1], [21], [24]). The canonical divisor Κ of a
Q-Fano variety with log terminal singularities of index n is «-complementary if X
has Fano index m/n > dimX - 2 (or = 1 for 3-folds). (7) Let Η be the ample
generator of PicY, H' e \mH\ a general element, and set 0+ = (l/n)H'. (In the
case of a 3-folds with rational Gorenstein singularities, choose a general element
0+ 6 | - Κχ\.) From [1] one deduces that for m > 2 the linear system \mH\ is

(7) Here n= index of singularities, so — nKx is Cartier, and -nKx = mH ; the Fano index is m/n .
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free, and for m = 1 the Fano index is > dim X - 2 only for surfaces. Furthermore,
choosing an «-complement in this way gives a log terminal Κ + 0+ (canonical for
the 1-complement in the 3-fold case). In this case we say that Κ is strongly n-
complementary.

(5.2.5) (Reid [22], (6.4)). AT is strongly 1-complementary in a neighborhood of
any 3-dimensional terminal singularity.

(5.2.6) (Mori). [12], (7.1), says that for an analytic 3-fold with terminal singular-
ities, Κ is strongly 1-complementary (8) in a neighborhood of an irreducible curve
of a flipping extremal ray R with KR < 0.

(5.2.7) (Mori, Morrison and Morrison [17]). Κ is not always strongly 1- or 2-
complementary in a neighborhood of a 4-fold terminal singularity (or even an iso-
lated quotient singularity by a cyclic group of prime order p). Is A" 1- or 2-
complementary? If not, for what « does an «-complement exist?

We start with some general facts coming more-or-less from the definitions.

5.3. Lemma. If D' is a subboundary and K + D' is n-complementary, then D' > D
implies that K + D is n-complementary.

Proof. Set D+ = D'+ . Q.E.D.

5.4. Lemma. For a birational contraction f:X—>Y

K + D n-complementary ==> Κγ + f(D) n-complementary.

Proof. Set f(D)+ = f(D+). Q.E.D.

5.5. Proposition. Suppose
(i) Κ + S + D is log canonical and a <Q-divisor (or log terminal and X is Q-

factorial);
(ii) / : X -> Ζ is a birational contraction such that Κ + S + D is numerically

antiample relative to f.
Then Κ + S + D is n-complementary in a neighborhood of any fiber of f.

Proof. Since D is a Q-divisor, by the Kleiman ampleness criterion [ 10] there exists
a natural number « such that —n(K + S + D) is very ample relative to / . In this
case as «-complement we can take a general hyperplane section

De \-nK-nS- [(n + l)D\\ = \ - n(K + S + D)\.

Adding a general D preserves the condition that K+S+(l/n)[(n + l)D\ = K+S+D
is log canonical, and a fortiori, so does adding (\/n)D. The case when Κ + S +
D is log terminal and X is Q-factorial can be reduced using stability (1.3.4) and
Lemma 5.3 to the preceding case after increasing slightly the multiplicities of the
subboundary D to make them rational numbers. Q.E.D.

For surfaces we have a more exhaustive and precise result.

5.6. Theorem. Let f:X—*Z be a birational contraction of a surface X, and D a
subboundary such that

(i) / contracts all the curves with negative multiplicities in D ;
(ii) K + D is numerically nonpositive relative to f;
(iii) K + D is log canonical.

(8) Either 1- or 2-complementary in [16]. Mori and Kollar have proved 1-complementary ([Mori-
Kollar], Theorem 1.7), but the proof is very indirect.
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Then K + D is I-, 2-, 3-, 4- or 6-complementary in a neighborhood of any fiber
of f. More precisely, if Κ + D is not 1- or 2-complementary, then K + D is either
3-, 4- or 6-complementary in such a way that for any log terminal extraction Υ —> X
there is a unique irreducible component of D+Y which is reduced, and it is exceptional
on Z. {The notation D+Y was introduced after adjunction formula 3.1.)

A complement, or more generally a log divisor Κ + D, is exceptional if for any
extraction Υ —> X, there is at most one irreducible component of Dy which is
reduced. Thus the 3-, 4- or 6-complements of the theorem are exceptional. In
the exceptional types E6, Εη and £g of Example (5.2.3), Κ has an exceptional
complement.

Proof. Fix a fiber /~ · Ρ for Ρ e Ζ . Adding to K + D an effective and numerically
nonpositive divisor, for example f*H for a general hyperplane section Η through
Ρ, we can arrange that Κ + D is actually log canonical. This means that there exists
an extraction Υ —> X for which DY has a reduced component that intersects the
inverse image of the fiber. Then by Lemma 5.3, the required complement reduces
to the same type of complement for the new subboundary. On the other hand, by
Lemma 5.4, the theorem reduces to the case that the surface X is nonsingular, the
support of the subboundary D consists of nonsingular irreducible curves crossing
normally. By the above, we can also suppose that D has a reduced component inter-
secting the fiber. We now write the subboundary S + D according to our convention,
where S is reduced and intersects the fiber, and [D\ < 0. Then assumptions (ii)
and (iii) of the theorem take the form

(ii') Κ + S + D is numerically nonpositive relative to / ;
(iii') Κ + S + D is log canonical.

Using the following assertion we can suppose that S is connected in a neighbor-
hood of the fibers.

5.7. Connectedness Lemma. Let D be a divisor on a surface X and f:X—>Z a
birational contraction such that

(i) / contracts the components of D with negative multiplicities;
(ii) K + D is numerically nonpositive relative to f.
Then the locus of log canonical singularities of K+D is connected in a neighborhood

of any fiber of f.

To prove the lemma and Theorem 5.6, we need a further result.

5.8. Nonnegativity Lemma. Let X be a nonsingular surface, S c X a nonsingular
curve, and D a numerically contractible divisor such that Κ + S + D is numerically
nonpositive on its support. Then S intersects only components of D with nonnegative
multiplicities.

Proof. A curve D is numerically contractible if it is complete (compact in the ana-
lytic case) and its components have negative definite intersection matrix; a divisor
is numerically contractible if its support is contained in a numerically contractible
curve. Discarding the effective part of the divisor D, we can assume that the mul-
tiplicities of D are all negative. If now D Φ 0 then by negative definiteness there
exist an irreducible curve Ε c SuppD with DE > 0. It follows from this that
(K + S)E < 0. Hence £ is a (-l)-curve, and S is disjoint from Ε. Let g: X —> Υ
be the contraction of Ε . Then after substituting S i-> g(S) and D i-> g(D), the log
divisor KY + g{S) + g(D) satisfies the previous conditions. However, the number
of components of D has decreased. After a number of such contractions, D = 0,
when the conclusion of the lemma is obvious. Q.E.D.
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Proof of Lemma 5.7. Suppose that Υ —> X is a resolution of singularities on which
the support of DY consists of nonsingular curves crossing normally. Then the locus
of log canonical singularities of Κ + DY is the union of components with multi-
plicities > 1, and its image is the locus of log canonical singularities of Κ + D.
Hence verifying the lemma reduces to the case that X is a nonsingular surface and
Supp D consists of nonsingular curves crossing normally. We can also suppose that
this set of curves contains exceptional curves. We can combine the components of a
fiber into an effective divisor F which is numerically negative on the fiber. Suppose
that there is a minimal ε > 0 for which the locus of log canonical singularities of
K + D + eF has fewer connected components than that of K + D. Then D + eF has
a reduced chain ^ i=i £, of irreducible curves contained in the fiber with multiplic-
ities 1 , whose ends intersect the curves EQ and En+i with multiplicities > 1 . By
construction Κ + D + eF is numerically negative on the curves of the chain. Using
the preceding lemma it is easy to check that the components of Κ + D + eF with
negative multiplicities do not intersect the chain. Note for this that a curve made up
of such components is numerically contractible, since by (i) it is contained in a fiber.

Consequently, the log divisor Κ + Ε0 + Εχ-\ \-En + En+l is negative on the curves
of the chain, and in particular on E\ , hence degATg, = (K + E\) · E\ < -2 . This is
of course impossible. Hence no such ε can exist, and by connectedness of the fiber
this is only possible if the locus of log canonical singularities of Κ + D is connected
in a neighborhood of the fiber. Q.E.D.

We return to the proof of Theorem 5.6. Note that according to the assumptions
on the support of S + D the components of 5" are nonsingular and cross normally,
and hence S is a curve with nodes (ordinary double points). By Lemmas 5.7-8 S
is connected in a neighborhood of a fiber, and does not intersect components of D
with negative multiplicities. To prepare to apply the Kawamata-Viehweg vanishing
theorem, we make D into a Q-divisor, of course without losing our assumptions.
Indeed, if the multiplicity d\ of Z>, is irrational and D, is not contracted by / ,
then it can be reduced to d\ in such a way that [(n + l)d'i\ = [(n + l)d,} for each
of η = 1 , 2, 3 , 4 or 6. If A is contracted by / and Κ + S + D is numerically
negative relative to / then we do the same. The remaining Z), are numerically
contractible and Κ + S + D is numerically 0 on them, so that we deduce that their
multiplicities are rational. Hence the Kawamata-Viehweg vanishing theorem applies
to -(« + l)(K + 5 + D), giving

R[fd?x(-nK-(n+ 1 ) 5 - L(« + l)D\)

= Rxft#x{K + \-{n + l)(K + S + D)]) = 0.

Thus in a suitable neighborhood of the fiber under study, the linear system

\-nK-nS-[(n + l)D\ |

cuts out a complete linear system on S. By the assumption that the support has
normal crossings, D does not pass through singularities of 5 . Therefore by nonsin-
gularity of X, and possibly after a suitable choice of canonical divisor Κ , we can
assume that the support of K+S+D , and hence also that of -nK-nS- [(n + l)D\ ,
does not contain the curve S, and meets it in nonsingular points. Hence their re-
strictions

Ks + D<s and - nKs - [{n + l)D\>s

to 5 are nonsingular. Since only the effective part of D meets S, Dig is effective.

Again by normal crossings \D\s\ = [D\ i$ = 0, and by (ii), Ks + Di$ is numerically
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nonpositive on the intersection of the fiber /~' Ρ with S. This set is connected, since
S is connected in a neighborhood of f~lP. Thus by Example (5.2.2) we see that
for η = 1, 2, 3, 4 or 6 there exists an «-complement

= \ - nKs - [(n

Since | - nK - nS - [(n + l)D\ | restricts surjectively to S, it contains an effective
divisor D which restricts to this: (D)ig = Di$ , and hence the restriction

(K + S + (l/n)(L(« +l)D\+ D ) ) | 5 = KS + (1/n) ([(n + l)D\S\ +

is log canonical. Hence by inversion of adjunction 3.12 (compare Example 3.17),
Κ + D+ is log canonical^ in a neighborhood of S for the effective divisor D+ =
S + (1/«)([(« + 1)DJ + D). I claim that this gives the necessary «-complement. It
remains to check that Κ + D+ is log canonical. If not, by the preceding lemma on
connectedness and the fact that Κ + D+ is log canonical in a neighborhood of S,
but not log canonical in a neighborhood of the fiber, it follows that there exists an
irreducible curve C that is contained in the fiber, passes through a point that is not log
canonical for Κ + D+ , is contained in D+ with multiplicity 1, and intersects some
component D+ with multiplicity 1 at another point. But this is not possible, since
K+D+ numerically 0 on C implies that C = P1 and (K+D+),c - Kv\ +D', where

by the nonnegativity lemma D' = (D+-C)\Q is an effective divisor having two points

with multiplicities respectively > 1 by Corollary 3.12 and > 1 by Corollary 3.15.
This contradicts Kv\ + D' numerically 0, since deg.KPi = - 2 . (Compare the end
of the proof of the connectedness lemma.)

In conclusion we note that by (5.2.2), the 3-, 4- or 6-complements obtained in our
construction occur only when the curve S = P1 is exceptional relative to / , and the
boundary (K+D+)t£ = Κ$+{\/η)( Un + l)D\^\+Dig) has no reduced components.

Hence by Corollary 3.12, in a neighborhood of S the log divisor Κ + D+ is purely
log terminal and has a unique irreducible components S, hence by Lemma 5.7 it
follows that the complements obtained are exceptional. Q.E.D.

5.9. Corollary. On a surface, Κ + Β is 1-, 2-, 3-, 4- or ^-complementary in a
neighborhood of any point. In particular the same holds for Κ in a neighborhood of
any log canonical surface singularity.

5.10. Corollary. At a log canonical, but not log terminal, surface singularity, the
canonical divisor Κ has index 1, 2, 3, 4 or 6.

5.11. Corollary. Add to the assumptions of Theorem 5.6 the following: the existence
of a reduced component of D meeting the fiber but not contained in it; to (ii) we add
the condition that K + D is numerically negative on the fiber; and to (iii) the condition
that K + D is log terminal. Then KY + DY is {-complementary in a neighborhood
of the inverse image of the given fiber for any resolution f: Υ —• X.

Proof. As in the proof of the theorem we can assume that X is nonsingular and
that the components of D are nonsingular and cross normally; moreover, we can
preserve the preceding assumptions by increasing D slightly on the blown up curves.
Then S, the reduced part of the divisor D, is a curve with nodes, is connected in
a neighborhood of the fiber by Lemma 5.7, and by assumption is not contained in
the fiber. By Lemma 5.8 and assumption (i) of Theorem 5.6, D is a boundary in a
neighborhood of 5". As we see from the end of the proof of the theorem, Κ + D is
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«-complementary if the restriction (K + B)i$ is. But (K + B)i$ is 1-complementary

by (5.2.2), if we slightly increase the components of D — S. Q.E.D.

From now on in this section, and in the remainder of the paper, X is a Q-factorial
3-fold.

5.12. Theorem. Let f: X -* Ζ be a small contraction of X with boundary S + Β,
and suppose that

(i) Κ + S + Β is log terminal;
(ii) Κ + S + Β is numerically nonpositive relative to f;
(iii) S is reduced and irreducible,
(iv) [B\=Q.
Then K + S + B is 1-, 2-, 3-, 4-or ^-complementary in a neighborhood of any

fiber of f lying on S. More precisely, if Κ + S + Β is not 1- or 2-complementary
then K + S + B has an exceptional 3-, 4- or ^-complement.

Here Κ + B+ is exceptional if (K + B+)\$ is exceptional (see the paragraph

following Theorem 5.6).

Proof. Since X is Q-factorial, by stability (1.3.4) we can perturb the irrational mul-
tiplicities of Β to arrange that Β is a Q-divisor, while preserving all the conditions
(i)-(iv) and [{η + l)B\ for η = 1 , 2, 3, 4 or 6. Fix the fiber f~lP over /> e Ζ ,
and consider a resolution of singularities g: Υ —> Ζ such that the exceptional divi-
sors and all irreducible components of g~l(K + S + B) are nonsingular and cross
normally. By assumption and because Ζ is normal, the fiber f~lP under study is
a connected curve (or a point) lying over S. This curve on 5 is also contracted by
/ . Moreover, since S is normal (see Corollary 3.8), there is a commutative square

S C X

hi I /
τ — z

where Γ is a normal surface and fr the contraction induced by / . The resolution
g defines a similar square

g~lS C Υ

gr I I fog

Τ - Ζ

where gr = fr ° {gi - io) is a resolution of singularities of the normal surface

Τ. Hence (/ο g)~lP Π g~lS = (g. - ί ο ) " 1 / ' 1 / ' is a connected fiber contracted
by gr • Consider on Υ the log divisor Κγ + g~lS + D with the subboundary
g~lS + D = (S + B)Y , or in other words, with f*(K + S + B) = KY + g~lS + D.
Since K + S + B is purely log terminal, the divisor D is not only a subboundary,
but its multiplicities are all < 1 . By normal crossing Dg-iS = D, _ΐς, is also a

subboundary with multiplicities < 1 . Furthermore, the log divisor

Kg->s + Dg-,s = (KY + g~lS + D)^]s = f*(K + S + B)^ls

= (g\g-lsr(K + S + B)]S = (glg_lsr(Ks + Bs)

is log terminal, has no reduced boundary components and is numerically nonpositive
relative to gr • By (3.2.2) and since Β is effective, g,p-ic, hence also gj , contracts



138 V. V. SHOKUROV

the components of Dg-iS with negative multiplicities. Thus the birational contrac-
tion gT and the subboundary Dg-is satisfy the conditions of Theorem 5.6. Hence
the log divisor Kg-iS + Dg-\s is 1-, 2-, 3-, 4-or 6-complementary; its complement
Dg-iS is an element of the linear system | - nKg-\S - [(« + \)Dg-is\ \. Now note
that -(KY + g~^ + D) is a Q-divisor that is nef and big relative to the contraction
f ° g. Hence by the Kawamata-Viehweg vanishing theorem

Rl(f° g)*0Y{-nKY -(n+ l)g~lS - [(n + \)D\)

Hence | - nKY - ng~lS - |_(« + l)D\ | on Υ cuts out the complete linear system

| - nKg-\s - [(« + X)Dg-iS\ | on the surface g~lS in a suitable neighborhood of the

fiber (f°g)~lP. Here [{n + l)Dg-ls\ = [(n + 1)Z>J, ^ holds by normal cross-

ings. Thus there is a divisor D e | - nKY - ng~xS - \_{n + l)D\ \ with (~D), -ι ο =

Dg-iS . I claim that g{D) is an «-complement of Κ + S + Β . To check this, intro-
duce the divisor D+ = g~lS + (l/n)([(n + 1)DJ + Z>) . Then by construction, D+
satisfies (5.1.1) and (5.1.3), but instead of (5.1.2) we only know that the restriction

is log canonical. Since being linearly 0 isjpreserved under birational contractions,
B+ = g(D+) = S + (l/n)(L(« + l)B\ + g(D)) also satisfies (5.1.1) and (5.1.3), but
instead of (5.1.2) we only know that the restriction (K + B+)\Q = K$ + B£ is log
canonical. Indeed,

(g]g-isr(Ks + B+) = g*(K + B+)lg-ls = {KY + D+)]g^s

is log canonical. Hence it remains to check that Κ + Β+ is log canonical. For this,
in addition to the restriction (K + B+)i$ = Ks + B£ being log canonical, we need

the effectiveness

B+ - S = g(D+) -S= i (L(n + \)B\ + g(D)) > l- {[(n + l)B\) > 0.

For η — 1, Κ + Β+ log canonical follows from Corollary 4.4. Indeed, by (i) the log
divisor Κ + B+ has only log terminal singularities outside B+ , and in fact canonical
singularities, since it has index 1 . For η > 2 we need the following more general
case of inversion of adjunction 3.3.

5.13. Proposition. The inversion problem 3.3 is true for 3-folds under the present
assumption that X is Q-factorial.

One can deduce from Proposition 5.13 that if S, is a deformation of surface sin-
gularities Pt € St and PQ is a log canonical (log terminal) singularity of So and
the total space of the deformation is Q-Gorenstein, then P, e St are log canonical
singularities (respectively log terminal singularities) for t close to 0 (compare [3]).
By inversion of ajunction 3.3, this holds (conjecturally) in any dimension and with
boundaries. Moreover log canonical singularities (respectively log terminal singu-
larities) can be treated as singularities of Kodaira dimension 0 (respectively — oc),
which leads to the conjecture on the upper semicontinuity of the Kodaira dimension
of singularities under deformations (as in Ishii [5], for example).

For the proof of Proposition 5.13 we use the following result, which has essentially
already been proved.
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5.14. Lemma. Suppose given a log divisor Κ + S + Β and a contraction f: X —• Ζ
that is small in a neighborhood of some fiber f~lP, such that

(i) Κ + S + Β is log terminal;
(ii) Κ + S + Β is numerically negative relative to f;
(iii) L̂ J = 0;
(iv) S is reduced;
(v) S has two irreducible components meeting /~' Ρ, one nefand one numerically

nonpositive relative to f.
Then Κ + S + Β is l-complementary in a neighborhood of f~xP.

Note that in (v) a component of S having nonzero intersection number with the
fiber f~lP simply intersects it, and a component that is numerically 0 on f~lP
and intersects it must contain it.

Proof. By (v), S has an irreducible component S~ which is nonpositive relative to
/ . Since X is Q-factorial, by (i) S~ is a normal surface, and by connectedness the
whole contracted fiber of / is contained in it. If we slightly reduce the multiplicity
of the components S' = S-S~ then the new log divisor Κ + S~ + B' satisfies all the
conditions of Theorem 5.12 and S' + Β > Β'. By (3.2.3) and (i), Ks~ + (S' + B)s-
is log canonical (even log terminal), and by (ii) it is numerically negative relative
to the induced birational contraction of the fiber. From (v) and Corollary 3.11, it
follows that there exists a reduced component (S' + B)s intersecting the fiber, but
not contained in it. The log divisor Ks- + (S' + B)s- satisfies the assumptions of
Corollary 5.11. Thus KT + (S'+B)^_ is l-complementary for an arbitrary extraction
g: Τ —> S~ . In particular, this holds for the resolution of singularities g, \ <-,_ of

the proof of Theorem 5.12. But the inequality S' + Β > Β' implies that

where D is the divisor defined by g*(K + S~ + B') = KY + g~lS~ + D . Thus by
Lemma 5.3,

Kg-ls- + Dg-,s- = (KY + g-lS~ + D)]g.ls.

has a 1-complement, hence by the part of the proof of Theorem 5.12 already estab-
lished K + S~+B' is l-complementary. But slightly decreasing the multiplicities of
the components of S' gives [2B'\ = S' + [2B\ , and hence by (5.1.1) K + S + B is
also l-complementary. Q.E.D.

5.15. Corollary. If in addition to the assumptions of Lemma 5.14 / is an extremal
birational contraction, Β = 0 and S has an irreducible component that is numerically
negative relative to f, then a flip of f exists in a neighborhood of the indicated fiber.

Proof. By the preceding lemma, in a neighborhood of the fiber there is a reduced
boundary B+ such that Κ + B+ is a log canonical divisor of index 1 , and Κ + B+

is numerically 0 relative to / . Hence B+ > S, and B+ is reduced and has a
component intersecting the fiber positively. On the other hand, by assumption there
exists a component of S intersecting the fiber negatively. Hence B+ is an LSEPD
divisor for / is a neighborhood of the exceptional fiber. It follows from (i) that
Κ + B+ has log terminal singularities outside B+ . Hence by Proposition 2.7 there
exists a flip of type II. Q.E.D.

5.16. Corollary. If the boundary Β is reduced and Κ + Β is not necessarily log
canonical {nor log terminal outside B), then in a neighborhood of any point Ρ e Β
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there exists a strictly log terminal model {respectively a log canonical model) X of
Κ + Β, even in the case that X is not Q-factorial, but Β is LSEPD.

Proof. By Example 4.7, it is enough to have flips of small extremal contractions under
the assumption that X is Q-factorial, Κ + Β is strictly log terminal and negative
relative to / , Β is reduced and has both components that are numerically negative
and positive relative to / . But such flips exist by Corollary 5.15. Q.E.D.

Now we can strengthen the flip of type I.

5.17. Corollary. Suppose that X is a 3-fold, not necessarily Q-factorial, and the log
divisor Κ + Β and the birational contraction f: X —> Ζ are such that

(i) Κ + Β is nonpositive relative to f;
(ii) the boundary Β is a reduced LSEPD divisor for f containing the exceptional

set of f;
(iii) Κ + Β is log terminal outside Β.
Then there exists a flip of f relative to Κ + Β.

Proof. Decreasing Β and applying the theorem on eventual freedom ([8], 3-1-2), we
can check that f(B) is a reduced LSEPD. By (ii) Kz + f{B) is log terminal outside
f{B). The existence of a flip is a local fact. Hence we can restrict to a neighborhood
of a nontrivial connected fiber f~lP with Ρ e Ζ . By Corollary 5.16, in a neigh-
borhood of Ρ there is a log canonical model of Ζ for Kz + f{B). According to
Lemma 1.7 this gives us the required flip of / . Q.E.D.

5.18. Corollary. If, in addition to the assumptions of Lemma 5.14, the birational
contraction f is extremal, then f has a flip in a neighborhood of the indicated fiber.

Proof. We start from the fact that if S has an irreducible component numerically
negative for / then it is normal by Corollary 3.8, since Κ + S + Β is strictly log
terminal. Then S cannot have a component that is numerically 0 relative to /
and which intersects the fiber. Indeed, otherwise this component would intersect the
first curve outside the birational contraction, which by Corollary 3.16 contradicts
Κ + S + Β log terminal. Hence by (v) S has a component that is positive relative to
/ . Therefore since / is extremal, in such a situation B+ is numerically LSEPD for
/ , and hence LSEPD for / , since Κ + S + Β is strictly log terminal. But Κ + B+
is log terminal outside B+ . Thus the flip of type II exists by Proposition 2.7.

Thus we can suppose that all the components of S are nef relative to / . More-
over, by (v) S has a component containing a fiber and numerically 0 on it. Again,
since Κ + S + Β is log terminal and by Corollary 3.16, this is only possible if the
remaining components of S in a neighborhood of the fiber intersect it positively. In
particular, by (v) there is a component of S that is positive relative to / . If B+

has a component which is negative relative to / then once more B+ is an LSEPD
divisor, and there exists a flip of type II by Proposition 2.7. In the opposite case
all components of B+ are nef relative to / . Then discarding components of B+

intersecting the fiber of / positively, we arrive at the flip of Corollary 5.17. Q.E.D.

5.19. Corollary. If Κ + Β is a log divisor, not necessarily log canonical, then in a
neighborhood of [B\, there exists a strictly log terminal model of X for Κ + Β, even
if X is not Q-factorial, but Β is R-Cartier and [B\ is an LSEPD divisor. Under
the same assumptions, if Κ + Β is log terminal outside \B~\ then a log canonical
model exists. In the analytic case, the same conclusions hold in a neighborhood of a
projective subspace W c \B\ .

Proof. The boundary Β can be increased by adding an effective divisor Η (in the
analytic case, in a neighborhood of W) in such a way that the new boundary Β + Η
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is reduced, Cartier, and X is nonsingular outside Β + Η. As Β + Η we can take
a sufficiently general hyperplane section passing through the singularities outside the
support of the boundary Β and through the support of Β. The reducibility of
such a divisor follows from Bertini's theorem, since for m > 0, the linear system
\D + mH - X) Ci\ on the projective closure of X has base locus U C, union the
singularities of X (respectively, in a neighborhood of W), where D is an integral
Weil divisor, Η the hyperplane section and C, irreducible closed subvarieties of
codimension > 2 . This follows easily from the sheaf-theoretic description of linear
systems and the Serre vanishing theorem (in the analytic situation, by [18], 0.4, in a
suitable neighborhood of W).

From this point on, one can work as in Example 4.7. Applying Proposition 4.3
to Κ + Β + Η, we get a strictly log terminal extraction of / in a neighborhood of
[B\ (in the analytic case, in a neighborhood of W), such that the whole boundary
f~lB + f~lH + J2Ei is an LSEPD divisor for / , since it is contracted to the Cartier
boundary Β + Η. Note also that Η is E-Cartier, since by assumption Β is R-
Cartier. In the construction of the log terminal model of Example 4.7 we need to
replace Β by its reduced part \_B\ . The existence of flips can be checked locally
over Ζ , and it follows by Corollary 5.18. However, to construct the log canonical
model, the arguments of Example 4.7 are also good enough. Q.E.D.

Proof of Proposition 5.13. By inversion of adjunction 3.4, and the fact that X is
Q-factorial, this follows from Corollary 5.19. Q.E.D.

Conclusion of the proof of Theorem 5.12. We apply Proposition 5.13 with D = B+ -
S. Note that in the case we consider S is normal, that is, S" = S. The final
assertion of the theorem follows from the fact that if Κ + S + Β does not have a
1- or 2-complement, then neither does Kg-\S + Dg-iS . But then by Theorem 5.6,
Kg-\S + Dg-iS has an exceptional 3-, 4-or 6-complement. According to the proof
and definition, the same holds for Κ + S + Β . Q.E.D.

We have the following variant of flips of types I and II.

5.20. Corollary. Let f:X—>Z be an extremal contraction and K + B a log divisor
such that

(i) K + B is log terminal outside the support of the boundary \B] ;
(ii) K + B is numerically 0 relative to f;
(iii) the reduced part of the boundary [B\ has two irreducible components that are

numerically negative and positive relative to f.
Then there exists a flip of f with respect to any divisor.

Proof. Let S+ be the component that is positive on the contracted curve. Since /
is extremal, there is a unique nontrivial flip, and by (ii) and Lemma 1.7 it can be
constructed as a log canonical model for Κ + Β - S+ over Ζ . Thus we can also
restrict to the case of a connected curve contracted by / to a point Ρ. Hence by
Corollary 5.19 there exists a strictly log terminal extraction g: Υ —> X. By (1.5.7)
g*{K + B) = KY + Βγ , and by construction this is strictly log terminal. Hence
by (ii) h = f ο g is a strictly log terminal model of Ζ for Kz + f(B). By (iii)
/( l B \) = [f(B)l i s LSEPD. But the reduced part of the boundary BY lies over
[f{B)\ by (i), and hence is an LSEPD divisor for h . Moreover, we can apply
Corollary 4.6 to / = h , Η = h~lf(S+) for ε = 1 and ε0 < 1 close to 1 . Again
by (iii) it remains to check the existence of flips of small 0-contractions h over Z
such that the reduced part of the boundary Βγ has irreducible components Η and
S that are respectively positive and negative relative to / . Note that, decreasing
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Η slightly, Κγ + Βγ becomes negative relative to h and log terminal. Hence by
Theorem 5.12 we deduce that for β < 1 and close to 1, the log divisor Κγ + βΒγ

is 1- or 2-complementary. Exceptional complements drop out by construction in
the proof of Theorem 5.6, since S and Η are preserved in a complement. In the
case of a 1-complement, there exists a flip of type II. The case of a 2-complement
reduces our corollary to the situation when the following additional condition holds:

(iv) 2(K + B) is linearly 0 in a neighborhood of the contracted curve.
Then 2(KY + Βγ) is also linearly 0 relative to g, which by Proposition 1.12

is preserved under modifications in O-contractions. Then the required flips are of
type III. The condition (iv) holds because, by construction, KY + BY becomes log
terminal on decreasing the multiplicity of Η in the boundary Βγ . Q.E.D.

§6. SPECIAL FLIPS

The convention of §5 is no longer in force here: when writing Κ + S + Β , we do
not necessarily assume L̂ J < 0 ·

6.1. Definition. A small projective birational contraction / of a connected curve is
limiting for a log canonical divisor Κ + S + Β if the following conditions (6.1.1-5)
hold:

(6.1.1) Κ + S is strictly log terminal;

(6.1.2) S is an irreducible surface that intersects the contracted curve and is
nonpositive relative to / ;

(6.1.3) every irreducible component of the fractional part {B} is negative rel-
ative to / ;

(6.1.4) the log divisor Κ + S + Β is negative relative to / ;

(6.1.5) in a neighborhood of the contracted curve, K+S+B' is not log canonical
for any B' > Β with the same support as Β .

f is special if in addition / is extremal (in the analytic case, both (6.1.1) and the
extremal property are preserved on shrinking to a neighborhood of the contracted
curve, that is, over W = pt., the image of the exceptional curve for / , so in partic-
ular the fiber is irreducible), and

(6.1.6) Β is integral, that is,

(6.1.7) Κ + S + Β is strictly log terminal.

The significance of this assortment of conditions should become clear from Propo-
sition 6.2 and the proof of Reductions 6.4-5. The corresponding flips will be called
limiting and special. Note that (6.1.5) follows automatically from (6.1.6), since if Β
is integral, increasing its multiplicities must either change the support or violate the
boundary condition b, < 1.

6.2. Proposition. If f is a limiting contraction then the multiplicities 6 ,6(0, 1) of
Β form a limiting chain (see Definition 4.8) of length equal to the number of irreducible
components of Β with fractional multiplicities.

Note that if there are coincidences between the multiplicities 6, of different prime
divisors D,, these can be viewed as a single multiplicity for their sum, which is a
reduced but reducible divisor. Then Proposition 6.2 remains valid. In particular,
we can take the distinct multiplicities /?, as a limiting chain, and we do this in our
reduction below.
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6.3. Lemma. Let Ρ e X be a point of a surface X at which Κ + Β is not log
terminal, and suppose that in a neighborhood of Ρ, the multiplicities b, of irreducible
and nonreduced components of Β can be written

bl + y j t

rii y nt

 J

where nt, kjj are natural numbers, and d} is a finite ordered set of numbers from
the interval (0, 1). Then for some i, the d} with kjj Φ 0 form a limiting chain.

Proof. Let / : Υ —> X be a log terminal model of the surface singularity Ρ e X
(see Example 1.6). By assumption its fiber is nonempty, and by Lemma 5.7 it is a
connected curve of S. Since Ρ is log canonical, by (1.5.7) the log terminal divisor

is numerically 0 relative to / . If the chain d, is empty then it is limiting by def-
inition. Otherwise Β has an irreducible component through Ρ with multiplicity
bi € (0, 1). Its birational transform meets the fiber over Ρ. From this and from
Corollary 3.16 one deduces easily that the reduced part of the boundary S + f~lB
is a chain of curves in a neighborhood of the fiber, and its contracted irreducible
components are copies of P1 . Here the birational transforms of irreducible com-
ponents of Β with b,• € (0, 1) can only intersect its ends, that are contracted to
Ρ. (Under our assumptions there is at most one end not contracted by / , and this
can only be the birational transform of the unique reduced irreducible component
of the boundary Β through Ρ.) For each of the contracted ends Ρ1 , we deduce by
adjunction, the log terminal assumption on Ky + S + f~lB, and Corollaries 3.16
and 3.10 that

Krl+(S + f-lB)P,=OI + ^phPh,

where δ = 0 or 1 , and is 1 only at a point / of intersection of the component P1

with another component 5 , and

mh y mh

with mh , lhi natural numbers. By Lemma 4.2, substituting for the b, in terms of
dj gives a similar expression for the pt, as a sum of the dj. Note that Σ ph = 1 or
2, where the sum runs over all contracted ends, and each d, with k,j Φ 0 for some
/ necessarily appears with nonzero coefficient in some ph . Q.E.D.

Proof of Proposition 6.2. First of all, (6.1.2) and the connectedness of the contracted
curve imply that the contracted curve is contained in S. The surface S itself is
normal by (6.1.1), and by (3.2.3) the restriction Ks + Bs is log canonical. If Ks + Bs

is log terminal and \_BS\ = 0 in a neighborhood of the contracted curve, then these
properties are preserved on slightly increasing Β , and by Proposition 5.13 the log
canonical property of Κ + S + Β is preserved, which is impossible by assumption
(6.1.5). Thus the locus of log canonical singularities Μ = LCS(Ks + Bs) is nonempty
in a neighborhood of the curve, and by Lemma 5.7 is connected.

Suppose first that Μ contains one of the irreducible contracted curves C . Then
by (6.1.3), every irreducible component of Β with multiplicity b, e (0, 1) passes
through C . For a general hyperplane section Η the divisor Κ + Η + S + Β is log
canonical in a neighborhood of the contracted curve, and Κ + Η + S+ [B\ is strictly
log terminal. In particular, Η is a normal surface. According to Corollary 3.10, the
multiplicities of the boundary (S + B)H of the log canonical divisor KH + (S + B)H
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have only multiplicities of the form dt = bj in a neighborhood of the intersection
CnH. By Corollary 3.16, when {Β} φ 0, KH + (S + B)H is not log terminal at
the points of CnH, since in this case Κ + S + Β and Κ + Η + S + Β are not log
terminal along C. Moreover, bj coincides with some dj < 1 in a neighborhood of
CnH. Thus the chain bj is limiting by Lemma 6.3. In the case {B} = 0 the chain
bj is empty and limiting by definition. Hence we also assume below that {Β} Φ 0.

Thus it remains to consider the case that Μ intersects the contracted curve in a
unique point P. By (6.1.3) every irreducible surface in Β with fractional multiplicity
passes through Ρ. By Corollary 3.10, in a neighborhood of Ρ the multiplicities of
the boundary Bs have the form

Now the multiplicities of the contracted curves of the boundary are < 1 and every
bj occurs in each of them. If at Ρ the restriction Ks + Bs is not log terminal,
then again by Lemma 6.3 the chain bj is limiting. On the other hand, if at Ρ the
restriction Ks + Bs is log terminal, then in a neighborhood of Ρ, the set Μ is a
nonsingular irreducible curve through Ρ. Moreover, if an irreducible component
of Β with fractional multiplicity does not contain Μ then one can increase its
multiplicity while preserving the log canonical property of Ks + Bs , and hence also
of Κ + S + Β . This is impossible by (6.1.5). Hence in the case that Ks + Bs is log
terminal, in a neighborhood of Ρ, every irreducible component of Β with fractional
multiplicity must pass through Μ. Hence just as in the first case considered it follows
that the chain bj is limiting. Q.E.D.

6.4. Reduction. Theorem 1.9 is implied by the existence of special flips, and even by
the existence of special flips of the types (6.6.1-2) below.

6.5. Reduction. Theorem 1.10 and Corollary 1.11 are implied by the existence of
special flips, and even by the existence of special flips of the types (6.6.1-2) below.
Proof of Reductions 6.4-5. By Lemma 1.7, to construct the flip of / with respect to
Κ + Β it is enough to construct a log canonical model of Ζ for Kz + f(B); then
the conclusions of Corollary 1.11 will be satisfied. Moreover, according to the proof
of this corollary in §4, it is sufficient to construct a strictly log terminal model of / .
Thus Reduction 6.4 reduces to Reduction 6.5, ]and more precisely, to the reduction
concerning Theorem 1.10.

We now turn to constructing a strictly log terminal model of / in Reduction 6.5;
we add a reduced divisor Η to the boundary Β (in the analytic case, in a neigh-
borhood of W) to get a boundary Β + Η with the properties that X and the
components of Β are nonsingular and cross normally, \_B\ + Η is a Cartier divisor
and is principal locally over Ζ (that is, /* of a Cartier divisor on Z ) , and Κ + Β
is log terminal outside Η . For Η we can take a general element of the linear system
\mf*A - [B\ — f~lC\ with m > 0, where A is an ample divisor on Ζ , and C
is the image in Ζ of the curves contracted by / , the singularities of X and the
irreducible components of the support of Β , their nonnormal intersections and the
points at which Κ + Β is not log terminal. Since / is small and finite over the gen-
eral point of Ζ , both C and f~lC are at most 1-dimensional algebraic subsets (in
the analytic case, analytic subsets) and the base locus of the linear system is exactly
f~lC (compare the proof of Corollary 5.19). To prove this, using Zariski's main
theorem (that is, the Stein factorization), we can contract the exceptional curves of
/ and suppose that / is finite. Then X is quasiprojective (in the analytic case, is
1-complete in a neighborhood of /~' W , see [18], (0.1)).
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Therefore by Bertini's theorem, Η is reduced and nonsingular and the components
of Η + Β cross normally outside f~lC, \_B\ + Η is principal locally over Ζ , and
Κ + Β + Η is log terminal. Now take a resolution of singularities g: Υ —> X with
exceptional set only over f~lC, and such that the composite morphism fog: Υ —»
X —> Ζ is projective and finite over the general point, and all the components of
Βγ + g~1H are nonsingular and cross normally, in particular Ky + By + g~lH is
strictly log terminal. First of all, by the philosophy of § 1 over Ζ (in the analytic
case, over a neighborhood of W) we construct a strictly log terminal model of / o g
for KY + BY + g~lH. Next we apply Corollary 4.6 to this model, with the modified
g~lH for Η, ε = 1 and e0 = 0 . For this we note that [BY\ +g~lH is LSEPD for
f ° g, since by construction it has the same support as the effective Cartier divisor
g*([B\ + H) ~ (/o g)*mA . By Proposition 1.12, this property is preserved under
modifications of g*(\_B\ + H) over Ζ .

Therefore in both constructions flipping curves are contained in the reduced part of
the boundary—in the second, since a modification of g~l Η is a reduced component
of a modification of g*(|_#J + H) and is positive relative to a O-contraction. Thus
the construction of a strictly log terminal model of / for Κ + Β over Ζ reduces to
the construction of flips of small extremal contractions, for which, after discarding
fractional components of the modified boundary Βγ not negative relative to such
birational contractions, conditions (6.1.1-4) are satisfied modulo the connectedness
of the flipping curve. On the contrary, (6.1.5) does not hold since KY + BY is strictly
log terminal and, by stability (1.3.4), when there are fractional components of the
modified boundary Βγ that are negative relative to such birational contractions.

Increasing equal multiplicities equally we get a limiting contraction, the boundary
of which has a chain of distinct fractional multiplicities that is limiting by Propo-
sition 6.2 and is > the same chain for Β. Here, in the algebraic case, we need
to take a neighborhood of a connected component of the birational contraction, to
ensure that its exceptional curve is connected and that the log divisor with the new
boundary will be log canonical; in the analytic case, we can localize to replace the
given birational contraction by the contraction of only one connected component;
under this we may lose projectivity of / o g , (/o g)~l W is as a rule not a flipping
curve and Υ is Q-factorial only after shrinking neighborhoods of (/o g)~l W .

The conclusion is that constructing a log terminal model of f for Κ + Β reduces
either to finding special flips, or limiting flips with chains of distinct fractional multi-
plicities of the new boundary > the same chain for Β . In particular, this localizes
the problem of finding log terminal models.

Thus Reductions 6.4-5 are reduced to the existence of limiting extremal flips.
It now remains to reduce the existence of limiting extremal flips to the existence
of special flips. For this, consider an extremal limiting contraction / that is not
special. Then immediately from the definition, we get that Β either contains a
component that is numerically negative relative to / , or in the case of reduced Β
the contraction / becomes special after discarding certain components that are nef
relative to / . From this and from the extremal property of / it follows that in
a neighborhood of the contracted curve there exists a reduced divisor Η for which
B+H is LSEPD for / , with the relatively principal divisor of the form dH+Y^d,Dj,
where Suppi? = {£),}. Moreover, we can assume that Κ + Β + eH is log canonical
and nef relative to / for some e with 1 > ε > 0. As Η we can take a number
of general elements of a very ample linear system relative to / . By the Q-factorial
assumption on X and Corollary 5.19, in a neighborhood of a contracted curve there
exists a strictly log terminal extraction g: Υ -* X for Κ + Β + εΗ . By (1.5.7) this
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is log crepant, that is,

g*(K + Β + εΗ) = Κγ + Βγ + eg-1 Η,

and it follows from this that fog is a strictly log terminal extraction of Ζ for
Κχ + f{B + εΗ) (in the analytic case, over a neighborhood of W). But by (6.1.1)
X has purely log terminal singularities outside Β + Η. Therefore, again by (1.5.7)
the exceptional divisors of g lie over Β + Η and Βγ + eg~lH is LSEPD for fog
with the components of g~xH having equal multiplicities in the principal divisor.
Thus applying Corollary 4.6 as above with Η the modified g~lH and ε » ε0 > 0,
we get the required flip as the log canonical model of / . In this we need to construct
either special flips or limiting flips with chains of distinct fractional multiplicities of
the new boundary > the same chains for Β .

Now use the notation of Definition 6.1. By second termination 4.9 everything
reduces to special flips for which the chain of fractional multiplicities is maximal, or
equivalently, empty: {B} = 0 and S + Β reduced. In the analytic case, on shrinking
the neighborhood of the contracted curve Ε we can lose Q-factoriality of X and
extremality of / . We can avoid this unpleasantness when S + Β is LSEPD for /
and the flip exists by Corollary 5.17. In the opposite case, discarding irreducible
components of Β that are numerically positive relative to / , we can assume that
S+B has an irreducible component that is numerically negative relative to / . Hence
we only need to consider special flips for which all irreducible components of S + Β
are numerically negative relative to / (compare the proof of Corollary 5.18). By
Corollary 3.16, since we are in the 3-fold case, there are just the following two
possibilities.

6.6. Types of special flips.

(6.6.1) Β = 0 and S is an irreducible surface negative relative to / .

(6.6.2) S + Β — Si + S2 is the sum of two irreducible surfaces 5Ί and S2

negative relative to / .
Thus the assertions of reductions 6.4-5 reduce to the existence of special flips of

these two types. For type (6.6.1), by (1.5.7), and since for suitable Η and 0 <
ε < 1 as above both Κ + S and Κ + S + εΗ are purely log terminal, the strictly
log terminal extraction g: Υ —> X of neighborhoods of the contracted curve Ε is
small and purely log terminal. It follows from this, and from Kawamata's result
on the finiteness of σ(Χ, Ε) (see [7], 1.12, and [19], 3.4), that there exists a small
extraction g: Υ —» X for which Υ is Q-factorial for any analytic shrinking of the
neighborhood of the curve g~[E. Hence according to the preceding construction,
the flips occurring in it satisfy the requirements of speciality for any shrinking of the
neighborhood of the contracted curve, and in particular are extremal in the analytic
sense in a neighborhood of the contracted curve, and this curve is irreducible.

For type (6.6.2), by Corollary 3.8 the curve Ε = 5Ί Π S2 is irreducible and S\
and -S2 cross normally along it. Hence by (3.2.3) the restriction of Κ + S to 5j
is purely log terminal and a strictly log terminal extraction g of any neighborhood
of Ε for Κ + Si is the identity. In fact by (1.5.7) it is small and log crepant for
Κ + S. Moreover, the exceptional curves over Ε land in the surfaces g~'S, and
g~{S2, which is not possible by the purely log terminal property of the restriction
discussed above. Once g is the identity in a neighborhood of Ε , strict log terminal
and extremal are preserved by shrinking to a neighborhood of Ε . Similar arguments
could be carried out for analytic restrictions of any special flips, not only types (6.6.1-
2). Q.E.D.
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By Theorem 5.12, the special flips of (6.6.1) have 1-, 2-, 3-, 4-or 6-complement;
and moreover, if a 1- or 2-complement does not exist, the 3-, 4- or 6-complement
is exceptional. Such birational contractions and their flips will be called special flips
(respectively exceptional special flips) of index « = 1, 2, 3, 4 or 6 if ^ + 5
has an «-complement (respectively exceptional «-complement). For a special flip
of index « the log divisor Κ + 0+ has index « and will be written in the form
Κ + S + Β , where Β = 0+ — S is the «-complement. In distinction to these, the
flips of types I-IV of §2 can be called the basic types; as we will establish, every log
flip can be decomposed in terms of these, resolution of singularities and birational
contractions. All the flips used up to now are of this kind; in the course of this, we
have shown that the basic flips of types I—III are sufficient. The next result is a typical
example of the construction of flips in terms of extractions and contractions.

6.7. Proposition. Flips of type (6.6.2) exist.

Proof. Since Κ + Si + S2 is strictly log terminal, by Corollary 3.8 the surfaces Si
and S2 are normal and cross normally along an irreducible curve C . By (3.2.3) the
restrictions KSi + (£2)5, and KSl + (Si)s2 are log terminal and exceptional on S\
and 5*2 respectively. More precisely, C is the unique reduced component of the
boundaries (Si)s2 and (S2)s, . By the adjunction formula and the proof of (3.2.3)
it follows that the restrictions of KSl + (S2)Sl and KSl + (Si)s2 to C coincide and
determine a log terminal divisor KQ + ΣΡιΡί with p, < 1 , which is negative on C .
In particular C = P1 . By (3.2.2) and Proposition 3.9 the index of C at each point
Pi is a natural number m, such that (/w,· - l)/m, < /?,·. Therefore, there exists a
natural number m depending only on the multiplicities pl such that the index of C
on S\ divides m . For example, it's enough to take m — «! where (« - l)/« > pi
for all /. Since m is universal, the same holds for C on S2 • Hence the negative
constants (C 2 )^ , (C2)Sl and their sum

ση = (Si + S2) • C = (C2)Sl + (C2)Sl

are rational numbers with denominators dividing m .
I now claim that in a neighborhood of C there is a strictly log terminal extraction

g: Υ —> X with a unique exceptional divisor S3, and such that S3 contracts to C
and g is the standard blowup of the ideal IQ of C above the generic point of C .
First of all, there is a projective extraction g which at the generic point of C is
the blowup of the ideal Ic , and such that the exceptional divisors of g, together
with the inverse images g~lSi and g~lS2, are nonsingular and cross normally.
Next, acting according to the philosophy of § 1, we get a log terminal model of g for
KY + (Si + S2)Y • Since Supp£*(S, + S2) < (S, + S2)Y and is LSEPD for g, we
can apply termination 4.1. Flips exist by Corollaries 5.17 or 5.15 (when there is a
component of (Si + S2)y not lying over Si + S2 and negative on the flipping rays).
Write S3 for the exceptional surface over C ; then since the general fiber of S3 —> C
is a P1 meeting Sx and S 2 , that is (KY + S{ + S2 + S3)P' = 0 > 0, it follows that
S3 is not contracted back down to C during this process. It can't contract to a point
since we're working over X .

By (1.5.7), g is log crepant, and by construction g contracts one irreducible
surface S3 to C. Since Κ + Si +S2 restricted to either of Si or S2 is exceptional,
the restriction of KY + (S{ + S2)Y = g*(K + Si + S2) to either of g" 'S, or g~lS2

is exceptional. Hence the surfaces g~lSi and g~lS2 cut out on S3 two disjoint
irreducible curves C) and C2 respectively that map isomorphically to C under
g. Since Υ is Q-factorial, the curves Ci and C2 intersect only the irreducible
components S3 and Si or S2 (the components of the reduced divisor (Si+S2)y).
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Moreover, since Κ + S\ + S2 is divisorially log terminal, the boundary (Si + S2)y
has no other components, that is, (5Ί + S2)Y = g~lSx + g~lS2 + S 3 . In addition,
since

KY + (Si + S2)Y = KY + g-lSi + g-lS2 + S3

is strictly log terminal, the surfaces g~lS\, g~lS2, and S3 are normal, and since X
is Q-factorial the contraction g is extremal. In particular, the surface S3 is ruled
relative to g . Hence the relative Picard number of the composite fog: Υ —> X —> Ζ
is equal to _2^_where / : X —> Ζ is the contraction of C. Therefore the Kleiman-
Mori cone NE( Y/Z) is spanned by two extremal (9) rays Ri and R2 .

Suppose that Ri = R+[F] is spanned by a curve F contracted by g. By con-
struction

KY + g-lSi + g~lS2 + S3 = g*{K + SX+ S2)

is numerically nonpositive relative to fog, 0 on Rx , and negative on some curve
not contracted by g. Hence the other extremal ray R2 is spanned by an irreducible
curve C c S3 not contracted by g and negative for KY + g~lSi + g~lS2 + S 3 . If
neither Q nor C2 generates R2 then there is a decomposition C\ = aF + bC up
to numerical equivalence with positive rational numbers a and b . But this gives a
contradiction:

0 = g~lS2 • C, = ag~lS2 • F + bg~1S2 · C > 0.

Thus for definiteness we can assume C = C2. Then by the preceding relation,
either a = 0 and g~lS2 · C2 = (C2

2)s3 = 0 or a > 0 and g~lS2 · C2 = {C2

2)S} < 0.
In the first case the ray R2 specifies a divisorial contraction h: Υ —> W of the
surface S3 to a curve (transversal to the contraction g). I claim that the modification
h ο g~l: X —>WMsa flip of the contraction / . Indeed, by construction h ο g~x is
a small modification and h ο g~l{S2) is positive on the flipped curve Λ (S3).

The second case, when R2 defines a small contraction, reduces to the first by the
following arguments. The contraction g induces an isomorphism on g~iS2, under
which, by the adjunction formula, the restriction of Kc + ^PiP, is identified with
the restriction of the log divisor KY + g~lS\ + g~lS2 + S3 on C2. Hence by the
argument of the first paragraph of the proof, the 3 negative rational numbers

S3 · C2 = (C2

2)g-ISl = (C2)S2, (C 2

2 ) 5 3 = g~lS2 • C2 ,

σ23 = (g~lS2 + S3) · C2 = g*S2 .C2 = S2-C = (C 2 ) 5 l > σ{2

have denominators dividing m . Hence R2 defines a small contraction of the original
type with smaller invariant σ . Since the denominator is bounded we can use induc-
tion on σ . Thus we can suppose that the curve of R2 can be flipped h: Υ —> W .
But the flip h does not destroy the curve C\ . Thus under this flip the negativity of
the intersection of C\ with KY + g~lS\ + g~lS2 + S3 is preserved. Therefore by
(1.12.4) the cone NE(W/Z) is also generated by two extremal rays /?3 and R4 .

Suppose that R3 is generated by the flipped curve C3 (possibly reduced), which
is the locus of indeterminacy of h~l , and R4 is generated by a curve C4 c Λ (S3)
that is negative against Kw + (Si + S2)w • Since g~xS2 η S3 = C2 and W is Q-
factorial, the surfaces h(S3) and h ο g~lS2 can only intersect along the curve C3.
But this is also impossible by (1.12.1), Corollary 3.16 and the fact ([8], 5-1-11) that
log discrepancies decrease over C3. Thus hog~lS2 is numerically 0 on h(Sj). But
h ο g~lS2 · C3 > 0, more-or-less by definition of flip. Hence R4 defines a divisorial
contraction l:W-+V of the surface Λ (S3) to a point, and lohog~lS2 is positive

(9) A priori, quasiextremal rays: see my commentary (10.8.2).
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against the curve /(C 3). It is not hard to check that the composite l°hog~l: X —> V
gives the flip of / . Q.E.D.

6.8. Proposition. Index 1 special flips exist.

Proof. By definition, in this case there is a complement of K + S, that is, a reduced
divisor Β such that Κ + S + Β is log canonical and linearly 0 in a neighborhood
of the contracted curve. Since Κ + S is negative on the contraction, Β is positive.
Now the contraction is extremal, S is negative and Β positive on the contracted
curve, and hence the boundary S + Β is LSEPD. Thus the required flip is of type II
and exists by Proposition 2.7. Q.E.D.

Lemma 5.7 does not hold for arbitrary birational contractions. However, from it
we deduce the following closely related fact.

6.9. Theorem. Let f: X —> Ζ be a contraction of a surface X such that the log
divisor Κ + Β is numerically 0 relative to f. Then the locus of log canonical sin-
gularities in a neighborhood of any fiber is connected except for the following case: f
is not birational, the locus of log canonical singularities of Κ + Β has two connected
components, and Κ + Β is exceptional in a neighborhood of either of these.

Proof. By Lemma 5.7, we can assume that / is not birational, that is, Ζ is a curve or
a point. Let g: Υ —> X be a strictly log terminal extraction. Since X is normal and
the fibers of / are connected, the fibers of / ο g are also connected, and for Ρ € Ζ
the loci of log canonical singularities LCS(i<: + B) c X and LCS{KY + BY) c Υ
have the same number of components in a neighborhood of corresponding fibers
f~lP and (f°g)~lP for Ρ e Ζ . Since KY + BY = g*(K + B) is log crepant, it
is numerically 0 relative to fog. Thus we can assume that the original Κ + Β is
log terminal. Then the number of connected components of LCS(A" + B) equals the
number of connected components of the reduced part of the boundary D = [B\ .

It is enough to consider the case that D Φ 0 and D is not connected in a neigh-
borhood of the fiber f~lP. Then there is a curve that is exceptional for / and
negative relative to Κ + {Β} = Κ + Β - D . By the theorem on the cone there is an
extremal contraction g: X —> Υ over Ζ relative to which Κ + {Β} is negative. If
g is birational then it contracts an irreducible curve, and, by Lemma 5.7, the locus
of log canonical singularities of Κ + Β in a neighborhood of the curve is connected.
Hence the number of connected components of the locus of log canonical singular-
ities is the same for Κ + Β and KY + g(B). All the assumptions of the proposition
are preserved, and Κ + Β log terminal is replaced by Κ + {Β} log terminal, which
is equivalent to saying that no connected component of LCS(̂ T + B) is an isolated
point. In view of this, we can suppose that after a number of such contractions we
arrive at a contraction g to a curve or point.

Note that in this case, when Ζ is a curve, in the preceding contractions in a
neighborhood of f~lP we may have contracted an irreducible curve Γ intersecting
D but not contained in D. Obviously the ray generated by Γ is extremal, and
contracting it preserves log terminal singularities. Therefore in this case, the final
extremal contraction g is just / . Thus the reduced part of the original boundary Β
does not contain curves exceptional for / , that is, the log terminal extraction is the
identity and Κ + Β is log terminal in a neighborhood of the fiber f~]P . However,
in counting the number of connected components of LCS(AT + B) we can assume
that / is extremal, that is, the fiber f~[P is an irreducible curve. The number of
connected components of the locus of log canonical singularities in this case does not
exceed the number of reduced components of the boundary Κ + Β over a general
point of Ζ . From this we easily get what we want. The assertion that Κ + Β is
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exceptional follows from Κ + Β log terminal in a neighborhood of the fiber.
Now suppose that Ζ = pt. By construction, the number of connected components

of LCS(AT + B) equals the number of connected components of D . If g is a
contraction to a point, then since it is extremal, X has Picard number 1 and D has
only one connected component. If g is a contraction to a curve Υ, then X has
relative Picard number 1, that is, all fibers of g are irreducible. By construction D
is positive against the general fiber of g. It follows that D is connected or consists
of at most two connected components Dx and D2 · In this case Dt are irreducible
curves not contracted to points by g. By what we proved above for the contraction
/ to a curve, Κ + Β is log terminal in a neighborhood of each component D,. The
assertion that Κ + Β is exceptional near Dx or D2 follows from this. Q.E.D.

We strengthen Proposition 6.7 for a further reduction.

6.10. Lemma. Suppose that f: X —> Ζ is an extremal birational contraction with
boundary Β = S\+ Si satisfying

(i) Κ + Β is log terminal outside Β ;
(ii) Κ + Β is negative against the contracted curves;
(Hi) Κ + Si is log terminal;
(iv) the surfaces Sy and S2 intersect all contracted curves and are nonpositive on

them.
Then there exists a flip of f relative to any divisor.

Proof. Since / is extremal there is at most one nontrivial flip, namely the flip relative
to Κ + Β . We can assumed that the contracted curve is connected, and that each of
the surfaces 5", is irreducible in a neighborhood of the contracted curve (compare
the proof of reductions 6.4-5). According to Corollary 5.17 we can also suppose that
one of the surfaces 5,· is numerically negative relative to / . By Corollary 3.8, S\
is a normal surface. The restriction (K + # W is negative and log canonical on

the contracted curve lying on S\ , by (ii) and (iv). Suppose first that this restriction
is not exceptional in a neighborhood of the contracted curve. Then it has a 1- or
2-complement, hence by Theorem 5.12 we deduce that the same holds for Κ + ε Β
with ε < 1 and close to 1.

In the 1-complementary case this leads to a flip of type II. However, by (5.2.2),
the 2-complementary case can only happen if the intersection of the surfaces 5, is
an irreducible curve C, and it is the whole of the contracted fiber. Hence Si is
negative against C. Furthermore, C is the locus of log canonical singularities of
the restriction in a neighborhood of this curve, and by Corollary 3.16 the further
restriction (K + B)\g \QV = KC" + Y,PiPi has one multiplicity p, equal to 1 . Since
KCu + ΣρίΡι is negative, the curve C is rational and all the remaining pt < 1 . But
then by Proposition 3.9 and Lemma 4.2, after renumbering if necessary, p\ = 1 and
p2 = (m — \)/m with m > 1 , and all the remaining p,• = 0. Now using Theorem 5.12
it is not hard to construct a surface S3 in a neighborhood of the point v(P2) passing
through v{P2) and providing a 1-complement. Then on some analytic neighborhood
of C the divisor K + B + S3 is log canonical and numerically 0 relative to / . Thus
the flip / is again of type II.

It remains to consider the case that the restriction (K + B)i$ is exceptional. Then

by (iv) the surfaces Si again intersect in a unique irreducible curve C forming a
fiber of / , and (K + B)ig is purely log terminal in a neighborhood of C . Both
surfaces 5, are negative against C . The proof of the existence of the required flip
is analogous to and based on Proposition 6.7. Indeed, if Κ + Β is log terminal along
C then Proposition 5.13 implies that Κ + Β is log terminal in a neighborhood of the
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contracted curve, and hence the flip exists by Proposition 6.7. In the general case, by
Corollary 5.19 we can use the existence of a strictly log terminal model g: Υ —> X .
By Proposition 5.13 again, the exceptional surfaces with log discrepancy 0 are con-
tracted to C. Thus all the exceptional surfaces of g lie over C, and the existence
of the flip can be proved by induction on the number of them. For this we find an ex-
tremal extraction g of C whose exceptional surface E — g~lC has log discrepancy
0, the log canonical divisor KY + BY - g*(K + B) can only have singularities that
are not log terminal along the curve Ε Π f~lS2, and in a neighborhood of this curve
the restriction (Κγ + Βγ)\β is exceptional. This extraction is the final contraction

obtained when constructing the model of X in a neighborhood of C , starting from
a strictly log terminal model for Η = g~lS2 and ε = 1 . The flip occurring here
is of type II, since the boundary Β is LSEPD for g. By the assumption that the
restriction (K + B)Sl is exceptional, the surfaces g~lS\ and g~lS2 are disjoint.

On the other hand, by construction, on subtracting g~]S2 from the boundary of
the log divisor Κγ + Βγ it becomes log terminal. Hence the singularities of Κγ + Βγ
that are not log terminal are contained in g~lS2 • In particular, KY + BY is log
terminal in a neighborhood of Er\g~lSi . Again by the exceptional assumption, the
restrictions, (Κγ+Βγ), ^ and (Κγ+Βγ)<£ are exceptional in a neighborhood of

EC\g~xS\ . But then, by Theorem 6.9 for the birational contraction g , the restriction
{Κγ + Βγ)\β is exceptional in a neighborhood of Ε η g~*S2. From then on we can

argue as in Proposition 6.7; in this process, we use Proposition 6.7 if the support
of an extremal ray R with (KY + BY)R < 0 is Ε Π g~lSi , or induction if it is
Eng~lS2. Q.E.D.

6.11. Lemma. Suppose that f: X —> Ζ is an extremal birational contraction, and
the boundary S + Β satisfies

(i) Κ + S + Β is log terminal outside S + \B] ;
(ii) Κ + S + Β is numerically 0 on the contracted curves;
(iii) Κ + S is log terminal;
(iv) the surface S is negative on the contracted curve;
(v) S + B is LSEPD for f;
(vi) Β has a reduced component that intersects all the contracted curves.
Then there exists a flip of f with respect to any divisor.

Proof. If the reduced component S' in (vi) is nonpositive, then first discard the
fractional components of Β , which are not negative by Corollary 3.16 and the log
canonical property of Κ + S + Β on the contracted curve; then by (v) we get the
flip of Lemma 6.10. If S' is positive on the contracted curve, then the flip exists by
Corollary 5.20. Q.E.D.

6.12. Proposition. Special flips oftype (6.6.1) exist if Κ + S is η-complementary in
such a way that the complemented log divisor Κ + S + Β has locus of log canonical
singularities strictly bigger than S in a neighborhood of the contracted curve.

Proof. Suppose that the locus of log canonical singularities of Κ + S + Β is bigger
than S in a neighborhood of the contracted curve. If there is a surface S' of
singularities outside 5 , then it must occur as a reduced component of Β intersecting
the contracted curves. Thus in this case the flip exists by Lemma 6.11. Note that
S + B is LSEPD, by (6.1.4) with Β = 0 and by (6.6.1).

It remains to consider the case that there is only a curve of log canonical singu-
larities outside S. Suppose that g: Υ —> X is a strictly log terminal extraction in
a neighborhood of the flipping curve, which exists by Corollary 5.19. Define the
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multiplicities d, from the relation g*B = g~lB Η-^ί/,Ζ),. Then by log discrepancy,
g*(K + S + B) — Κγ + (S + Β)γ , and by assumption there exists an exceptional prime
component Ε = Ej with multiplicity 1 of the boundary (S + Β)γ over the general
point of the curve of log canonical singularities of K + S + B outside S intersecting
the flipping curve. Set D = g~lB + dE where d = dt is the multiplicity defined
above. To construct an extremal extraction that blows up only the curve of log canon-
ical singularities of Κ + S + Β, we use Corollary 4.6 with / = g and Η = sD with
a sufficiently small positive ε and ε0 = ε - 0 very close to ε .

Note that the divisor g*B is numerically 0 relative to g and is >D. Hence the
supports of all flipping O-contractions are contained in the reduced part of the bound-
ary (S + B)Y and lie over S (this last, possibly after shrinking the neighborhood of
the flipping curve). They exist by Lemma 6.11, since one of the reduced components
of the boundary ψ Ε and is negative by construction relative to the flipping con-
traction, and another reduced component is nonpositive, since S is E-Cartier. By
termination 4.1 and the connectedness of the fiber over the point of intersection with
the curve of singularities, we eventually contract all the exceptional surfaces except
for Ε. We again denote this birational contraction by g ; it is extremal. Hence the
relative Picard number of the composite fog equals 2, and the Kleiman-Mori cone
NE(7/Z) has two extremal rays R\ and R2.

Suppose that the first of these R\ corresponds to the contraction g . Now D =
g*B = g~lB + dE and this divisor is numerically 0 relative to g . But by (6.1.4)
with Β = 0 and by definition of complement, Β is positive relative to / . Hence
the second extremal ray R2 is positive against D. Note that R2 is a flipping ray,
since the composite fog contracts only one surface Ε and a curve. More precisely,
it lies in the fiber (/o g)~lP, where Ρ is the image of the curve contracted by / .
Both this fiber and /~ ' Ρ are connected. Therefore some component of the fiber C
is not contained in Ε but intersects it, which implies that Ri is positive relative to
E. Since S + B is LSEPD for /,also g~lS + D is LSEPD for the composite fog,
in the sense that ag~lS + bD is locally principal for fog for suitable a, b. Thus
R2 is negative relative to g~xS and the flip of i?2 exists by Lemma 6.11.

From this step on, we seek an extremal O-contraction on which the modified D is
relatively positive. Write R\ for the new flipped ray; then the new ray R2 remains
negative against the modified g~lS. (Here we use new and modified to avoid intro-
ducing more notation: modified divisors are birational transforms; the new (pseudo-)
extremal ray R\ is the flipped curve, whereas the new R2 is the ray that arises au-
tomatically because ρ = 2 , so NE is a wedge in the plane; R2 is not obtained from
the old rays in any predictable way.) The flip again exists by Lemma 6.11 as long
as the modified Ε is positive against R2 . If, however, after such flips we arrive at
a case when ER2 = 0, then Ε is numerically nonpositive on all curves contracted
by / ° g • Indeed, by the preceding flip, R[ is negative against the modified Ε .
On the other hand, the connectedness of the fiber (/o g)~[P is preserved by flips,
and hence (/o g)~lP is entirely contained in £ . ( 1 0 ) Thus the flip again exists
by Lemma 6.11, and it remains to consider the case that ER2 < 0. This flip again
exists by Lemma 6.11. After it, R\ becomes positive against is; but then R2 will
again be negative against Ε and the flip again exists by Lemma 6.11. Indeed, Ε
has a curve on Ζ with Ζ Ε < 0. Thus in conclusion we get that D is numerically
nonpositive and nontrivial relative to the modification fog. By Corollary 4.6 the
corresponding log canonical model on subtracting D contracts Ε and gives the flip
we want. Q.E.D.

(10) E'(fog)-lP = 0 and Ε Π (f o g)-] P ^ 0 , therefore (fog)-lPcE.
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§7. EXCEPTIONAL SPECIAL FLIPS

7.1. The set-up. In this section f:X—>Z is a special exceptional contraction
of index η — 2, 3, 4 or 6. This means that there exist a boundary 5 and an
irreducible surface S on X such that

(7.1.1) K + S + B is log canonical and n(K + S + B) is linearly 0 in a neigh-
borhood of the contracted curve;

(7.1.2) S is negative on the contracted curve;

(7.1.3) Κ + S is purely and strictly log terminal;

(7.1.4) Κ + S is negative on the contracted curve;

(7.1.5) the restriction (K + S + B)ig is exceptional in a neighborhood of the

contracted fiber.
This final requirement is well defined, since the surface S is normal by Corol-

lary 3.8 and (7.1.3). Recall (see the paragraph after Theorem 5.6) that by exceptional
we mean that the restriction of (K + S + 5 W has at most one divisor with log

discrepancy 0 in a neighborhood of the contracted fiber. ('') For a nonexceptional
divisor, this is equivalent to saying it has multiplicity 1 in the boundary B$. By
(7.1.3) X is Q-factorial. Such a contraction / is assumed to be extremal, and the
contracted curve is connected.

According to Proposition 6.12, we can restrict to the case when the following holds:

(7.1.6) The log canonical singularities of K + S + B are contained in S.
We have already noted above that Β is positive on the contracted curve. By

(7.1.1), K + S+B has index n. Thus by (7.1.6) the multiplicities of the components
of Β are k/n for natural numbers k < η . If in addition Β has a decomposition
Β = B\ + • •• + B, with effective divisors B, for 1 < / < t which are nef on the
contracted curve and intersect it, with multiplicities of the irreducible components
Bj equal to k/n for natural numbers k < η , then t is called the type of this
contraction, and of the corresponding flip. Since / is extremal, the Bt are either
positive on the contracted curve, or numerically 0 on it, and by connectedness must
then contain it. Thus each exceptional contraction and flip has type at least t = 1 .
However, some flips may have higher type.

7.2. Reduction. The existence of exceptional special flips of index η and type t
follows from the existence of the same kind of flips in the case that K + S + B is purely
log terminal in a neighborhood of S.

Thus in this case Κ + S is strongly complementary (see (5.2.4)).

Proof. Let g: Υ —• X be a strictly log terminal extraction of X, which exists by
Corollary 5.19. Since S is log crepant all the exceptional divisors E, of g have log
discrepancy 0, and by (7.1.6) and Corollary 3.16, gEt c S. By connectedness of the
exceptional set, (7.1.5) and Theorem 6.9 it follows that the exceptional irreducible
surfaces Et for 1 < / < m form a chain. We deduce that, numbering the components
appropriately, the final component Em intersects g~[S in an irreducible curve, and
only intersects one exceptional surface £ m _i (when m > 1 , of course); and Ej does

( " ) Set (K + S + B)I_J = Ks + Λ . Then Ks + A is log canonical, and by the exceptional assumption,

either Kg + A is purely log terminal and A has 1 reduced component, or [A] = 0 and there is at most

one exceptional divisor with a,• = 0 .
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not intersect g~*S for m > i > 1, and intersects the two exceptional surfaces Ei+l

and ·Ε,_ι in irreducible curves.
It is not hard to check that the original model X is obtained by successive mod-

ifications by O-contractions for Η = g~lB and ε = 1 > ε0 . I claim that for
suitable choice of the extraction g , the sequence of transformations forms a chain
of successive contractions of the divisors E\ , . . . , Em in that order; moreover,
the same holds for all y(/) in the chain from Υ down to X. (All the surfaces
of the chain E\ , ..., Em are contracted to a point or to a curve, according as
to whether the locus of log canonical singularities of the restriction (K + S + Β)\ς

is a point or curve.) To verify this, consider an intermediate contraction g, and
suppose that it has the same properties as the original X, replacing the strictly log
terminal assumption on g*{K + S + B) = Κγ + g~lS + BY by log canonical, and
Κγ + g~xS + Σ,Εί = Κγ + Ξγ log terminal, since the modified g~xΒ are positive
relative to the preceding O-contractions.

We also suppose that there is a unique point or irreducible curve where Κγ +
g~lS + Βγ is not log terminal, and it lies on the final exceptional component £/, or
on Em+i :— S when there are no exceptional components left. More precisely, the
surfaces g~' S, Em , ... , E\ form a chain, and there is a sequence of extractions of
divisors £/_i, . . . , E\ that extend it to a strictly log terminal model. For / = m+1,
since Υ = X is Q-factorial, this gives the assertion we want. When I < m, there
exists a O-contraction h: Υ —> W on which g~xB is positive. If h is divisorial and
contracts a surface E, with / + 1 < i < m from the middle of the chain, then E,
contains two disjoint curves £,-_ι Π £, and Ε, η £,·+ι .

Hence since h is extremal, in this case Λ is a contraction to a curve. Since the
general fiber of h on E, intersects g~]B positively, both curves of intersection
are blown down to points. But then they have negative intersection with Ε,, and
intersection number 0 with £,·_! , Ei+l ; this contradicts the fact that g~lS, E\ ,
..., E) supports an effective principal divisor locally over the Q-factorial variety X .
Hence h can only contract the extreme component Et, which allows us to extend the
proof by induction on /. If on the other hand h is a small contraction then again,
since X is Q-factorial and g~xB is positive relative to h, there is an exceptional
divisor Ej that is negative relative to h . In particular, the curves contracted by h
are contained in Et. By the same argument, either a neighboring exceptional divisor
Ei±\ or the divisor g~xS is positive on h . Hence by Lemma 5.7, it follows for the
restriction (Κγ + g~[S + Βγ)ΐβ for i — l that KY + g~lS + BY is log terminal in a

neighborhood of the curve contracted by h . The flip of h exists by Corollary 5.15
or Corollary 5.20. Since the curves of intersection with neighboring components are
not contracted by h , by properties 1.12 the flip preserves the log terminal property
of KY + g~lS + Βγ in a neighborhood of the curve contracted by h . Here as before
a point or curve at which Κγ + g~lS + Β γ is not log terminal is resolved by the
extremal extractions of divisors £/_i , . . . , E\ . Thus by termination 4.1 we finally
get the case / = m + 1, with g = ίάχ .

Now we prove the existence of the flip / by induction on m . Note that for
m = 0 the model g is the identity, Κ + S + Β is log terminal in a neighborhood of
the contracted curve, and is purely log terminal by irreducibility of S; and / has a
flip by the reduction assumption. For m > 1 consider the contraction g of the final
surface Em . Then apply Corollary 4.6 for the contraction fog, Η = eg*Β with
small e > 0 and εο < e close to ε , that is, εο = e—0 . By construction, on subtracting
Η from Ky + g~lS + Β γ it becomes purely log terminal, numerically nonpositive
and nontrivial relative to / o g , so by (1.5.6) the corresponding log canonical model



3-FOLD LOG FLIPS 155

/ ο g is small. Moreover, by the same arguments, since the modified locus over Ζ
is connected and Η is numerically nonzero on it, the model of / ο g is also small.

From the fact that / is extremal and X is Q-factorial, it's not hard to see that
these models coincide with the flip of / . In particular, by properties 1.12 these
models of / ο g are extremal over Ζ , strictly log terminal, and it is sufficient to
construct the log terminal model. But fog has relative Picard number 2, and
this is decreased by 1 under a divisorial contraction. In the final case we get a
flip immediately, since the modified g*B is positive relative to such a divisorial
contraction.

Thus to construct the log terminal model of / ο g it is enough to be able to
construct flips up to the first divisorial contraction or termination. On making flips
we preserve the previous notation for Υ, referring occasionally to the modified or
flipped situation when this is meant, as explained at the end of §6. The Kleiman-
Mori cone NE(y/Z) always has two pseudoextremal rays Ri and R2. Suppose
that R\ is the ray corresponding to the contraction g, and R2 the subsequent
ray that requires flipping. If R2 has positive intersection with the modified g*B,
it corresponds to the next flip in the chain. If at some step g~lS is nonnegative
against R2 , then also EmR2 < 0 and g~1BR2 > 0. Indeed, S + Β is LSEPD for
/ , that is there exist a , b > 0 such that aS + bB is /* of a principal divisor; in
this sense g*S + g*B is LSEPD for fog and for its modifications. By construction
g*B is numerically positive, and g*S is negative on the new flipping ray. Hence
we get the above assertion, that is, the supports of g*S and g*B are respectively
g~lS + Em and g'lB + Em.

Hence if at some step g~lS becomes positive against R2, then the flip of R2

exists by Corollary 5.20. After the flip, the flipped ray /?i has negative intersection
with g~lS, so that g~lSR2 > 0. But the general curve on Em over Ζ has non-
negative intersection with g~lS, hence R2 is nonnegative against g~xS, and can
only be numerically 0 against g~xS if R2 is divisorial. Hence the flip again exists,
and termination is guaranteed by termination 4.1 on discarding g~lB. If at some
step g~lSR2 = 0, then provided that the flip exists, the previous arguments give
the existence of subsequent transformations and their termination. Usually exactly
at this point the proof of the existence of the flip presents the essential difficulty,
and is provided here by the reduction assumption. Thus modulo this flip, it remains
to find flips which are negative for g~lS, since their termination is guaranteed by
termination 4.1 after discarding Η. By the above, we also do not need to consider
divisorial modifications of R2 .

Thus start with a ray R2 on the initial Υ which is positive relative to g*Β.
By assumption, its contraction h: Υ -* W over Ζ is small and g~lS is negative
relative to h , so that the curve contracted by h is contained in g~lS . If moreover
Em is positive relative to h, then, because the curve on g~lS contracted by / ο
g is connected, it follows that the curve contracted by h is not contained in the
intersection g~[S Π Em . In this case, the flip exists by Corollary 5.20 and preserves
the log terminal property of Κ γ+g~lS+BY in a neighborhood of g~lS . It contracts
a curve on g~lS outside the intersection g~lS Π Em , and the flipped ray R\ has
negative intersection with the modified Em .

As a result of such flips we arrive at the following dichotomy: either R2 has inter-
section number 0 with the modified g~lS, or it has negative intersection number
with both the modified g~lS and Em . In the second case, EmR2 = 0 is impossible
by the exceptional assumption (7.1.5), and the flip exists by Lemma 6.11. Again by
the exceptional assumption (7.1.5), a flip in R2 performs a contraction of curves on
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g~lS over Ζ , and the resulting modified surfaces g~lS and Em are disjoint. In
particular, the flipped ray R\ has positive intersection with the modified surfaces
g~lS and Em , and the new ray R2 has intersection number 0 with the modified
g~lS. Hence the next contraction is the divisorial contraction of the modified Em

to a point, which gives the flip / .
In the first case of the above dichotomy, g~lSR2 - 0, and as we already know,

EmR2 < 0 and g~^BR2 > 0. We also assume that the corresponding contraction
h is small. By the exceptional assumption (7.1.5), the restriction of the modified
(KY + g~lS + BY)\F is exceptional in a neighborhood of the modified g~lS. It

follows from this that the curve contracted by h does not intersect g~lS. Because
the current situation has been obtained by flips in rays intersecting Em positively,
the flipped curves lie on the modified Em , and the modified KY + g~lS + Β γ has
locus of log canonical singularities in a neighborhood of the curve contracted by h
equal to the modified Em . By Lemma 5.7, the singularities that are not log terminal
are not spoilt by the preceding flips. Hence the contraction h , modulo connectedness
of the fibers, is exceptional and of the same index η , with the modified Em instead
of S. And the possible point or curve of singularities that are not log terminal is
resolved by fewer than m extremal extractions. Hence the flip exists by the inductive
assumption.

Note that h also has type t, since the modified Β ι in the decomposition Β =
B\ Λ V Bt corresponding to the given type t are positive on R2 ; indeed, if /?, is
positive on a contracted curve, then the modified g*S and g*Bt are LSEPD over
Ζ (in the sense that ag*S + bg*Bj is locally principal over Ζ ) , and the modified
g*S and Em are negative on R2. If Bi is numerically 0 on the contracted curve,
then it also contains the modified g*Bt that is numerically 0 on R2 with a positive
multiplicity of Em , and hence since EmR2 < 0, we deduce that the modified g~xBt

is positive on R2 • We can carry out a localization to make the fibers connected, as in
the proof of Reductions 6.4-5; here the index, the type and the log terminal property
of Κ + S + Β are preserved. Q.E.D.

7.3. Corollary. Index 2 exceptional special flips exist.

Proof. By Reduction 7.2 we need only consider flips for which Κ + S + Β is purely
log terminal, and these are flips of type IV from Proposition 2.9. Q.E.D.

7.4. Proposition. Suppose that Κ + S + Β is purely log terminal. Then in a neigh-
borhood of a contracted curve we have the following:

(7.4.1) For η = 3 either K + S has a I- or 2-complement, or Κ + S + Β has
a ^-complement of type > 2.

(7.4.2) For η = 4 either Κ + 5 has a 1-, 2- or 3-complement, or Κ + S + Β
has a ^-complement of type > 2.

(7.4.3) For η = 4 and t > 2 either Κ + S has a 1- or 2-complement, or
Κ + S + Β has a 4-complement of type > t + 1.

(7.4.4) For η = 4 and t > 4, Κ + S has a 1- or 2-complement.

(7.4.5) For η = 6, K + S has a 1-, 2-, 3-or 4-complement.

(7.4.6) For η = 6 and t > 2 either K + S has a 1-, 2- or 3-complement, or
Κ + S + Β has a ^-complement of type > t + 1.

(7.4.7) For η = 6 and t>3, K + S has a 1-, 2- or 3-complement.

Proof. The assumptions of Theorem 5.12 are satisfied. Hence by its proof it is enough
to prove the corresponding assertion for the restrictions. For this we introduce the
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following changes to the notation: X will be a surface S, f: X —> Ζ a contraction
of a connected curve, Κ + Β' will denote the restriction (K + S)\$ and K + B

the restriction (K + S + B)ig . Note that Κ + Β has index η . By (3.2.3) and the

assumption that Κ + Β is purely log terminal, all the bj satisfy 0 < b, < 1 , and by
Corollary 3.10 are of the form

(7.4.8) b ^ ^ ^ + T^dj,

where /ί,, kjj and ndj are natural numbers. Here di are our previous boundary
multiplicities, and bj are multiplicities of the boundary Β. The corresponding
multiplicities of B' are of the form

b> = * ^ i .
Hi

Since Κ + Β has index η , all bj = kj/n , where 0 < k, < η - 1. Let g: Υ —> X be
an extraction over an exceptional curve for / . Then in a neighborhood of its inverse
image the corresponding assertions means that KY + B'Y is w-complementary for
K + S and KY + BY for K + S + B. Since K + B is numerically 0 relative to / ,
by Lemma 5.4 we can restrict ourselves for K + B to the case that / is the identity
contraction, identifying X and Ζ , and the contracted curve of / is replaced by a
point Ρ £ Ζ . Since the original 3-fold is Q-factorial and the contracted curve /
has nonempty intersection with every component Β,, by definition of the type / we
get a new interpretation of it: there are at least t components of the boundary passing
through Ρ with nonzero product kijdj Φ 0.

The existence of the required complement gives the next result.

7.5. Lemma. Under the preceding restrictions and notations, the following hold in a
neighborhood of the inverse image of Ρ:

(7.5.1) For η = 3 either KY + B'Y has a 1- or 2-complement, or KY + BY has
a 4-complement.

(7.5.2) For n = 4 either KY + B'Y has a 1-, 2- or ^-complement, or KY + BY

has a ^-complement.

(7.5.3) For η = 4 and t > 2 either KY + B'Y has a I- or 2-complement, or
KY + BY has a nontrivial 4-complement.

(7.5.4) For η = 4 and t > 4, KY + B'Y has a 1- or 2-complement.

(7.5.5) For η = 6, Ky + B'Y has a 1-, 2-, 3- or 4-complement.

(7.5.6) For η = 6 and t > 2 either KY + B'Y has a 1-, 2- or ^-complement,
or KY + BY has a nontrivial 6-complement.

(7.5.7) For n = 6 and t > 3, KY + B'Y has a 1-, 2- or 3-complement.

Proof. We use the arguments of the proof of Theorem 5.6. In the case of a log
divisor Κ + Β , for this we increase the boundary Β to B" in such a way that in a
neighborhood of Ρ the new divisor Kz + B" is actually log canonical. Note that the
monotonicity Β' < Β on the original X implies the monotonicity BlY < BY < B"Y .
In particular, for 1- or 2-complementary KY + B"Y by Lemma 5.3 the same holds
for KY + B'Y . Hence by the proof of Theorem 5.6 we can restrict to the case that
Κχ + B" is exceptional and the unique irreducible curve with log discrepancy 0 is
exceptional.
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Now for Κ + Β, let / : Χ ->· Ζ be the blowup of this curve C. We identify the
divisor Β with its birational transform under / . By the fact that Kz + Β is purely
log terminal, and Kz + B" log canonical and exceptional, the divisor Κ + C + Β is
purely log terminal and negative relative to / . By Lemma 5.4, for the assertion about
Κγ + BY we can restrict to extractions of g that factor through / . Again by the
arguments of the proof of Theorem 5.6, to deduce that KY+BY is m-complementary
it is sufficient to prove that its restriction

{K + C + B)\C = Kc

is m-complementary. Since Κ + C + Β is purely log terminal, the curve C is
nonsingular; and since the restriction of Κ + C + Β is negative, and the boundary
Y,PiPi is effective, C = P 1 , 0 < p, < 1 and ΣΡί < 2. In this set-up there is also
defined a divisor Β' < Β in which all curves except C appear with multiplicities
b'j = («,· - \)lm and C with multiplicity 0. By monotonicity (1.3.3), Κ + B' + C
is purely log terminal, and hence by Corollary 3.10 and the proof of Lemma 4.2 it
follows that

with Qi = (m,· - 1)/mt < pi, where m, = /,«,, /, is the index of Κ + C in Ρ,,
and not more that one curve of the boundary B' with multiplicity b[ > 0 passes
through Pj. However, for the original boundary B', if the restriction Kc + Σ QiPi
is m-complementary it does not follow that Κγ + B'Y is m-complementary, since
because K+B' is negative relative to / for the original boundary one can reduce the
new boundary B'Y on some components. To cure this, replace first X for K + B1

by the minimal resolution X' of X for Β, that is, we blow up on X the unique
curve C if it is exceptional for X, and take X' = X otherwise; write B' for the
previous B' outside C. We hope that there will not be too much confusion in what
follows caused by one notation X for two different surfaces, depending on the log
divisor.

Now the boundary B' is the image of the boundary B' on X'. Similarly on X'
there is defined a boundary Β > B' outside C with image Β on X. By construction
the log divisor Kx* + C + Β is exceptional, nef and numerically nontrivial on each
connected fiber of X'/X. Hence by monotonicity Kx> + C + B' is exceptional, but
possibly positive on some curves of X'/X. Also by construction, on X' there is
a boundary Β" > Β > Β' such that Κχ< + C + B" is exceptional and numerically
nonpositive over X. I claim that B' on X' can be increased so that Kx< + C + B'
will be numerically nonpositive on X with multiplicities > b\ only for curves that
are numerically 0 over X, and is exceptional as before. As a first approximation
it is enough to increase B' to B" for curves of X' over X. In doing this some
multiplicities > b\ may occur for curves that are not numerically 0 over X. But
these multiplicities can be decreased, preserving the exceptional property and the
numerical nonpositivity of Kx< + C + B' over X. Hence the minimal boundary
> B' with the final properties gives what we want.

Note that in the case Κγ + B'Y , by Lemmas 5.3-5.4 it is enough to find the
required m-complements of Κγ + (C + B')Y for resolutions over X'. Moreover, we
can after contracting curves that are numerically trivial over X for Kx* + C + B'
assume that B' does not increase, that is, has the same multiplicities b\, and that
KXi + C + B' is numerically negative over X . Hence the existence of the required
m-complements follows from the m-complements of the boundary
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with q\ = (m'j - l)/mj > q(, where m\ = l\n\, l\ is the index of Kx, + C at Ρ,, and
not more that one curve of the boundary B' with multiplicity b\ > 0 passes through
Pi. Here the curves C on X and X' are identified, and the equality q\ = qt is
only possible if there is no curve of X'/X over f,. By construction Κχ* +C + B is
exceptional, nef and numerically nontrivial on each connected fiber of X'/X . Hence
Pi > q'i > Qi and the first equality is only possible if there are no curve of X'/X over
Pi and Pi = q\ — qi, that is, there are no components of the boundary Β through
Pi. Choose the numbering such that q[ > q'2 > • • • , or equivalently m\ > m'2 > • • · .
By the above, 0 < q, < q\ < p,< 1 and Σ q,< Σ q\ <Σ,Ρί < 2 • Suppose now that
Κ γ + B'Y and hence also Kc + Y^q\Pi does not have a 1- or 2-complement. Then
by (5.2.1) 3 < m\ < 5 , m'2 = 3, m\ = 2 and m\ = 1 for / > 4 . Hence

,• < 2 - pi - p2 - P3 < 2 - q[ - q'2 - q\ < 2 - 2 χ - - - = - .

But for / > 4 we have l\ = n\ = 1 for all curves through P,· and by (7.4.8)

e i t h e r bv = 0
satisfies < , ,

and hence ρ, — qi = q\ = 0 for / > 4 . Hence for / > 4 there are no curves
of X'/X over /*,, and both the boundaries Β and B' on X and X' can only
intersect C in the points P\ , Pi, Pi • If there is a curve of X'/X over P 3 then
/>3 > <?3 = 1/2 > <?3, hence ra3 = 1 , and by (7.4.8) p 3 = /c/« > 2/3 and ΣΡι ^
q[ + q2 + P3 > 3 x (2/3) = 2, which contradicts the inequality Σ Pi < 2 . Thus the
curves of X'/X can only lie over Pt or P? • Consider now the case that there are
just no such curves, that is, X' — X, all q\ = ^, and m\ = mi. Then, again by
(7.4.8) and Corollary 3.10,

1 γ ^ m.\ — 1 k\
1 ' U ^ ffli

where the sum consists of multiplicities of the boundary Β in a neighborhood of P\ ,
possibly with repetitions, and k{ > 0. In a similar way we get integers k2 , k^ > 0
such that

k-> 2 k~> k-i \ k-i
d

Here, by the above interpretation of type, k\ +k2 + k^ > t. Hence and from preceding
inequalities one easily finds the possible nontrivial values of /?, and q, in terms of
η and t (see Table 1). Together with (5.2.1), this completes the proof'of the current
case. For example, for η = 3 , according to the first two lines, Κ γ + BY has a
4-complement, and by the last 5 lines KY + B'Y has a 3-complement.

We consider below only the new cases, when Χ' φ Χ. There are not so many of
these and they give what we want. Using the previous arguments and relations it is
not hard to show that for η = 3 there is just one new case px = 7/9 , Ρ2 = 2/3,
Pi = 1/2 with / = 1 and m\ — 4 , m\ = 3 , m'2 = mi = 3 , m'3 = m^ = 2. For
η = 4 the additional cases are listed in Table 2.

Here p^ = q^ = q\ = 1/2 and we assume that m\ > m 2 when m\ = m'2 = 3 .
For η — 6 we can restrict to the case that Κγ + B'Y , hence also Kc + Σ Q'i Pi a r e

not 1-, 2- or 3-complementary, that is, m[ > 4 . Here there is just one new case:

Pl = 7/9, p2 = 2/3, Pi = 1/2 with 1 < / < 2 and m\ = 4 , m, = 3 , m2 = m2 = 3,
m'3 = m3 = 2. Q.E.D.
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TABLE 1

η

3

4

6

6

t

1

1

1

2

<7i
2/3

2/3

2/3

2/3

2/3

3/4

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

3/4

3/4

2/3

2/3

2/3

2/3

2/3

«72

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

2/3

1/2

1/2

to
 

to
 

to
 t

o

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

P\
7/9

2/3

3/4

2/3

2/3

13/16

13/18

2/3

2/3

13/18

2/3

7/9

13/18

2/3

19/24

3/4

13/18

7/9

2/3

13/18

2/3

Pi
2/3

7/9

2/3

3/4

2/3

2/3

2/3

13/18

2/3

13/18

7/9

2/3

2/3

13/18

2/3

13/18

13/18

2/3

7/9

2/3

13/18

P3

to
 t

o

1/2

1/2

5/8

1/2

1/2

1/2

7/12

1/2

1/2

1/2

7/12

7/12

1/2

1/2

1/2

1/2

1/2

7/12

7/12

TABLE 2

<

1

1

1

t<

3

2

1

m\

3
3

5

m.

3

3

4

m>
2

3

3
3

m
2

1

2

3

P\
2/3

2/3

13/16

Pi

3/4

3/4

2/3

P3

1/2

1/2

1/2

Conclusion of proof of Proposition 7.4. It remains to verify the assertions concerning
types. For example, for η = 3, a 4-complement for Κ + S + Β has type > 2.
Indeed, we can take B\ = (3/4)1?, since checking coefficient by coefficient shows
that Bi < (1/4) [5B\ . Similarly for η = 4 we can take By = (2/3)fl as part of a
6-complement. For η = 4, a nontrivial 4-complement of type t for Κ + S + Β has
type > / + 1; nontrivial means that it has B+ > Β . Hence B,+l = B+ - Β Φ 0 and
is numerically 0 relative to / , intersects the exceptional locus of / and extends the
decomposition by types to Β . The arguments for η = 6 are similar. Q.E.D.

7.6. Reduction. The existence of exceptional special flips follows from the existence
of nonexceptional index 2 special flips.

Proof. Reduction 7.2 reduces the construction of exceptional special flips to similar
flips with purely log terminal complement Κ + S + Β of the same index and type.
From there by Proposition 7.4 we can either decrease the index η , or increase the
index η and at the same time increase t. This finally reduces the problem to the
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construction of special flips of index 1 or 2. For example from the case η = 3
increasing the index can only lead to η = 4 and t > 2, and from this case can only
lead to η = 1 or 2 with t > 4. Special flips of index 1 exist by Proposition 6.8,
and exceptional index 2 special flips by Corollary 7.3. Q.E.D.

§8. INDEX 2 SPECIAL FLIPS

8.1. The set-up. In this section / : I - » Z is a special nonexceptional contraction
of index 2 . This means that there exist a boundary Β and an irreducible surface S
on X such that

(8.1.1) Κ + S + Β is log canonical and 2(K + S + B) is linearly 0 in a neigh-
borhood of the contracted curve;

(8.1.2) S is negative on the contracted curve;

(8.1.3) Κ + S is purely and strictly log terminal;

(8.1.4) Κ + S is negative on the contracted curve;

(8.1.5) the restriction (K + S + 2?W is not exceptional in a neighborhood of

the contracted fiber.
According to Proposition 6.12, we can assume that the following holds:

(8.1.6) The locus of log canonical singularities of Κ + S + Β is contained in S .
In particular, after shrinking the neighborhood of the contracted curve if necessary,

the irreducible components of Β have multiplicities 1/2 or 0. By assumption
(8.1.3), X is Q-factorial. We also suppose that / is extremal, and the contracted
curve is connected. In the analytic case, all of this holds in a neighborhood of the
flipping curve, that is, with W = pt., the image of the flipping curve, and hence the
flipping curve is irreducible.

8.2. Reduction. We can assume that there is exactly one irreducible curve C not
contracted by f, with multiplicity 1 in the boundary of the restricted log divisor
(K + S + B)ig , and every connected component of Supp(Bi^) outside C and inter-
secting the locus of log canonical singularities of (K + S + B)i$ is contracted to a
point by f.

Proof. Suppose first that there is at least one irreducible curve C not contracted by /
with multiplicity 1 in the boundary of the log divisor (K + S + B)i$ . If Β intersects

S in a curve ^ C having multiplicity 1 in the boundary of (K + S + B)i^ and not

contracted by / , then, since the locus of log canonical singularities of (K + S + 5)i c

is connected and by (8.1.3), we can change the boundary B$ outside C such that it
remains > O5 , and Ks + Bs becomes log terminal and numerically negative relative
to /jc · Then by Corollary 5.H, g*(K + S)i? will have a 1-complement on any

extraction g. Hence by the proof of Theorem 5.12, K + S has a 1-complement and
the flip of / exists by Proposition 6.8. In a similar way one proves that there exist
a 1-complement of, Κ + S and a flip of / when there is a connected component of
Supp(uug) not contained in C intersecting the locus of log canonical singularities

of (K + S + B)ig and not exceptional relative to / . Hence it remains to carry out
the reduction in the case that all curves with multiplicity 1 in the boundary of the log
divisor (K + S + 5) 15 a r e contracted by f.
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In the analytic set-up, the above arguments prove the existence of the required
complement of Κ + S in a neighborhood of a flipping ray, since Β is positive
on the flipping curve, and therefore cuts out on 5 a connected component which
is not contracted by / , and intersects the locus of log canonical singularities of
(K + S + Β)\ς. In the algebraic set-up, the locus of log canonical singularities

LCS((K + S + Β)>ς) forms a chain of curves on the log terminal resolution, and

the required complement Β can be found on one end of this chain, but this com-
plement might behave badly on the other. In this case we must reduce to other
flips.

Consider a strictly log terminal extraction g: Υ —> X , which exists in a neighbor-
hood of the flipping curve by Corollary 5.19. Since g is log crepant, by Corollary 3.16
there is an exceptional prime divisor Ε for / such that / o g(E) — pt. By (8.1.6)
the multiplicity d of Ε in g*S is positive. Set Η = e(g~]S + dE) for small ε > 0.
Since the exceptional divisors for g together with g~lS are LSEPD for g , we can
apply Corollary 4.6 to get a new extraction g with a single exceptional divisor Ε.
The required flip is of type III, since KY + g~lS + BY is log terminal outside the
reduced part of the boundary, which equals Supp g*S, and is LSEPD for g . From
this and by construction it follows that the support of the modified rays are contained
in the exceptional divisors other than Ε. Hence the modifications terminate.

Thus for the new extraction (KY + g~lS + E)\j?v is numerically 0 and contains

the curve of intersection C\ — g~xS Π Ε in the locus of log canonical singularities.
The latter is connected by Theorem 6.9 and from the nonexceptional assumption
(8.1.5). Note that by construction KY + g~lS is log terminal. But p{Y/Z) - 2
and NE(7/Z) has two extremal rays Ri and R2 . We now apply the arguments
of the proof of reduction 7.2. Suppose that R{ corresponds to the contraction g .
Obviously g~lBR\ > 0. From now on, we need to consider modifications of 0-
contractions for Η = eg*Β corresponding to R2 ; we need only consider flipping
rays R2 with g~lSR2 < 0.

Assume first that g~lSR2 < 0. If ER2 > 0 then the flip of R2 exists by Corol-
lary 5.20. Moreover, it preserves the log terminal property of KY + g~lS . If ER2 < 0
then g~lBR2 > 0 and the flip exists by Lemma 6.10; it again preserves the log ter-
minal property of KY + g~lS. If the curve of intersection C\ is lost as a result
of such flips then the surfaces g~lS and Ε no longer meet, and we get a flip by
contracting Ε to a point, as in reduction 7.2.

Finally, if g~lSR2 = 0 then ER2 < 0 and g~iBR2 > 0. In particular, the
support of R2 is contained in Ε . We can assume that R2 is a flipping ray. If one
of the connected components G of Supp/?2 intersects g~lS, then it is contained
in g~lS, and the flip in it exists by Lemma 6.10 with 5Ί = g~lS and S2 = Ε . In
the opposite case G is disjoint from g~iS , and hence from C\ . For the remaining
connected components we can replace Ε by 5 and g~lB by B. Then assumptions
(8.1.1-2) and (8.1.4) will hold. (In the analytic case, after passing to a neighborhood
of the component in question we may lose the extremal assumption. Then we must
construct a flip with respect to -B .) By Theorem 6.9 on the normalization S" there
is a curve B' (possibly reduced) such that every connected component of the locus
of log canonical singularities of (K + S + B)\gv intersects B' and no component of

B' is contracted by / . Also by construction Κ + S + Β is log terminal outside the
boundary S + Β .

Suppose that the flipping component is contracted to a point Ρ. Then on any
weakly log canonical model of / the locus of log canonical singularities of Κ +
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S + Β is connected, even over an analytic neighborhood of Ρ. Of course, it always
contains the modified 51. Since S is Q-Cartier, connectedness holds for any strictly
log terminal model of / . Moreover, any two surfaces with log discrepancy 0 are
extracted on some strictly log terminal model of / . Hence the locus of log canonical
singularities of g*(K+S+B) is connected for any resolution g over a neighborhood
of Ρ, which implies what we want.

Thus it remains to carry out a reduction in the case of a flip of the component
under consideration. For this, we do a strictly log terminal extraction g: Υ —• X for
Κ + S. This, as well as all its modifications considered in what follows, is a weakly
log canonical model of / . The flip of / can be obtained as a result of modifications
of O-contractions of / o g with Η — g~lB—of course, with successive contraction
of curves on which g~lB is numerically 0 . This is possible, since Κ + S + Β is log
terminal outside the boundary S + Β , which is LSEPD for / ο g . I claim that the
flips required for this satisfy the reduction (modulo flips that already exist).

Since S + B is LSEPD for fog and the support of a O-flipping extremal ray R is
positive against g~lB , it is negative against S' = g~xS or against a surface Ε that
is exceptional for fog . We localize to connected components C of Suppi? exactly
as in the proof of reductions 6.4-5. If C intersects another similar component SY

then the flip exists by Lemma 6.11. In the opposite case C C S', and does not
intersect any other component SY . Hence this is an index 2 special flip, and it
exists if it is exceptional. We can thus restrict attention to the case that it is not
exceptional; in other words, that (KY + g~lS + g~lB)i$t is not exceptional in a

neighborhood of C. In the case S' = g~lS = SY and (fog)~lP c g~lS = S'
over a neighborhood of Ρ, since the extraction g~lS —* S" is numerically 0 with
respect to (KY + g~lS + g~lB)ig , the required curve C either connects C and

the birational inverse image of (u~lf)B', or is equal to the birational inverse image
of (v~x f)B'. In the opposite case, by connectedness of the locus of log canonical
singularities of KY + g~]S + g~lB over Ρ and Theorem 6.9, we get the required
curve C, or the LCS(AV + g~lS + g"lB) Φ S' in a neighborhood of the flipping
curve C . In the final case the flip exists by Proposition 6.12. Q.E.D.

In the preprint of this paper, the following result was incorrectly stated as the
nonexistence of certain rays (or of the corresponding configurations of flipping con-
tractions). But, as pointed out by Kollar, these flipping contractions actually exist.

8.3. Proposition. Let f:X—*Z be an extremal contraction of an irreducible curve
C, and Β = S\ + Si, where S{, Sj are surfaces and C c 5Ί Π 5*2 is the exceptional
curve for f. Assume that

(i) S\ and S2 cross normally along C;
(ii) / is special of type (6.6.1) with S = S\ ;

(iii) (K + Si + S2)|£ \r is not purely log terminal on C at one point P.

(iv) Κ + Si + S2 is numerically 0 in a neighborhood of the contracted curve.

Then the flip X —• X+ of C exists, and has the following properties. C c 5Ί is
contracted to a nonsingular point Q of a normal surface Sf. Moreover, the nor-
malization of S2 is nonsingular and single-branched over Q. The flipped curve
C+ is irreducible, and the surface Sj is nonnormal along it. The normalization
S^ —> S£ defines a double cover C* —> C + , of which Q is one branch point.
The singularities of X+ along C+ are canonical of type An, and S£ is Cartier.
The intersection C'+ = 5+ Π S£ is normal along Cl+ in a neighborhood of Q and
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(Kx+ +S+ + S^),s+U = Ks+V + C* + C'+ ; the curves C* and C"+ intersect normally

at Q.

Proof. The flip exists by Proposition 2.7. We first describe the properties of / . By
(ii) and Corollary 3.8, 5Ί is normal and irreducible. Taking an analytic neighborhood
of C and replacing / by the contraction of C only, we preserve all the above
assumptions except for the Q-factoriality of X. However, S\ and S2 remain Q-
Cartier. By our assumption it follows that S2C > 0. Hence by (iii), possibly after
shrinking the neighborhood of C, the intersection S\DS2 consists of 2 nonsingular
irreducible curves C and C intersecting in P. Hence by (iii), Corollary 3.10,
Lemma 4.2 and our assumption, C = Ρ1 , and

(8.3.1) {K + Si+ 5 2 ) | 5 l \C = * P ' + \Pi + \Pi + P

whereas
S2\Sl =C + cC,

with 0 < c < 1 by (i) and (3.2.2). Note that ((C + cC) · C)s = S2C > 0. Let
g: Τ —> S\ be a minimal resolution of singularities in a neighborhood of C . Suppose
first that the points Λ and P2 are singular on S\ . By Corollary 3.10 they are nodes
and

g*(C + cC) = g~lC + cg-lC + \EX + ± £ 2 + Σ e<E>'

where El and E2 are exceptional curves over Px and P2 respectively, E\, ... , En

is a chain of exceptional curves lying over Ρ, and E\ intersects g~lC . By (3.18.6)
0 < e\ < 1, hence

0 < (C + cC) · C = (g*(C + cC')) · g~lC

. c if η = Ο

<(g-lC)2 + 2,

and (g~lC)2 > - 1 . Therefore, since g~lC is contractible, it is a (-l)-curve, that is
{g"lC)2 = - 1 . But then the curve £ ' u £ 2 U #~'C is not contractible. Therefore at
least one of the points P,, say Pi, is nonsingular. Then there is a unique irreducible
curve C" with multiplicity 1/2 in the boundary (S2)s, that passes transversally
through P\. In a similar way one checks that if P2 is nonsingular then {g~l C)2 > 0,
and this again contradicts the contractibility of C. Hence P> is singular. Hence
arguing as before,

where E2 is an exceptional curve of P2 , and E\ , . . . , En a chain of exceptional
curves over /";and E\ intersects g~lC, hence

0 < (C + cC) -C = {g*(C + cC1)) · g~lC

and (g~lC)2 > -(3/2). Hence by contractibility g~lC is again a (-l)-curve, and

ι Γ e\ if η > 1,
2 < \ c if « = 0.

Thus if η = 0 we get that Ρ is nonsingular on 5Ί , by Corollary 3.10 that c = 1 ,
and the curves C and C cross normally at Ρ. If η > 1 then by construction
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(Ej)2 = -m, with m, > 2. Since £ 2 υ £ , υ g~lC is not contractible, m, > 3.
By (3.18.7) and the inequality ^i > 1/2, we get «?i = 3, m2 = • • • = mn = 2 and
c > 1/2, hence by Corollary 3.10 again c = 1, that is, in either case 5Ί and S2
cross normally along C. Furthermore /m : 5Ί —> S contracts C to a nonsingular

point QeS and Ks + (l/2)fiS (C") is canonical at Q . This means that all the log

discrepancies of Ks + {l/2)fig (C") over Q are > 1 (so that their discrepancies are

> 0). The corresponding terminal extraction is obtained from Τ after contracting
the curves E2 and g~lC, with C" mapping to a nonsingular curve and for η > 1
the curve E\ maps to a (-l)-curve having simple tangency with C" ; for η = 0 the
image of C has simple tangency with C" .

Now we describe the properties of the flip. I claim first that it defines a contraction
of C on S\ . By (8.3.1) there is a curve C" with multiplicity 1/2 in the boundary
(S2)s, passing transversally through P\ . Hence, since S\ and £2 cross normally
along C and C in a neighborhood of C,

is log terminal and negative on C. Hence in a neighborhood of the transformed
curves C\ , ..., Cm that land on Sf ,

(Kx+ + S+) | S + = Ks, + \C"+ + Y^aC,

and is positive, where by the effectiveness (3.2.2) all the c, > 0. But by the above the
curves C, contract to a nonsingular point Q on S, at which Ks + (l/2)f<c (C") is

canonical. This is only possible for m = 0 .
Hence Sf = S. It follows from this that there do not exist finite covers π: V —> U

of degree / > 2, where U is an irreducible neighborhood of Q, V is irreducible,
and π is ramified only along curves not lying on S and passing through Q. We
also assume that all these properties are preserved on restricting π over irreducible
analytic neighborhoods of Q. Indeed, according to Corollary 2.2, π*(Κν + S) =
Kv + n~lS is purely log terminal, and hence by Lemma 3.6 n~lS is normal and the
induced finite cover π, _ - i e : UA' ~> $ is unramified outside Q. Hence since QeS

is nonsingular, π is unramified over Q, which contradicts the possibility of analytic
restriction π while preserving the irreducibility of V (compare Corollary 3.7).

Now note that S^ is an irreducible surface, and the normalization v: S^" —» 5^
is one-to-one over Q. For otherwise there exists an analytic neighborhood of Q
in which £̂ ~ has components through Q. This is not possible, since a Q-Cartier
divisor S intersects each of these components along a curve through Q, and these
curves are distinct because K + S + S2 is log canonical. However SnS^ = C'+ is an
irreducible curve in a neighborhood of Q . Thus the point Q can be identified with
z/~'<2,and C' + with v~lC'+ . The restriction (Kx+ + S+ St)\V+v has at most two

irreducible curves with multiplicity 1 in the boundary Ss+v through Q. Suppose
there are just two such curves, C'+ and some other curve C*. (We will prove later
that C* is the same curve as in Proposition 8.3.) Then in a neighborhood of Q

(Κχ+ + Sj )\$+v — Ks+V + C* ,

a n d is log te rmina l .

O n the o t h e r h a n d , Kx+ + 5"^ has index 1 at all points of a p u n c t u r e d neighbor-

h o o d of Q G S, so that , by w h a t we have jus t seen, it has index 1 at Q . Therefore

Ks+U + C* has index 1 at Q, a n d by (3.9.2), S^v is a nonsingular surface at Q.
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Since S has index 2 along C" + , it defines a double cover π: V —> U in a neighbor-
hood of Q, ramified only in C" + . Hence after shrinking the analytic neighborhood
of Q, π " 1 ^ consists of two irreducible components each of which has nonsingular
normalization. Since Kv + n~lS is purely log terminal it has a small strictly log ter-
minal extraction q: W —* V with connected fiber Μ over Q, otherwise as before we
get a contradiction from π unramified over Q. But this is impossible if the two com-
ponents of n*S2 intersect in at most points. Indeed, then (π ο q)*S2 = (π ο q)~lS2

is numerically 0 on Af, and after shrinking to an analytic neighborhood of Q, it
consists of two irreducible components which do not intersect even along Μ, be-
cause Ky + n~lS + n~lS2 is log canonical. Hence S2 is nonnormal along v{C*)
and by the above X+ has a singularity along v{C*) of the required type. The irre-
ducibility of the flipped curve C+ and the fact that it coincides with v{C*) is easily
deduced from the fact that all its components pass through Q and are contained in
S2; indeed, suppose that C is a component of C + with C 3> v{C*). Then on the
normalization S2

V it is an exceptional curve passing through Q = C* η C'+ , and
numerically 0 against (Kx+ + S + S2),^+v = Ks+, + C* + C'+ .

We now suppose that there is no C*, and derive a contradiction. Then in a
neighborhood of Q

[Λ.Χ+ + O2 )\S+" ~ S2

+1/

is log terminal and of index 1. Therefore S^ is a normal surface and β e S2

+"
is a canonical singularity. On the other hand (Kx+ + S + St)\Q+v is log canonical

I 2
and equal to Ks+U + C'+ in a neighborhood of Q, but not log terminal at Q. Then
by classification, Q is a Du Val singularity of type Dn . By (ii) and the original
assumption each flipped curve C+ is negative for SJ , and hence contained in S£ .
By (ii) again, C+ passes through Q, and by the original assumption the divisor
(Kx+ + S + S2~)i£+>/ is numerically 0 against C+. Hence C + is a (-l)-curveon
the minimal resolution of S£. But then a multiple of C + moves on S£, which
contradicts / + : X+ -+ Ζ small. Q.E.D.

The following standard result is useful in simplifying somewhat the induction in
the sequel.

8.4. Reduction. At the expense of passing to the analytic case, we can assume that
the flipping curve is irreducible.

In the reverse direction, we can try to return to the algebraic case by algebraic
approximation of the contraction and its polarization, afterwards resolving the sin-
gularities that are not log canonical and not Q-factorial outside the flipped curve;
however, algebraic approximation is probably not always possible.

Proof. Combine the arguments of the end of the proof of Reductions 6.4-5 and
Reduction 8.2. By Definition 6.1 one can restrict to an algebraic situation and shrink
to an analytic neighborhood. Q.E.D.

8.5. Classification of rays. We classify rays according to two tests: is Κ + S + Β
log terminal along the curve contracted by / ? and is the contracted curve contained
in Β (more precisely, in SuppB)? By (8.1.3) and (8.1.6) negative answers to both
tests are not possible. Hence the possible cases are as follows:

(8.5.1) Κ + S + Β is purely log terminal along the curve contracted by / , and
Β does not contain it;
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(8.5.2) Κ + S + Β is not log terminal along the curve contracted by / , and Β
contains it;

(8.5.3) Κ + S + Β is purely log terminal along the curve contracted by / , and
Β contains it.

The reason for the chosen order will be clear from the reductions of the sequel. Of
course, by Reduction 8.2, in each of the indicated cases it is assumed that there exists
exactly one irreducible curve C not contracted by f with multiplicity 1 in the bound-
ary of the log divisor (K + S + B)\g intersecting the contracted curve; each connected

component of Supp(/?i£) outside C meeting the locus of log canonical singularities

of (K + S + Β)ις is exceptional; and in cases (8.5.1-2), the curve contracted by f is

irreducible.
In what follows we successively reduce case (8.5.1) to (8.5.2-3) and exceptional

index 2 flips, (8.5.2) to (8.5.3) and exceptional index 2 flips, and (8.5.3) to excep-
tional index 2 flips. However, the contracted curve in (8.5.3) is possibly reducible,
and Κ + S + Β log terminal along it means log terminal at the general point of each
irreducible component. (It is not hard to check that the contracted curve in (8.5.3)
has at most two irreducible components.)

Our general strategy is to choose a good extraction in the sense of the follow-
ing definition. A good extraction g is an extremal extraction g: Υ -+ X having
irreducible exceptional divisor Ε, and having the following properties:

(i) g*{K + S + B) = KY + g~xS + g~lB + E, that is, g is log crepant;
(ii) KY + g~lS + Ε is log terminal;
(iii) B\ = g~lSnE — P1 is an irreducible curve, and g~lS and Ε cross normally

along it;
(iv) we have

(KY + g~lS + g~lB + E)^slBi = (KY + g'lS + g~lB

where Ρ is the unique point on B\ at which Κγ + g~lS + g~lB + Ε is not log
terminal.

Note that by Corollary 3.8, (iii) follows from (ii) and (8.1.3), although they are
often proved in the opposite order.

The existence of a good extraction will be provided in cases (8.5.1-2) by Proposi-
tions 8.6 and 8.8, and in case (8.5.3) by Proposition 8.8. After this, as in the second
half of the proof of Reduction 7.2, we apply Corollary 4.6 to fog with Η = eg* Β .
The inductive or reduction step is realized for an extremal ray R2 that is numeri-
cally 0 against the modified g~[S. Here the base of the contraction changes by a
divisorial extraction, a modification of the current good extraction. In the analytic
case, which by Reduction 8.4 is now the main case of interest for us, the current W
is replaced by its inverse image; here the original W is a point, the image of the flip-
ping curve. The notions of / extremal and X strictly Q-factorial are assumed over
such a W. (In the analytic case, / extremal and X Q-factorial are not preserved
in general on shrinking the neighborhood of the contracted fiber.) As for the rest,
the speciality assumptions (8.1.1-6) will hold.

Note also that W will always be projective and contained in the reduced part
of the boundary, since this holds for the good extraction and is preserved on sub-
sequent modifications, because the flipping ray is positive against Ε. Hence in a
neighborhood of W there exists a strictly log terminal extraction of Κ + S + Β as in
Corollary 5.19. However, in the boundary of the log divisor K+S + B and its restric-
tions, we usually only write the components in a neighborhood of the new flipping



168 V. V. SHOKUROV

curve. In doing so, Lemmas 8.9-10 will allow us to remain within the framework
of cases (8.5.1-3). But we can't avoid allowing the contracted curve to be reducible
in (8.5.3). In the overall strategy, the given reduction of index 2 special flips to
exceptional flips is carried out at the end of §8, and completes the proof of Theo-
rems 1.9-10 and Corollary 1.11.

Since we are not in the exceptional case, in case (8.5.1) the curve contracted by /
intersects C in a singular point Qi that is not log terminal for Κ + S + Β or for
(K + S + B)\$ in a neighborhood of the contracted curve; by Theorem 6.9, Qx is the

unique point in a neighborhood of the contracted curve where (K + S + Β)ις fails

to be log terminal. On the other hand, by (iii) and (iv), g cannot be an extraction
of a curve C. Thus g is an extraction of a point Q\ . In this case, we say that a
good extraction g is an end extraction if Ρ is the unique possible point on Ε where
(Κγ + g~lS + g~lB + E)i£ is not log terminal. In the opposite case, by Theorem 6.9

and the assumption that / is not exceptional, the reduced part of the boundary of
(Κγ + g~lS + g~~lB + E)<£ is of the form Bi+B2, where B2 is a curve intersecting

B\ only in Ρ and containing a point Q2 φ Ρ where (Κγ + g~lS + g~lB + E),g

is not log terminal. By the extremal property of g the divisors g~lS and B\ are
ample on Ε. Hence B2 is irreducible and Q2 is the unique point of Ε where
(Κγ + g~l S + g~l Β + E)ig is not log terminal, except possibly for P. We say that a

good extraction of Q2 is a middle extraction; a finite chain of successive extractions
ending in an end extraction is stopped. It is convenient to subdivide case (8.5.2) in
two:

(8.5.2), unstarred. As in (8.5.2) above, and on the curve contracted by / there is
a point Q\ g C that is not log terminal for (K + S + B)

(8.5.2*) The opposite case.
It is not hard to check that, in case (8.5.2), unstarred, a good extraction g blows

up Q\ . As before, it is an end extraction if Ρ is the unique possible point of Ε
where (Κγ + g~lS + g~lB + E)\g is not log terminal. A middle extraction and a

stopped chain of extractions are defined similarly.

8.6. Proposition. In cases (8.5.1-2) there exists a stopped chain of good extractions.

Proof. By Corollary 5.19 there exists a strictly log terminal extraction over a neigh-
borhood of W (see the remark after Proposition 8.8). We now apply Corollary 4.6
to g with Η = g~lB ; by (8.1.3) we get the original model X as a result of mod-
ifications of 0-contractions. I claim that the final modification g that gives back
the neighborhood of the point Q\ is a good extraction of Q\ . Suppose first that
this modification was a flip. (For the first step, this is not possible a priori, since we
start with some extraction Υ = YQ -* X, and in the chain, Y, —• Yi+i is speci-
fied by a ray of ΝΕ(Υ//ΛΓ), so each 7, —> X is a morphism. But the point of the
argument is that it also works inductively for Q2, etc.) By construction g~lB is
negative on the flipped curve C , and g*B is numerically 0, so there is an ex-
ceptional divisor Ε for g with EC > 0. Moreover, C is not contained on any
divisor exceptional for g , and is hence nonnegative against either of them. But C
is numerically trivial against g*S. Hence C is negative against the divisor g~lS
and lies on it. By construction Κγ + g~lS is log terminal, and hence the surface
g~lS is normal. Since EC > 0, the final divisor cuts out a curve of log canonical
singularities of (Κγ + g~[S + Βγ), _!<-, and Q\ is also contained in the locus of log
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canonical singularities of this divisor. Thus by Theorem 6.9 C will be a curve of log
canonical singularities of (KY + g~lS + BY),g-is- But then because KY + g~lS + E

was log terminal before the flip, it follows that g~lB, hence also Β, cuts out lo-
cally in a neighborhood of Q\ more than the locus of log canonical singularities of
(K + S + B)i$ , which is not possible by definition of cases (8.5.1-2).

Thus the final modification, giving the extraction of Q\, is the contraction of the
divisor Ε. (ii) and (iii) hold by construction, and (i) holds locally in a neighbor-
hood of Qi . Hence by (8.1.5) and (3.2.3) we get that Ε is contracted to the point
Q\ . Now it is not difficult to check (iv). By the above, if this extraction is not an
end extraction, the boundary of g*(K + S + B)ig has two intersecting irreducible

components B{ = g~lS Π Ε and B2 . Now on Βχ there exists a unique point Q2

outside Bx where g*(K + S + B)\g is not log terminal. Since in a neighborhood

of Q\ the support of Β intersects S only in the curve of log canonical singular-
ities of (K + S + B)>£ , it follows that g~~xB intersects B\ only in Ρ . Thus in a

neighborhood of Q2 the support of g~lB intersects Ε only in B2. Hence the final
modification g giving the neighborhood of Q2 is again a good extraction of Q2 ·
This process terminates because the number of our modifications is finite. Q.E.D.

In cases (8.5.2*) and (8.5.3) it is convenient to define a natural invariant δ and
then establish the existence of a good extraction by decreasing this invariant. We
start in a slightly more general set-up. Let Q e S be a point and suppose that the
locus of log canonical singularities of Κ + S + Β is contained in S, and Κ + S is
log terminal in a neighborhood of Q. For each exceptional divisor Ε,, define the
multiplicity dt of £, in S by

where E, is exceptional for the contraction g: Υ -* X. Obviously di does not
depend on the choice of g.

8.7. Lemma. In a neighborhood of Q the set of exceptional divisors E, with log
discrepancy at = 0 and multiplicity d, < 1 in S is finite.

Here "in a neighborhood of Q " means that the birational transform of E, passes
through Q .

Proof. It follows at once from the definition of log discrepancy that the distinguished
exceptional divisors Ej have log discrepancy < 1 for Κ -l· Β . Thus it is enough to
prove that the set of exceptional divisor with log discrepancy < 1 (that is, discrepancy
< 0) is finite. But by assumption Κ + Β is purely log terminal, so that it follows
that all log discrepancies are > ε for some positive e. From then on one argues as
in [25], (1.1). Q.E.D.

Now define δ by
δ = #-{£, | a,• = 0 and d,•< 1},

where we consider only exceptional divisors in a neighborhood of Q, that is, over
Q or over an irreducible curve of log canonical singularities of Κ + S + Β through
Q. Returning to our set-up, we take Q in (8.5.2*) to be a general point of the
contracted curve, and in (8.5.3) Q to be the unique point on the contracted curve
that is not log terminal for Κ + S + Β .

8.8. Proposition-Reduction. In the two cases (8.5.2*) and (8.5.3), either the flip
itself exists, or we get a good extraction as follows.
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Case (8.5.2*). There exists a good extraction g of the curve contracted by f such
that either the image of the exceptional divisor Ε passes through Q, a = 0 and
d < 1, or the restriction (KY + g~lS + g~lB + E),£ is purely log terminal outside

B\ over Q {where Q is the generic point of the curve contracted by f).
Case (8.5.3). There exists a good extraction g of Q such that either a - 0 and

d < 1, or the restriction (KY + g~lS + g~lB + E)^ is purely log terminal outside

The heading Proposition-Reduction means that we aim throughout the proof ei-
ther to construct a good extraction with the stated property, or to prove that the flip
exists for some other reason.

As already remarked above, in the analytic case we assume that / is extremal and
Q-factorial with respect to a projective analytic subspace W c S + [B\ ; then (8.1.6)
holds in a neighborhood of the flipping curve. Hence by Corollary 5.19 there is a
strictly log terminal extraction of a neighborhood of W for Κ + S + Β .

Proof. We start with the case (8.5.2*). Here I claim first that there exists an excep-
tional divisor Ε over a curve contracted by / with a = 0 and d < 1 . Taking a
general hyperplane section, we reduce the problem to the 2-dimensional situation.
Let Q be a surface singularity, at which Κ + S + Β is log canonical but not log
terminal, where S is a curve and the support of Β passes through Q. Then over
Q there is an exceptional curve Ε with a, = 0 and d, < 1 . Using Lemma 3.6,
it is not hard to check that S is irreducible and nonsingular in a neighborhood of
Q. Consider the log terminal extraction g: Υ -> X of a neighborhood of Q for
Κ + S + Β . The exceptional curves Et over Q are numerically 0 against the divisor
g*{K + S + B) = KY + g~lS + g~lB + Σ Ε,•. Moreover, from the fact that U E, is
connected, it follows that the curves E, = P1 are nonsingular, rational and together
with g~lS form a chain E\, ... En , g~xS. \ϊ one of the curves £, for ζ > 2 is
a (-l)-curve then we can contract it and again get a log terminal extraction of Q.
Hence we can suppose that g is minimal, in the sense that Ef < -2 for / > 2.
Then a, = 0 and dj < 1 for every exceptional curve £, with / > 2 (compare
Lemma 3.18).

Furthermore, the required surface Ε with a = 0 and d < 1 always exists, except
in the case that the surfaces S and SuppZ? are nonsingular and simply tangent
along Q. But in this case η = 1 and we take Ε = E\ . Then the restriction
(Κγ + g~lS + g~lB + E)ig is purely log terminal outside B\ over Q , of course

viewed as the general point. The good extraction property in the proposition for it
will be established below, assuming that g is extremal.

In the case when there exists Ε with a = 0 and d < 1 we apply Corollary 4.6
with Η = Ε ; using the fact that g*S is LSEPD, we can modify g to be an extremal
contraction of Ε. It remains to check that it is good. Κγ + g~lS is log terminal
by construction. Since on the curve contracted by / (in its intersection with C),
(K + S + B)t£ has a unique singularity that is not log terminal, and Ε is contracted

to this curve, its birational transform gives a curve B\ c g~lS η Ε with Β] = Ρ1

and
(Κγ + g~lS + g-'B + E)\g.ls\Bi = tfP, + \PX + \P2 + Ρ

This is property (iv) of a good extraction in 8.5. (i) holds obviously, and (ii) will
hold if we take En as above. Since / and g are extremal, p(Y/Z) = 2 and
NE(7/Z) has two extremal rays. As usual, suppose that R\ is the ray corresponding
to the contraction g; then g~lBR^ > 0. If the curve B\ Φ g~xSC\E then by
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(8.5.2*) g~xB is disjoint from it. Hence g~[BR2 < 0, and therefore ER2 > 0 and
g~xSR2 < 0. But then g~lBR2 = 0, and now R2 is a flipping ray whose support
contains B\ .

Thus g~lS Π Ε = U"=i Bj, where B\, ... , Bn, g~xC is a chain of curves on
g~lS. Moreover, the curves Bj with / > 2 are contracted by g to a point. Hence
their intersection with g~xB is positive, and therefore η = 2. Thus g~xSi~\E =
B\ UB2, where B\ and B2 are irreducible. Note that Ρ = Β\ nB2 is not log terminal
for Κ γ + g~lS + E . Let us check that there is no other such point in a neighborhood
of Ε. Note that the semiampleness of g~lB on Ε is important for this: g~xB is
numerically 0 against B\ , and positive against all the other curves of Ε . Indeed by
Theorem 6.9 and the fact that

is not purely log terminal at Q — B2 Π g~l C , the locus of log canonical singularities
is connected. Here it is a chain of curves v~xB\, C\, ... , Cn, v~xB2 , ... , Bm , with
g~xB\j?v = ΰ + Σι>3 bjBj, where SuppD is outside the locus of log canonical singu-
larities and b, > 0. The final assertion follows from the connectedness of g~~xB\^v

by semiampleness and the fact that D does not intersect C, and v~xB2, . . . , # m _i
for m > 3 (we write B2 = v~xB2 if m — 3), since the restriction in question is log
canonical. But g~xB is numerically 0 on u~xB\ only. Hence n = 0 and there are
no curves C,. Thus by Proposition 5.13, the points at which KY + g~xS + g~xB + E
is not purely log terminal on Ε are contained in the support of g~xS + g~xB , and
this gives what we want. It also follows from this that Ε is normal.

The support of R2 equals B\ . The flip in B\ exists and is described in Propo-
sition 8.3. After the flip, Ky + g~xS+ + E+ fails to be log terminal only along the
flipped curve Bf = v{C*). Now the intersection g~xS+ Π Ε+ = B£ is irreducible,
and we can argue as in Reduction 8.2. Then the nontrivial case is the flip in a ray that
is numerically 0 against g~xS+ , negative against E+ and positive against g~xB+.
Thus Bj has positive selfintersection on E+u . Note that by Proposition 8.3, the
normalization map E+v —> E+ is one-to-one over B^ , and we can hence identify
Bj with its inverse image in E+l/. Again by Proposition 8.3, on B^ , E+v can only
be singular at Q+ = B2 <~)g~xC+ . Hence B^ is a curve with selfintersection > 0 on
the minimal resolution of singularities of E+v , and selfintersection > 1 in the case
that E+v is nonsingular on B^ . But

(1) (KY+ + g-xS+ + g-xB+ + E+)lE+v

has C* U B£ as its locus of log canonical singularities in a neighborhood of C*.
Hence Ε is obtained from E+v by the following procedure. Start by performing

on E+v a minimal strictly log terminal extraction of the restricted log divisor (1).
As a result of this, we get a chain B\ = C\ , ... , Cm , C*, B£ in a neighborhood of
C*. Here by minimal we mean that C, with / > 2 are not (-l)-curves. Then we
contract the curves C, with / > 2 and C*. Hence B2, just as B^ , is a curve with
selfintersection > 0 on the minimal resolution of Ε, and selfintersection > 1 if Ε
is nonsingular at Q in B2 . But such a curve cannot be contained in a fiber of the
ruling determined on Ε by g , which is a contradiction.

We now proceed to case (8.5.3). We first assume that there exists an exceptional
divisor Et over Q or over C with a, = 0 and d, < 1 . Flipping log terminal
extractions for Κ + S + Β and using Corollary 4.6 with Η = e(X)i/,-£'/) , where the
sum runs over d, < 1 , and using the fact that g*S is LSEPD, we get an extraction
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g: Υ -> X which pulls out all the Et with a, and d,< 1, and no other exceptional
divisor. All, since by Corollary 3.8 all exceptional divisors with log discrepancy 0
over a log terminal extraction of Υ lie over the normal crossings of components of
the reduced part of the boundary of g~lS + ΣΕ,•, and by arguments used in the
proof of Proposition 6.7, it is not hard to carry out addition subextractions for which
the Ei with a, = 0 and rf, < 1 are not exceptional.

By construction

g*(K + S + B) = KY + g~lS + g~lB + ΣΕ<,

KY + g~{S is log terminal and g~lS is a normal surface. From this also, by Theo-
rem 6.9, the intersection g~lS Π (J £, is a chain of irreducible curves B\, ... , Bn,
where Bn is the birational transform of C. Setting Η = g~lS, we get the origi-
nal model without contracting any curves outside [j Ei. Hence S is obtained from
g~lS by contracting Bi = f1 with i <n- \ .

(8.8.1) I claim that

(KY + g~lS + g~xB + Σ E')\g-^S\Bl = Kr + {Px + \P2 + Po

where Po = Βλ η Β2.

For this, assume the contrary. Then by definition of case (8.5.3), B\ has a point
Ρ lying on g~lB at which (K + X + B)\<$ is not log terminal. Suppose that B\

(and possibly something else) is cut out by Ε — E\ . Then none of the other Ei pass
through Ρ. By construction the following holds:

(8.8.2) For every exceptional divisor Et over Ρ or over a curve through Ρ with log
discrepancy a, = 0 the multiplicity dt of Et in g~lS + Ε satisfies d, > 1.

Using Corollary 4.6 we can assume that g is an extremal extraction of Q pre-
serving (8.8.2). As in the proof of Reduction 8.2, we take Η = e(g~lS + dE). From
the stated properties and Lemma 3.18 it follows that in a neighborhood of Ρ the
point Ρ is the unique point at which g*(K + S + B) = KY + g~{S + g~lB + Ε is
not log terminal, or equivalently, all three of

are also log terminal in a neighborhood of Ρ. Moreover, Ρ is then Q-factorial,
since otherwise the log terminal extraction of KY + g~*S + E is automatically small,
and the birational transforms of the 3 divisors g~lS, Ε and g~lB all contain
the fiber curves; but by Corollary 3.16, this contradict the log canonical property of
KY + g-lS + g~lB + E.

We note that KY + g~lS purely log terminal follows from (8.1.3) and the fact
that a multiple of Ε is positive in Β. Thus g~lS is normal. The remaining log
terminal properties required can be proved using Proposition 5.13.

We now check the following addendum to (8.8.2):

(8.8.3) For every exceptional divisor Ei over Ρ with log discrepancy a\ < 1 for
KY + g~lS + E the multiplicity dt of Ei in g~lS + E satisfies d,> 1, except for the
case that there is an exceptional surface Ej with a^ = 0 over Ρ such that Ei can be
obtained by blowing up a curve of ordinary double points on the extremal extraction
Ej, a\ > a, = 1/2 and d> = (l/2)rf; > 1/2.

By monotonicity a, < a\ < 1 . Hence a, = 0 or 1/2. When a,• = 0, the result
follows at once from (8.8.2). To verify it in the case a, = 1/2 we use a strictly log
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terminal extraction h: W —> Υ for Κ γ + g~xS + g~xB + E, the exceptional divisors
Ej of which lie over P. Such a model exists by Corollary 5.19, since Ρ is the unique
point in a neighborhood of Ρ where g*(K + S + B) - KY + g~xS + g~xB + Ε is
not log terminal, and the intersection g~lSnE is normal along Β ι. This fails only
if Supp^~'5 is tangent to Ε in a neighborhood of Ρ. But then perturbing g~l Β
while keeping Ρ e g~lB does not change a,> = 1/2 . (If Ρ becomes log terminal for
Κγ + g~1S + g~xB + Ε, then Ρ is a nonsingular point and all di > 2 .)

As before, the log terminal divisor

h*(KY + g~lS + g~lB + E) = Kw + h~lg~lS + h~xg~lB + h~xE

has index 2. Since Ρ is Q-factorial it follows that h~lP = \JEj and that Ε ι lies
over one of the exceptional divisors Ej . Suppose first that Ei with log discrepancy
a,· = 1/2 is contracted to a point P'. Then Kw + h~lg~lS + h~xg~lB + h~xE +
J2Ej has index > 1 in a neighborhood of P'. By Corollary 3.8 P' is in the
intersection of at most two irreducible components of the boundary h~xg~xS +
h~xE + Y^Ej ; moreover, if it lands on the intersection of two components then P'
is Q-factorial and by Corollary 3.7 has index 1 if h~lg~lB passes through Ρ', or
index 2 otherwise. By (8.8.2),

h*{g-lS + E)^h-xg-lS + h-lE + ^djEj, where dj > 1.

Hence dj > 1/2+1/2 = 1, since P' lies on at least one of the exceptional components
Ej.

Suppose now that P' lies on only one of the reduced boundary components Ej .
Then we can modify h into an extremal extraction of E' = Ej preserving the
neighborhood of P' and, in particular, preserving the log terminal property of

h*(Kr + g~lS + g~xB + E) = Kw + h~lg-lS + h~lg'lB + h~lE + E'

in a neighborhood of P'. Since h contracts E' to a point, the reduced part of the
boundary of (Kw + h~xg~xS + h~xg~XB + h~xE + E')i£i consists of two irreducible

curves Cx =h~xg-xSnE' and C2 = h~xEc\E'. On the other hand, KY + g~xS + E
has a 1-complement 0 in a neighborhood of Ρ, such that the log discrepancies of
E' and Ε ι for Κγ + g~lS + Ε + 0 are all 0. For this, we need to use the proof of
Theorem 5.12 with S = g~xS and Β — (1 —ε)Ε for sufficiently small ε > 0 . Hence
the log canonical divisor

h*(KY + g~xS + E + 0) = Kw + h~xg~xS + h~xE + E'+ 0

has index 1 , and (Kw + h~xg~xS+ h~xE + Ε' + 0)|£·, = KE + Q + C2 + C 3 , where

the curve C3 = h~x0ilE' is also irreducible. Note that the curves C, — P1 intersect
pairwise in one point. Since the log discrepancy of Et is 0, by construction P' lies
on C3 outside C\ and C2 . But then P' is a log terminal point of KE + C\ + C2 + C3

and by Proposition 5.13 the log discrepancy of Kw + h~xg~xS + h~xΕ + E' + 0 at
Ei is > 1 . Hence this case is impossible.

Note also that the log discrepancy of Ei on curves Φ C\ or C2 is 0 only if it lies
over C3. Moreover, if a, = 1/2 and di < 1 then W has ordinary double points
along C3, and Ei is its extraction and di — (\/2)dj > 1/2. This verifies (8.8.3) in
the case that Et with log discrepancy a, = 1/2 is contracted to a curve lying on only
one exceptional surface Ej . This completes the proof of property (8.8.3), since the
index of Kw + h~xg~xS + h~xg~XB + h~xE + ΣΕ] on the curves of intersection of
irreducible components of the boundary of h~xg~xS + h~xE + ^Ej equals 1 .
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Now we verify that Υ is nonsingular outside g~lS U Ε in a neighborhood of
Ρ. Obviously we need only consider the singularities along curves C, not lying on
g~xSliE and passing through Ρ. As we already know, KY + g~lS + Ε has a 1-
complement in a neighborhood of Ρ and the curves of noncanonical singularities of
Cj land on the boundary of the complement. As above, we can construct an extremal
extraction h: W —> Υ over one such curve of an exceptional surface E' with log
discrepancy 0 < a' < 1 for KY + g~lS + Ε, that is,

h*{KY + g~lS + E) = KW + h~lg-lS + h~]E + (1 - a')E'.

But then the 3 surfaces h~lg~lS, h~xE and E' all pass through the fiber curve
h~lP, which contradicts the log canonical property of KY + g~xS + Ε in a neigh-
borhood of Ρ. In the case of canonical singularities along the curves C; we can use
the arguments of Proposition 4.3 and the log terminal property of KY + g~'S + Ε to
construct an extraction h of the exceptional divisors over C, with log discrepancy
1 (that is, discrepancy 0), and no others. By monotonicity (1.3.3), there are no
exceptional surfaces over Ρ (compare (1.5.7)) and h~xP is again a curve, and the
same arguments as before give a contradiction.

We now verify the following assertion:

(8.8.4) If Ρ is an isolated singularity then the index of KY + g~xS + Ε is odd,
and equal to 2m + 1, where m > 2 is a natural number, moreover, there exists an
extremal extraction h: W —> Υ of Ρ with exceptional divisor E' of multiplicity d' in
g~xS + Ε given by d' = 1 + (l/(2m + 1)), log discrepancy a' — 0 for KY + g~lS +
g~xB + Ε and log discrepancy a" = I/(2m + 1) for KY + g~xS + Ε. Moreover,
E' has a singular point P' locally satisfying the same conditions as Ρ, but with
Kw + h~x g~xS + h~xE + E1 of even index 2m.

First of all, I claim that Ρ is a singular point of g~lS. For this, note that there
is an extremal 0-contraction h: Υ —> W of a curve C\ c g~xS η Suppj^ 1/?. This
is a 0-contraction for Η = sg*B over Ζ . Indeed, p(Y/Z) = 2 and NE(7/Z) has
two extremal rays R\ and i?2 · Suppose that R\ corresponds to the contraction g .
Obviously i?i is nef against g~lB . On the other hand by Reduction 8.2 the curve
g~lS Γ\ Supp g~lB is exceptional. Hence there is a curve over Ζ that is negative
against g~lB. Thus g~xBR2 < 0 . But g*B is numerically 0 on /?i and is positive
against g^ 'S η Suppg-'-S. Hence ER2 > 0 and g~lSR2 < 0, which gives what
we want. Moreover, the contracted curve Bo passes through Ρ. It is not hard to
check that when Ρ is nonsingular the curve BQ is irreducible, nonsingular, crosses
B\ normally only at Ρ and is a (—l)-curve. Moreover, there is a curve B^\ through
Ρ with β_ι c g~lS but 5_! £ Suppg~lB , with multiplicity 1/2 in the boundary
of (KY + g~l S + g~l Β + Ε), - ί ο , and its restriction in a neighborhood of Bo is of

the form Kg-\S + Bi + (x-/2)B0 + (l/2)5_i . But then Υ has ordinary double points
along Β-1 , which contradicts our assumption that Ρ is an isolated singularity. From
this it follows in particular that Ρ is actually singular and Κ γ +g~lS + E has index
> 1.

I claim that Ρ is a terminal singularity. For this it is enough to check that aj+d, >
1 for the exceptional divisors Ej over Ρ. This follows directly from (8.8.3). By
the above and [7], (5.2), the index r of the singular point Ρ is > 1 , hence by
Kawamata's theorem (given in the Appendix) there is an exceptional divisor £, over
Ρ of log discrepancy 1 + \/r (that is, discrepancy \/r). Hence a\ + d,• = 1 + 1/r .
On the other hand ra\ and rdt are positive natural numbers. Again by (8.8.3) this
is only possible when r = 2m + 1 is odd, a, = 1/2, aj = dj = (m + I)/(2m + 1),
and the exceptional divisor of is, is obtained by blowing up a curve C3 of quadratic
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singularities on the exceptional divisor E' over Ρ with log discrepancy 0 for KY +
g~lS + g~xB + Ε and d' = 2dt = 1 + l/(2w + 1). We can assume that E' is
exceptional for the extremal extraction h: W —* Υ. Then by construction, and since
g~xB passes through P, the restriction to E' of h*{KY + g~xS + g~xB + E) is
numerically 0 and of the form

where the curves C{ = h~xg-xS Π Ε' = Ρ1 , C2 = h~xE Π Ε' = Ρ 1 , C3 = Ρ1 and
C4 = Supp/z~1g~'i?n.Ev are irreducible. Since W has ordinary double points along
C3 , the log discrepancy of E' for KY + g~xS + E is of the form a' = 1 -2(1 -aj) =
l/(2m+ 1). Hence

= K
w

However, by [7,] (5.2), this divisor has index dividing 2m + 1 . Hence by the argu-
ments of Lemma 4.2 and Corollary 3.10, it equals 2m + 1 , W is nonsingular along
C\ and C2 , and the crossings along C\ — h~lg~[S Π Ε', C2 = h~lE η Ε' are nor-
mal at generic points. Then by the same arguments the unique point of intersection
Q! — C\ Π C2 is nonsingular on h~xg~xS and h~lE. Hence by Corollaries 3.7-8,
W is nonsingular, and h~lg~lS and h~lE and E' cross normally at Q'. In par-
ticular E' is nonsingular in a neighborhood of Q'. Again by [7], (5.2). the index of
g~lS and Ε divides 2 m + l . Hence the multiplicities of E' in g~[S and in Ε are
both < 1 . From this and from the fact that the boundary h~lg~lS + h~lΕ + Ε' has
normal crossings at Q we deduce that C\ (respectively C2) cannot be a ( — 1)-curve
on the minimal resolution of singularities of /z~'g~lS (respectively h~xE).

Now we turn to the surface E' and prove that there is a singular point of E' on
C2. Indeed, if not, then C2 = P1 and all the singularities of W in a neighborhood
of P' = C2 Π Cy lie on the curve C3, which crosses C2 normally, since C2 is ample
and hence also meets C\ and C4. Then from the fact that E' is nonsingular in a
neighborhood of P', the divisor Kw + h~lΕ + E' has index 2, and therefore the
restriction (Kw + h~xE + £ ' ) , . _ i r , which in a neighborhood of P' is of the form

Kh~\E + C2 , also has index 2 . Thus since P' is log terminal, it is an ordinary double
point on h~xE . On the other hand, the restriction

is numerically 0 on C2, hence C2 is a nonsingular rational curve with selfinter-
section —(m+l) on the minimal resolution of h~xE, that is, the blowup of the
ordinary double point P'. In the same way, since the divisor

is numerically 0 on C2, we can calculate the multiplicity ds = 2/(2m + 1) of
E' in g'xS. But then the multiplicity of E' in Ε is 2m/(2m + 1). Therefore
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(2mI'(2m + l))Ci + h~lBi is numerically 0 against C\ . But the restriction

-Kh-lg-is+ 2 m +

is also numerically 0 against C\ , and hence the canonical divisor Kh-ig-iS is numer-
ically 0 against C\ . Here C\ is not a (-l)-curve on the minimal resolution of sin-
gularities of h~lg~lS. Hence it follows that C\ will be a nonsingular rational curve
with selfintersection —2 on the minimal resolution of singularities of h~l g~[S, and
on C\ there is at most one singular point, which is resolved by a chain of nonsingular
rational (-2)-curves. Thus Ρ e g~lS is a Du Val singularity of type A2m . But by
what we have said g~lS has an exceptional curve lying in g~lS π Suppg~lB and
numerically 0 against the restriction (Κγ + g~lS + g~xB + E)i _ι ^ , whose bound-
ary in a neighborhood of Ρ is Bl + (l/2)(g~lSnS\xppg~lB). From this we deduce
that Bo = g~lSnS\ippg~lB is an irreducible curve, and on the minimal resolution
of singularities of g~lS is a nonsingular rational (-2)-curve or (-l)-curve passing
through a unique singularity Ρ of g~lS.

In the first case the contraction of Bo transforms Ρ into a Du Val singularity
of type D2m+\ · It follows from this that on the minimal resolution of Q € S
the curve g(Bo) = S n SuppB will not be a (-l)-curve. But this is not possible,
since Β is positive on the flipping curve S η Supp Β . In the second case m = 1 ,
the inverse image h~lBo does not pass through the singularity of h~x g~lS on d
and crosses C\ normally at one point. Hence since Κγ + g~lS + g~]B + Ε is
numerically 0 against Bo, its restriction to g~xS in a neighborhood of BQ is of
the form Kg-iS + B\ + (\/2)BQ + (\/2)B-\ , where β_ι is a nonsingular curve that
crosses Bo normally at one point distinct from Ρ; Υ has an ordinary double point
along β_ι . Hence Bo contracts to a nonsingular point which is terminal for the
image of Kg-ls + (\/2)B-i .

But then (8.8.4) holds except for the case m = 1 , when there may be no subse-
quent point P'. This case will be excluded later, so that for the moment we assume
that m > 2 . Therefore Ci has a singular point P', again coinciding with Cj_ Π Ci.
Since C2 on the surface E' is ample and has a unique singularity on Ε', it becomes
a nonsingular rational curve with nonnegative selfintersection on the minimal resolu-
tion of singularities of E'. Now applying Theorem 6.9 to the minimal resolution of
the singularity P' e E', one can prove that the selfintersection number is 0, and P'
is the unique singularity of E', and is an ordinary cone point, that is, E' is a cone
with vertex P' over the nonsingular rational curve C\ . Note also that C3 and C4

intersect C\ in distinct points P\ and P2 respectively.
Hence, as above, we get that Λ is an ordinary double point of h~lg~*S, the

selfintersection of C\ on the minimal resolution of /!~'^~'5 is — (m + 1), the
selfintersection of Ci on the minimal resolution of h~lE is - 2 , and P' is a Du
Val singularity of type Aim-\ • It follows that the index of Kw + h~lE + E' in a
neighborhood of P' concides with that of the restriction (Kw + h~lE + Ε'),, _ι ρ —

Kh-iE + h~lB\ and is 2m. (One can check moreover that Ρ is a quotient singularity
of type 2 ^ T ( 2 , - 2 , 1).)

We verify that P' satisfies (8.8.2). Indeed, otherwise there is an exceptional divisor
Ei over P' with a,· = 0 for Kw + h~xg'[B + h~xE + E' and multiplicity d, in
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h~xE + E' satisfying dl < 1. Then Et is exceptional over Ρ with <a, — 0 for KY +
g~lS+g~lB+E, and multiplicity d,•< l + l/(2m + l) in h*(g~xS+E) = h~xg~xS+
h-lE + E' + (l/{2m+l))E' and in g~xS + E. But since g~lS+E has index 2 m + l
at Ρ, it follows that d, < 1, which contradicts (8.8.2). However, we may possibly
lose the existence of a contracted curve in the intersection g~xSP\Supp g~xB , which
was important in distinguishing the component on which the singularity P' appeared
when m > 2 .

(8.8.5) If Ρ is a nonisolated singularity, then the index of KY + g~lS + Ε is even,
equal to 4m + 2 for a natural number m > 1, and there exists an extremal extraction
h: W —> Υ of Ρ with exceptional divisor E' having multiplicity d' = 1 + I/(4m + 2)
in g~xS + Ε and log discrepancy a' = 0 for KY + g~lS + g~lB + Ε . Moreover, on
E' there is a singular point P' locally satisfying the same assumptions as Ρ but with
the index of Kw + h~xg~xS + h~xE + E' odd and equal to 4m + 1.

The only possibility for a curve of singularities through Ρ is a curve Γ of ordinary
double points on g~xS + Ε ; then KY + g~lS + Ε is log terminal and has index 2
at the general point of Γ. Thus the index of KY + g~xS + Ε is even, and there is a
double cover π: Υ —• Υ in a neighborhood of Ρ ramified only in such curves Γ.

Let's check that the birational transforms π " 1 ^ " ^ , n~lg~lB and π~ιΕ pre-
serve the previous properties in a neighborhood of π~λΡ. On lifting by π the log
terminal property of KY + g~lS + Ε is preserved outside Ρ by construction, and
at Ρ by Corollary 2.2. Thus, as above, by (1.3.3) and Corollary 2.2 applied to
^" '5" + g~xB + E, we get that π~ιΡ is Q-factorial, and n'^-^S and π~χΕ are
irreducible and normal in a neighborhood of n~xP. By the proof of Corollary 2.2
the log discrepancy 5, of the exceptional divisor Ei over Et for Υ and over π'1 Ρ
in K~ + π~χg~xS + π~χg~xΒ + π~χΕ is 0 only if £, for KY + g~xS + g~lB + Ε
has log discrepancy 0. This implies that property (8.8.2) is preserved. Hence by
(8.8.4) π~χΡ is a terminal point of odd index 2m + 1 and the index of KY +
g~xS + Ε is of the form 4m + 2 . If m = 0 then KY + g~xS + Ε and its restriction
(KY + g~xS+E), _n~, both have index 2. More precisely, if g~xS does not contain

a curve of singularities of Υ then Ρ e g~xS is an ordinary double point and, as
above, in a neighborhood of Ρ we get

(KY + g~lS + g~xB + £ ) | £ - i 5 = Kg-is + B\

where the curve Bo c ^"'•S'nSuppg"1/? generates a flipping extremal ray (denoted
/?2 in the above). The (-2)-curve resolving Ρ g g~xS has log discrepancy 1 for
Kg-\S + Bi + (1/2)Bo . Thus on resolving Ρ , we arrive at a contradiction, in the same
way as when proving that Ρ is singular in (8.8.4). Therefore the point Ρ e g~xS is
nonsingular, it lies on a curve 2?_ ι of ordinary double points, and in a neighborhood
of Ρ

(KY + g-xS + g'lB± E)\g.is = Kg-iS + Bx + \BQ + 1β_, ,

where Bo = g~xS Π Suppg~lB = \R2\ is an irreducible curve. Note that g~xS
is nonsingular in a neighborhood of Bo, Bo is a (-l)-curve, and the restriction
(KY + g~xS),~-i£ =*= Kg-iS + (\/2)B-\ is numerically negative on Bo , since Bo and

Z?_ ι intersect only in Ρ, and normally there.
Let us prove that the flip exists in this case. We check first that the intersection

g~xS Π Ε = B{ U · · · U Bn is irreducible. All the B, with / < η are contracted to
Q, and are hence positive against g~lB . Hence η < 2. Suppose that η = 2 . The
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curve Bo is the support of the next extremal ray R2. Moreover, the surfaces g~lS
and g~lB are negative, and Ε is positive against Bo. Hence the flip in Bo exists
by Corollary 5.20. We can prove that it satisfies the properties of Proposition 8.3.
For this it is sufficient that the image of Kg-iS + (l/2)B-i under the contraction of
Bo is log terminal, which we know. In particular, the only point of g~lS+ at which
B\ can be singular is Q' = Bf η B^ . But now g~lB+ is numerically 0 on fip
from which it follows that it is extremal. Therefore B+ is the support of the next
extremal ray. Hence Ε is positive on it. The intersection of g~{S+ and E+ along
Bf is normal by Proposition 8.3. As in Proposition 8.3, we deduce from this using
Lemma 3.18 that Bf moves, which gives a contradiction.

Thus the intersection B\ = g'^SnE is irreducible. Suppose now that g(E) = C .
Then g identifies g~lS and 51. Here by Proposition 3.9 and (8.1.4) we have

(K + S)-Bo =

where η is the index of K+S along C. Hence η = 1 and X has in a neighborhood
of BQ only ordinary double points along g(B-\), and K+S has index 2 . Therefore
there is a purely log terminal complement of Κ + S of index 2 in a neighborhood
of Bo , and the flip of / exists by Proposition 2.9.

The case g(E) = Q is similar. Arguing as above, we have

so that a' < 1/2. But B\ is not a (-l)-curve on the minimal extraction Ε, and

K + ' ^ C + B

It follows from this that B\ is a (-2)-curve on the minimal extraction Ε , that X
is nonsingular along C , and Po = B\ Π g~' C is a canonical singularity of type An .
Hence in a neighborhood of g(B0) on S there is a purely log terminal complement
of Ks + (l/2)g(B-i) of index 2 . To extend this to X for Κ + S , by the proof of
Theorem 5.12, it is enough to have a resolution Y' —> X with normal crossings Sy>
minimal over S. For this we need to use a partial resolution of g and extend it.
Since Υ has ordinary double points along 5_! , resolving it does not change g~lS.
Thus it is sufficient to find a similar resolution of Po. Now Po, just as Ρ , is a
Q-factorial point. Furthermore, by Corollary 3.7, it is a quotient singularity of index
η . If Po is not an isolated singularity, then the curve C of singularities lies on Ε .
Moreover, X has a canonical singularity of type An> with η! \ η . Performing the
resolution of C as in Proposition 4.3, we again preserve the minimal assumption
and reduce the resolution to the isolated singularities of the same type; the surfaces
extracted in this will be irreducible. In the case that Po is isolated it will be a
terminal quotient singularity of type ^(k , -k, 1), the economic resolution of which
gives what we want. This can also be deduced by induction on η from the theorem
of the Appendix. _

Thus, m > 1 . Hence by (8.8.4) there exists an extremal extraction h: W —> Ϋ
with exceptional divisor E' having

multiplicity d' in π~[g~lS + π'1 Ε given by d' = 1 + l/(2m + 1),

log discrepancy a' for K~ + π~ιg~lS + π~λg~xΒ + π~ιΕ given by a' = 0,

log discrepancy a" for K~ + n~lg~lS + π~χΕ given by a" = \/(2m + 1).
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Therefore by (8.8.2) the ramification index of π at E' equals 1 . Suppose that
E' c Υ lies over E' c Υ, which is an irreducible exceptional surface over Ρ. Then
the log discrepancy of E' for KY + g~lS + g~xB + Ε equals 0. Let h: W -*· Υ
be the extremal contraction of E'. Using Theorem 6.9, it is not hard to verify that
Kw+E' is purely log terminal. Hence, as in the proof of Proposition 8.3, if π~ιΕ' is
reducible then we deduce from Corollary 2.2 and Corollary 3.8 that π is unramified
everywhere over E', and hence also over Ρ. Therefore Ε' = π~1Ε' is irreducible,
that is, the covering involution of the double cover π acts biregularly on the extremal
extraction h. Since h and h are extremal, the curves C\ = n~lh~l g~lS Π Ε'
and Ci = n~lh~lE η Ε' are irreducible and lie over C\ = h~lg~lS Π Ε' and
Ci = h~lEr\E'. On the other hand, by the proof of (8.8.4) there exists a curve C,
for which

{K~ + n-[h~l g-lS + π " 1 Λ"1 g'x Β + n~lh~l Ε + Ε').~,~

where Q = n~lh-[g-lS Π n-lh~lE Π Ε', and

p2 = n-^-^-^nSuppn-^-^g-^n

or

p2 = π " 1 h~lΕ ΓΊ Supprc-1 /Τ1 g~lΒ Π Ε'.

This implies that π is ramified along the curve C, and by the purity theorem W
is singular along the corresponding curve C,. Since π is unramified along E' the
log discrepancy of E' for KY + g~lS + Ε is l/(2w + 1). By construction and [7],
(5.2), the index of KY + g~lS + Ε divides Am + 2, and hence arguing as in the
proof of Lemma 4.2 we get that W has an ordinary double point along C,. The
corresponding exceptional divisor extracted out of this singularity has log discrepancy
0 for KY + g~!S + g~lΒ + Ε, log discrepancy l/(4w + 2) for KY + g~xS + E , and
multiplicity 1 + l/(4m + 2) in g~xS + E .

Now write h for its extremal extraction. Arguing as in (8.8.4), we get from this
that the curves C\ = h~lg~lSnE' and C2 = h~lEnE' are irreducible and that these
intersections are normal crossings at their general points. Also the curves C\ and
Ci on the respective surfaces h~lg~lS and h~lE are not (-l)-curves. Suppose
first that / = 2 above. Then by the proof of (8.8.4) the multiplicity of the previous
E' in Ε equals 2m/(2m+ 1), hence the multiplicity of the current E' in Ε equals
(4m + 1)f(4m + 2). Then arguing as in (8.8.4) we can check that Ct will be a (-2)-
curve on the minimal resolution, g~lS does not have a curve of double points of
Υ , and C\ passes through a unique singularity, a Du Val singularity of type A4m

on h~xg~lS. This contradicts that g~lS contains a curve of double points 5_] , in
view of the argument of (8.8.4) for m > 2 . Thus / = 1 . By the previous arguments
the multiplicity of the current E' in g~lS equals (4m + \)/(4m + 2), Ε does not
have a curve of double points of Υ , Ρ is a Du Val singularity of type Aim+\ on
Ε, Ci is a (-2)-curve on the minimal extraction of h~lE, and C2 has a unique
singularity P' of the surface h~lE , a Du Val singularity of type A4m . On the other
hand, by construction

(KY + h~lg-lS + h~lg-lB + h-{E + £ ' ) | Λ - ι ^ , =KCl+P + \Ρχ + \Pi,
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where SuppTr" 1 ^" 1 ^" 1 ^ passes through P2, and P2 is nonsingular on h~lg~lS.
But h~lg~1S must contain the curve of double point h~lB_\ .

Obviously P\ — C\Dh~lB-i is a nonsingular point of h~lg~lS. Hence h~lg~lS
is nonsingular in a neighborhood of C\ and C\ = P1 is a curve with selfintersection
-(2m + 1). On the other hand, in a neighborhood of C\ , by nonsingularity of
h~lg~lS, the surface E' has P\ as an ordinary double point, and E' does not
have double points along curves of W. Hence P' is an isolated singularity. But
P' is a Du Val singularity of type A4m . It follows from this that the index of
Kw + h~lE + E' in a neighborhood of P' is the same as that of the restriction
(Kw + h~lE + £ ' ) j ,_ ip = Kh-Έ + h~xB\ , equal to Am + 1 . From then on, as in

the proof of (8.8.4) we verify that P' satisfies (8.8.2).
Now it follows from (8.8.4-5) that in (8.8.4) the index of P' is of the form 4w'+2,

hence that of Ρ is of the form 4m' + 3 with m! > 1. Hence the case (8.8.5) is
impossible altogether, from which it follows that (8.8.4) is impossible. This is now
all proved, except for the one case not yet considered, that of m = 1 in (8.8.4). We
will prove that in this case the flip exists, or reduces to the same type (8.5.3) with
di > 1 for a,• = 0.

For this we need the following two lemmas, that are also needed below in the proof
of the main results, where they are used to preserve the type of flips in subsequent
inductive steps.

8.9. Lemma. Let S be a normal projective surface with boundary Β, and C\, C2

contractible (possibly reducible) curves such that
(i) 2(K + B)~0;
(ii) [B] = B\ + B2, where Bx and B2 are irreducible;
(iii) B\ > 0 (with Β ι as in (ii));
(iv) B2 becomes ample after contracting C2;
(v) C\ is disjoint from Bx;
(vi) the point Ρ = B\ η B2 is the unique point of B\ where Κ + Β is not purely

log terminal;
(vii) the components of C2 intersect Bx and B2 in Ρ.
Then either C\ is disjoint from B2,or Ρ is the unique point of B2 at which K + B

is not purely log terminal.

By Theorem 6.9, the singularities of S are rational, and remain so after contracting
C2 • Hence the ampleness in (iv) coincides with numerical positivity by the Nakano-
Moishezon criterion (compare [8], 6-1-15 (2)).

Proof. Suppose that C\ intersects B2 . Then using standard arguments of the theory
of extremal rays for the contraction of C\ , together with (i), we can find an irre-
ducible contractible curve C c C\ intersecting B2. Hence without changing the
assumptions we can restrict to the case that C\ is irreducible and intersects B2 . By
(i), (ii) and Theorem 6.9, the locus of log canonical singularities of Κ + Β is just
B\ U B2 . Suppose now that there exists an irreducible component C" c C2 inter-
secting C\ . Then by Corollary 3.16 and the log canonical assumption on Κ + Β the
curve C" has multiplicity 0 in Β . Hence by (i) C" is a (-l)-curve on the minimal
resolution of S . As in Proposition 8.3 it is easy to check that Bx = P1 and that

(K + B]+ B2) Βχ = Krl + {Pi + \P2 + P.

Now let g: Τ —> S be a strictly log terminal model of Κ + Β, minimal over Ρ.
Then g~lC" does not intersect g~]B{ , but crosses normally at Q a component
with multiplicity 1 in the boundary BT that is exceptional over Ρ. Therefore
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g*(K + B) has only canonical singularities on g~lC" outside Q. It follows that
C\ also has multiplicity 0 in Β and is a (-l)-curve on the minimal resolution of
S, since it intersects B2 • Then on the minimal resolution Τ a multiple of the total
inverse image of the curve g~l{C\ U C") is mobile. But g~{(C\ U C") is disjoint
from g~{B\ and its intersection with BT does not lie over Ρ only. Hence g~lB\
is exceptional. From now on, arguing as in Proposition 8.3, we get from (iii) that
exactly one of the points P, is nonsingular.

Suppose that P\ is nonsingular. Then there is an irreducible curve B3 with mul-
tiplicity 1/2 in the boundary Β passing through P\ . By what we have said C"
does not intersect B3. Also each irreducible component of C2 does not intersect
Z?3, since it passes through Ρ. Hence by (iv) B3 intersects Bi. Moreoveor, it is
not hard to check that g~x{C\ U C") is disjoint from g~x{Bx U B3). Thus arguing
as above, we get that g~xB$ is exceptional. But g~xB3 intersects the locus of log
canonical singularities of (B\ + Β2)τ at 2 points, which contradicts the connect-
edness lemma, Lemma 5.7. Thus we have proved that every irreducible component
of C2 does not intersect C\ . Contracting C2 we can assume that C2 = 0 , when
assumption (iv) means that B2 is ample. By (iii) NE.S has an extremal ray R that
is positive against B\ . If cont« contracts a curve, then by ampleness of B2 and
Lemma 5.7 it intersects Β ι and B2 at Ρ. Hence we can take this last curve as C2 ,
and then contract. The contraction decreases the Picard number p(S). Hence af-
ter a finite number of such contractions we can assume that the extremal contraction
contR is not birational. Since C\ does not intersect B\ , cont/j must be a morphism
to a curve, and B\ , Β2 are not contained in its fibers. Then by Theorem 6.9, Ρ is
the unique point of B2 at which Κ + Β is not purely log terminal. Q.E.D.

8.10. Lemma. Let f: S —> Τ be a birational map of normal projective surfaces,
D an effective ample divisor on S such that Or is irreducible. {Here DT is the
log birational transform as in §1 and in (10.3.2), that is, all the blown up curve are
contained in it with multiplicity 1.) Then DT is numerically positive.

Proof. Consider a resolution of indeterminacies of / , for example a Hironaka hut

U
h / \ *

S -f-+ T.

Since D is ample Supp D is connected, and because S is normal its inverse image
U C, on U is connected. I claim that #(|J C,·) Φ pt. Indeed, otherwise there exist
fl, > 0 such that

for every irreducible component C, . In particular

0 <

since h*D = Y^bjCj with bj > 0 and at least one b}• > 0; this is a contradic-
tion. From the claim, because Dr is assumed to be irreducible (that is, SuppDr
is irreducible), we get that DT = g{\J Cf), and all the exceptional curves of h not
intersecting U C,· are exceptional for g . Thus

where all c, > 0. If Β is a curve on Τ disjoint from DT, then g~{B is disjoint
from U C, and h ο g~lB is disjoint from SuppZ). Therefore h ° g~lB = pt., and
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by what we said above this is impossible. It remains to check that D\ > 0. Indeed,
otherwise g*Dj · C/ < 0 for all curves Cj, which gives a contradiction:

o < ( Σ cMQ)) • D = ( ] T Cic.) • h*D = (J2 «Q) · ( £ bjCj) < o. Q . E . D .

Proof of Proposition 8.8, continued. Thus we return to the case (8.8.4) with m = 1 .
By what we have already proved, there exists an extremal extraction of a surface E'
over Ρ with a = 0 for which (8.8.1) holds. However, E' has multiplicity 2/3 in
g~lS and in Ε, and hence multiplicity (2/3)(l + rf) in S, where t/ < 1 is the
multiplicity of Ε in S1. By assumption we have 1 < (2/3)(1 + d) < 4/3, so that
d> 1/2.

Consider now an extremal extraction g: Υ —> X of the new surface Ε = Ε'. We
check that it is a good extraction (see 8.5 for the definition). One checks first, exactly
as before, (12) that the intersection g~lS Π Ε consists of at most two irreducible
curves β,; and that if g~lS Π Ε = By υ B2, then / has a flip. For this, in view of
Η = g*B, we should first carry out a flip in the birational transform of curves of
the flip of / . By definition of the current type, these coincide with the intersection
g~{S Π g~lB, and g~lB is negative on them. Hence Ε is positive on them and
g~lS negatwe. A flip in them does not change the log terminal property of Κγ +
g~lS + Ε outside i>o = B\ Π Β2 , which is established as before. From this it follows
that Ε and its modification are normal. (There are at most two such flips, and they
modify at most two curves.) The flipped curves do not intersect B2 . After this one
must carry out the flip in By described in Proposition 8.3, since Ε is positive on By .
The modified surface E+ is nonnormal along the flipped curve B^ — v(C*). (13)
Now the intersection B^ = g~lS+nE+ is irreducible. As before we are interested in
the subsequent extremal and flipping ray R2, which is numerically 0 against g~lS+ ,
positive against g~lB+ and negative against E+ .

According to Theorem 6.9, if some connected component of the support of R2

intersects the locus of log canonical singularities of the log divisor

(2) (KY++g-lS+ + g-lB+ + E+)]E+,,,

and does not intersect C*, then it intersects an (irreducible) curve C** in such a
way that

LCS((A:y+ + g~lS+ + g-{B+ + E+)\E+V) = C* U B+ U C " .

However* as in the treatment of the case (8.5.2*), by Proposition 8.3, the curve
B^ has at most one singular point at Q+ = B£ Π g~lC+ . It has selfintersection
> 0 on the minimal resolution of singularities, and even > 1 in the singular case.
Performing partial resolutions at Q+ that are log crepant for the restricted log divisor
(2) until B^ becomes a 0-curve, we get a contradiction to Theorem 6.9 for the
contraction along the modified B^ . Hence by Theorem 6.9 again, components of
the support of R2 can only have log canonical singularities of the restricted log
divisor (2) only in C*. Moreover, if the restricted log divisor (2) is purely log
terminal outside J5J in a neighborhood of C* then its divisors with log discrepancy
0 for KY+ + g~lS+ + g"lB+ + E+ lie over the general point of 5+ . Hence by
Proposition 8.3, after perturbing the surface g~lS with base locus in the support of
R2 we arrive at a purely log terminal divisor near C*. By the above, the restricted

(12) Compare 1 page after the start of the proof of Proposition 8.8, and the start of the proof of (8.8.5).
The same argument is referred to several times in the rest of §8.

(13) C* was introduced in the statement of Proposition-Reduction 8.8.
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log divisor (2) on E+v does not have log canonical singularities outside C*. Hence
after perturbing we get a flip of type IV. Thus in this case a flip of / exists.

Hence from now on we can assume that the restricted log divisor (2) has a point
Q' e C* outside B$ that is not purely log terminal. We show that this is impossible.
By Theorem 6.9 again, the log divisor (2) does not have nontrivial log crepant reso-
lutions with modified 0-curve B^ . But it is only trivial when Q+ is nonsingular on
E+" , and near Q+ ,

(KY+ + g~lS+ + g~lB+ + E+)\E+V = KE» + B+ + \D,

where D is an irreducible curve that is simply tangent to B$ at Q+ , and B^ has
selfintersection on E+v equal to 1 . Note that in a neighborhood of Q+ there is an
identification Ε = E+ = E+v . The curve D is cut out transversally by g~yB, and
Bi by g~lS. Therefore by Corollary 3.7, Q = Β2Γ\ g~xC is nonsingular on Y.

Thus the surface E+v is nonsingular on Bj , the selfintersection of B£ equals 1 ,
and

(KY+ + g~lS+ + g~lB+ + £ + ) | £ + , = KE» + C* + B+ + D',

has a point Q e C* that is not purely log terminal; here D' > (l/2)D, and D
is an irreducible curve tangent to B^ at Q+ . Thus B^ determines a contraction
h: E+» -* P 2 , in such a way that h{B+) and h(B+) are lines, and h(D') = h{D)
is a conic touching these lines, h contracts all curves of E+" not intersecting B^ .
In particular all the flipped curves are contracted, since the last flip modifies Ε into
E+v in divisors with log discrepancy 0 over C* for KE+<, + C* + B£ , and the
indicated curves only intersect the final component B\ of the log terminal extraction
of Q'. Preserving all the conditions and notations we have mentionned, we contract
all the flipped curves before B\ .

Then the original Ε is obtained as a result of the procedure described in (8.5.2*)
above. We have to make a minimal log terminal extraction of Q' for KE+«+C*+B2 +

D', and then contract C* and all the extracted curves B, apart from the end one B\ .
I claim that they are preserved at the point of tangency Q" = h(Q') = h(B+) nh(D).
Indeed, all the curves C, contracted by h intersect B\ on the log terminal extraction,
without touching the other components of the extraction. Otherwise C, would be a
(-l)-curve on a subsequent minimal resolution of E+" . Since KE+» + C* + B£ + D'
is numerically 0 and the minimal extraction is log crepant it does not intersect B\
and the modified D'. Hence its modification on Ε passes through Po and does not
intersect the modified D' > g~lB β . This last conclusion contradicts g~xB ample

on Ε. Thus we have established what we needed, and we see that a minimal log
terminal extraction of Q' consists of a single curve. By the same arguments C*
must be a (—l)-curve on such an extraction. Hence Po is nonsingular on Ε , and
by Corollary 3.7, also on X. Hence Po is a canonical singularity of g~lS. Its
type on g~lS is known from the proof of Proposition 8.3, and from this Po is also
nonsingular on g~lS . Hence, and from the fact that Ε has multiplicity in S greater
than 1 , it follows that the same'holds for the multiplicity in S of all divisors with
a, = 0 over a neighborhood of Q e X, which contradicts the construction of Ε .

Thus the intersection B\ = g~lSC\E is irreducible. Then, as in the case (8.5.2*),
KY + g~]S + Ε log terminal follows from the ampleness of g~lB on Ε. Thus g
is a good extraction. In this case, when

(3) l l

is purely log terminal outside D{ , we get what we want. In fact then the flip of /
exists for the following reasons. By Theorem 6.9 and the ampleness of g~lS on Ε ,
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the remaining case is when the locus of log canonical singularities of the restricted log
divisor (3) is equal to B\ υ C , where C is an irreducible curve on Ε intersecting
Βλ in Q - Βχ η g~lC . We reduce this case to flips of type (8.5.3) with d, > 1 for
all a,· = 0.

For this, in view of Η — g*B we should first carry out a flip in the birational
transform of curves of the flip of / . As before, a flip in them does not change
Κγ + g~lS + Ε log terminal. From this it follows that Ε and its modification are
normal. (In the case under consideration there is exactly one such flip.) The flipped
curves do not intersect C. As usual we are interested in the subsequent extremal
flipping ray R2, which is numerically 0 against g~lS, positive against g~lB and
negative against Ε. Now g~lB intersects Β ι only in Q. If the restricted log divisor
(3) is purely log terminal outside B\ then the required flip is exceptional (up to the
connectedness of the flipping curves) and of index 2, and therefore exists. Hence we
can assume that the restricted log divisor (3) has a point Q' e C outside By that
is not purely log terminal. Since the modified g~lΒ is positive on R\ and R2, it
is ample on Ε . By Lemma 8.10, after the birational contraction of the components
of Sxxpv(g~x Big) other than C , it transforms C into an ample curve. Hence by

Lemma 8.9 the support of R2 equals the contracted curves, and hence the flip of R2
is again of type (8.5.3).

It remains to check that dt > 1 for all a, — 0 over a neighborhood of Q1. We
suppose the contrary, and show that (8.81) holds. For this, note that, by construction,
on Ε we have an irreducible curve C3 of double points of Υ that passes through
Q', and is not contracted by flips. Thus by what we have already proved, there exists
a flip of /?2 > and hence of / , or an extremal extraction h: W —* Υ of a surface E'
with multiplicity d' < 1 in Ε and a = 0 for Κ + S + Β. Moreover, it lies over
Q or over the general point of C and satisfies (8.8.1). The flips do not touch these
extractions, and hence they can be constructed for the original g . However, in the
case under consideration,

(KY + g~lS + g~lB ± \

where both C4 = .EnSuppg^ 'S and C3 pass through Q'. Here h~lC4 is irre-
ducible and moves on h~lE . This can be deduced from the existence of a 1-comple-
ment of Κγ + g~lS + Ε in a neighborhood of Ε with log discrepancy 0 for E'
(compare the proof of (8.8.3)). Hence h~xC4 and the curve h~xCi that does not
meet it define a ruling on h~lE, since Λ~Τ 3 is not exceptional by Theorem 6.9.
This ruling is induced by a birational contraction of W contracting the surface /?"'£
to a curve, possibly after a flip in h~lC . This last flip takes place only when E' lies
over Q' and intersects h~lE in two curves, one of which belongs to a fiber of the
ruling. This implies the relation d = (l/w)(l + dd1) where d is the multiplicity of
Ε in S, dd' that of E' in S\and η = -(h~lE) · (A-'C4) > 0 is an integer. When
η = 1 we have dd' = d - 1 < 4/3 - 1 < 1 , which gives (8.8.1) after contracting Ε
to a curve as before. But if η > 2 then d = (l/n)(l + dd') < (1/2)(1 + d), since
d' < 1 . Therefore d < 1 . This final contradiction finishes our treatment of the case
(8.8.4) with m = 1; more precisely, it reduces this case to flips (8.5.3) with dx > 1
for all a, = 0 over a neighborhood of Q . The existence of these flips is discussed
in what follows.

Thus (8.8.2) does not hold if the index of KY + g~]S+E is > 4, and the existence
of flipping curves then does not play any role if we do not worry about the choice of
the component on which the new singularity P' appears. They are only required in
treating cases with index < 3 .
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Thus, returning to the start of the proof, we have checked (8.8.1) modulo the
existence of flips of type (8.5.3) with dt > 1 for all a,• = 0, which gives an extremal
extraction g satisfying (i) and (iv) of a good extraction (see 8.5). To check the
other properties of a good extraction we first restrict ourselves to the case g(E) —
Q. Recall that, as before, the multiplicity d of Ε in S is < 1 . As above, the
intersection g~lS ΓΊ Ε consists of at most two irreducible curves Bj. We show that
if g~lS η Ε = B\ U B2 then either / has a flip or it reduces to a flip of type (8.5.3)
with dj > 1 for all £, over Q with a,• = 0.

For this, as in the treatment of the case (8.8.4) with m = 1 we reduce things to
the following. The divisor KY + g~lS + Ε is log terminal outside PQ — B\ η Β2,
Υ is nonsingular at Po and Q = B2 η g~lC, the surface Ε is normal, nonsingular
along the curve B2, which has selfintersection (B2

2)E — 2. This follows since the
+ l-curve B^ is obtained by one blowup of B2 at Po (a standard blowup). The
surface g~lS is also nonsingular along B2. Suppose that the selfintersection of B2

on g~lS is (B2

2)g-is = -n . Then we can calculate the multiplicity of Ε in S
from

0 = (g~xS + dE) · B2 = (g~lS) -B2 + dE-B2

= ((5, + B2) · B2)E + d{(B{ + B2) · B2)g_ls = 3 - d(n - 1),

hence d = 3/(n — 1), and η > 4, since d < 1 under the current case assumption.
Also by the above, Ε is the unique surface over g(Q) = Q with multiplicity < 1 in
S and a = 0. However, the surface E', the standard blowup of Si , has multiplicity
1 + d in S and a = 0, and the same for the surface Ε" , the standard blowup of
B2 . Every other surface over Q 6 X with a = 0 has multiplicity > 1 + d in S;
note that the standard blowup of Po gives a surface with multiplicity 1 + d in S,
but with a = 1 , and the standard blowup of Q e Υ gives a surface with multiplicity
1 + d in S, but with a= 1/2.

Now consider the extremal extraction g': Y' —> X of the divisor £"'. It intersects
g'~lS only in the single curve Bt c Y', the birational transform of the curve B\ c Υ
of the same name. This is proved just as the corresponding assertion in the case
(8.8.4) with m = 1 . Thus the intersection B\ = g'~lSC\E' is irreducible. Moreover,
Q = B{ Π g'~lC is a point of type A\ on g'~lS resolved by a curve B2 with
selfintersection -« < - 4 . By construction the intersection is normal along B\ . Then
as before we check that Κγ> + g'~lS + E' is log terminal, and the other properties
of a good extraction. We get what we want if

(4) (KY,+g'-lS + g'-lB + E')\E,

has Bi as a curve of log terminal singularities.
Thus it remains to deal with the case that the locus of log canonical singularities

of the log divisor (4) contains another curve C . Just as before, we can moreover
assume that the log divisor (4) is not purely log terminal at a point Q' e C outside
Βλ . I assert that all dt > 1 for components over Q' with a,• = 0. Indeed, if Y' is
nonsingular along C then over Q = C Π g'~lC there is a surface Ε with a — 0
for Κ + 5 + Β , and multiplicity < 1 in g'~lS + E'. For this we need to remark that
Κγ> +g'~lS + E has index > 4 at Q e Υ', and we can perturb g'~xB to preserve Q
not log terminal, while Ky> + g'~lS + E is log terminal on a punctured neighborhood
of Q. The multiplicity of Ε in S equals its multiplicity in g'~lS+(l+d)E', which
equals a + b{\ + d) < 1 + d, where 0 < a < 1 is the multiplicity of Ε in g'~}S,
and 0 < b < 1 that of Ε in E', so that 0 < a + b < 1 is the multiplicity of
Ε in £'~'5 + f . Thus the surface in question is bimeromorphic to Ε and has
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multiplicity d in S. Extracting it gives a curve B2 in the intersection of the blowup
with the blowup of g'~lS, and over this there is a surface Φ Ε' also lying over
Q e X with a = 0 and multiplicity 1 + d, hence bimeromorphic to E" . Hence all
the multiplicities for (1 +d)E' over Q' are > 1 +d, hence dt > 1 for a,· = 0 over
Q'.

Now assume that Y' is singular along C. By the same arguments this is a
singularity of type A\ , and it is resolved by Ε. Here E" lies over Q e Υ', or
more precisely over the curve in the inverse image of Q for an extremal resolution
of Ε. This completes the treatment of the cases when the intersection g~lS Π Ε is
reducible. In the contrary case g satisfies (iii), which implies (ii) by the fact that
g~lB is ample on Ε. Thus g is a good extraction, modulo the reduction to the
cases with d\ > 1 for a, = 0 over Q.

The following case also reduces to these cases, when g(E) = C, (8.8.1) holds
and Ε has multiplicity d < 1 in S. We now carry out the reduction to flips
of type (8.5.3) with dt > 1 for all a,· = 0 over a neighborhood of β . By (8.8.1)
g{B\) = Q € X • Further, from Theorem 6.9 and the fact that g~lB is ample relative
to g we deduce that the intersection g~lS(~)E = B\ L)B2 consists of two irreducible
curves B{ and B2 over a neighborhood of Q e X. Here g{B2) = C. Then we
check that Κγ + g~lS + E is log terminal outside Po = B\DB2. This implies that Ε
is normal. Note that the curves D c Υ over Q lie on Ε and intersect g~xΒ , and
thus do not pass through Po except for D = B\ . The contraction of a curve D Φ Β\
does not violate (8.8.1) and does not change the singularity of Po on Ε. Hence Po

either is nonsingular on Ε or is an ordinary double point of Ε . In the first case Υ
is also nonsingular at PQ . We check that the same also holds in the second case. For
this note that under our choice Η = g*B , first come flips in the birational transforms
of curves of the flip of / . Flips in these do not destroy B2 , nor, in particular, Po ·
After these comes the flip in ΰ | as described in Proposition 8.3. By the proof of
Proposition 8.3, Po either is nonsingular on g~lS or has index > 3, so that the
index of KY + g~lS is also > 3 in the second case. But a cover of Ε ramified only
in Po has degree < 2. The required nonsingularity follows from this.

Hence Ε is the unique surface over a neighborhood of g(Q) = Q with multi-
plicity d < 1 in S and a = 0. Moreover, the multiplicity of other divisors over a
neighborhood of Q with a = 0 is at least 1 + d, and this minimum value is only
achieved by Ε', the first blowup of B\ . From now on, as before, we consider an
extraction g'\ Y' —> X of the divisor E' and verify that it intersects g'~lS in the
single curve B\ only, the birational transform of the curve with the same name. By
construction the intersection of E' and g'~xS is normal along B\ . Then we verify
the log terminal property of KY< + g'~lS + E' and the other properties of a good
extraction. We get what we need if

(5) (KY, + g'-lS + g'-[B + E')lEI

has log terminal singularities along B\ .
As before, it remains to treat the case that the locus of log canonical singularities

of the log divisor (5) has another curve component C" . Morever, as before, we
can assume that there exists a point Q' e C outside B\ at which the restricted log
divisor (5) is not purely log terminal. But then d, > 0 for all a, over a neighborhood
of Q'. For otherwise there exists a surface over Q' or over the general point of C
with d, < 1 and a, = 0. Hence it lies over Q and its multiplicity in S is < 1 + d
if a = 0, which is impossible.

This completes the reduction of Proposition 8.8 to flips of type (8.5.3) with d, >
1 for all a, = 0 over a neighborhood of Q in the cases that the required good
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extraction does not exist. It remains to establish the existence of the flip of / in
these exceptional cases.

For them there exists a surface Ε over a neighborhood of Q with a = 0 and
having minimal multiplicity d in S; by assumption d > 1. On the other hand
d < 2, since Supp Β touches S along C, and there is a surface over the general
point of C with d = 2 and a = 0. Also, there exist only a finite number of surfaces
Ε over a neighborhood of Q with a = 0 and with the given multiplicity d in
5 . They are all extracted by a log terminal extraction of Κ + S + Β. Hence, as
before, we can choose an extremal extraction g of one such surface Ε satisfying
(8.8.1) or (8.8.2) for Ρ e Bx c g~xSf\E. For this, note that g~xS and Ε cross
normally along B\ and along the other components of g~xS Π Ε ; for otherwise by
(3.18.6) over a general point of B\ there would be a surface E' with α = 0 having
multiplicity a + b < 1 in ^~ 1 5' + £', where 0 < a, b are the multiplicities of E' in
g~xS and £ respectively. Hence the multiplicity of E' in g~xS + dE, equal to its
multiplicity in 5 , is a + bd < (a + b)d < d , which contradicts the choice of d .

Next we establish that case (8.8.2) is only possible if Ρ is an isolated singularity
of Υ from (8.8.4) with m = 1 . But this case again reduces to flips of type (8.5.3)
with di > 1 for all a, = 0 over a neighborhood of Q. Indeed, the multiplicity
d' := (2/3)(l + d) of the new surface E' satisfies d' < 2, like d itself, hence if
η = 1 then dd' = d - 1 < 2 - 1 = 1 , which again contradicts the choice of d.
However, now Q has a curve C3 of double points passing through it, and hence we
have reduced the existence of the required flips to the case that g satisfies (8.8.1).

Assume first that g(E) = Q. As before, the intersection g~xSr\E consists of
at most 2 irreducible curves Bt. We show that if g~xS Π Ε = B\ U B2 then the
flip of / exists. For this, as in the treatment of the similar case with d < 1 we
reduce to the following set-up. The divisor KY + g~xS + Ε is log terminal outside
Po = ΒιΓ\Β2, Υ is nonsingular at Po and at Q = B2 ΓΊ g~xC , the surfaces Ε and
g~lS are normal, nonsingular on B2 , and B2 has selfintersection (B2

2)E = 2 on Ε
and {B2

2)g-\S = - 3 = —n . The last assertion follows because d = 3/(« - 1) and
η = 3, since 1 < d < 2, so that d = 3/2. Note also that B\ has selfintersection
< 0 on the minimal resolution of Ε, since B2 intersects B\ transversally and only
at the single point Po . On the other hand, by the ampleness of g~xS on Ε we have

0 < (g~lS) • Bx = ((5, + B2) •Bl)E = {BX

2)E + 1.

Hence {B\2)E = 0 and Ε is everywhere nonsingular on B\ . Otherwise Ε has a
unique ordinary double point, P\ say, and B\ has selfintersection 0 or - 1 on the
minimal resolution of Ε. Hence {g~xS)-B\ = 1, 3/2 or 1/2 in the 3 cases.
Moreover

0 = (g-[S + IE) · Bx = (g~xS) · Bx + \EB,,

and thus EBX = - 2 / 3 , -1 or -1/3 in the 3 cases. The fractional cases are not
possible, since Po is a nonsingular point of g~xS, and g~xS can have at most
one ordinary double point Pi on B\ . Therefore B\ has an ordinary double point
Pi on Ε, and B\ has selfintersection 0 on the minimal resolution of Ε, and
g~xS is nonsingular on B\ U B2 = g~xS Π Ε. Moreover B\ is a (-2)-curve and
B2 a (-3)-curve. There is curve of double points B_y through the point P\ on
g~xS. It follows from this that Bo = g~lSnSupp g~lB is irreducible, has a unique
singularity Q' (not over Q € X) of type Αχ , resolved by a (-3)-curve, and is a
(-l)-curve on the minimal resolution of g~lS. But in this case Κ + S has a purely
log terminal complement of index 2, and hence the flip of / exists. Note for this
that by Proposition 5.13 and Corollary 5.19, Κ + S + 2B is strictly log terminal at
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Q' and has index 3 ; one half of its 1-complement at Q' gives the required index
2-complement. Furthermore, Κ + S has index 2 at Q e X, since £ is a quadratic
cone with vertex at P\ and g*(K + S) = KY + g~xS + (l/2)E.

Now consider the case that g(E) = Q and g~lS Π Ε = Βι is irreducible. Then
as above we check that g is a good extraction. Thus we can assume that the locus
of log canonical singularities of

contains another curve C . But then Q = B\ ng~{C is at worst an isolated singular-
ity of Y. Neither g~lS nor Ε contain curves of singularities of Υ through Q by
choice of d and by (3.18.4). The fact that there are no other curves of singularities
through Q follows as before from KY +g~lS +g~xB+ E log canonical. Moreover,
if we perturb g~lB in a neighborhood of Q, while fixing Q € g~lB, then Q will
satisfy (8.8.2). In the opposite case, arguing as in the proof that g~xS and Ε cross
normally along B\ , we get a surface over Q with a = 0 and with multiplicity < d
in S, which contradicts the choice of d. Thus (8.8.2) holds, so that Q is a singu-
larity of (8.8.4) with m = 1 or m = 0. Then if m = 1, with the previous choice
of g~xB we get that the locus of log canonical singularities of (g ο h)*(K + S + B)
contains a curve C3 c E' of double points. Hence the surface resolving C3 has
a — 0 and its multiplicity in g~lS + Ε equals 2/3 , which is < 1 and < d for S .
Therefore m = 0 and Q is nonsingular. In this case we can construct an exceptional
2-complement, blowing up the points P,· if necessary.

We proceed to the final case g(E) = C. Then d = 2. As before, g satisfies
(8.8.1). Further, as in the similar case above with d < 1, we check that the intersec-
tion g~xS Π Ε — Βχ U Βι consists of two irreducible curves over a neighborhood of
Q&X. Here g(5i) = Q and g(B2) = C. Then we check that KY + g~lS + E is log
terminal outside PQ = Β1ΠΒ2 and Ε is normal. Again /Ό is nonsingular on X and
on g~lS, and is either nonsingular on Ε , or is an ordinary double point of Ε . The
latter case is impossible this time, since the general fiber D of the surface Ε over
C satisfies (g~lB)-D= 1/2 and (g~lB)-Bl > 1/2. Hence {g-]B)-Bl = 1/2 and
the curve B\ is numerically equivalent to D. In particular

-{=ED = ΕΒχ = (Bfig-is + (B2B:)g-ls = (5, V ' s + l >

and thus {Bx2)g~,s = -3/2 . Therefore g~lS has just one ordinary quadratic singu-
larity on B\ , say P\ . Then B\ is a (-2)-curve on the minimal resolution of g~lS .
By the same arguments (B\2)E = 0, SO that Ε is nonsingular on B\ and B\ is
a complete fiber of Ε over C. Moreover, there is a curve of double points of Υ
through Ρχ . Hence K+S has index 1 at Q € X, since g*(K+S) = KY + g~lS has
index 1 ο η δ | . On the other hand, the curve Bo = g~lSnS\nppg~lB is irreducible,
does not pass through singularities of g~lS, and is a (-l)-curve on g~lS inter-
secting the curve B-1 of double points transversally. Thus the index of Κ + S in
a neighborhood of the flipping curve g(Bo) equals 2 , and (K + S)· g(B0) = -1/2 .
Hence one half of the general hyperplane section of B\ gives a purely log terminal
complement of index 2 and the flip exists by Proposition 2.9. This completes the
proof of Proposition-Reduction 8.8. Q.E.D.

Proof of Theorems 1.9-10 and Corollary 1.11. According to reductions 6.4-5, reduc-
tion 7.6 and Propositions 6.7-8 it is enough to establish the existence of nonexcep-
tional index 2 flips. By reduction 8.2, Proposition 8.3 and reduction 8.4, we can
restrict ourselves to flips of type (8.5.1-3). In what follows h:Y^>X denotes the
good extraction of Propositions 8.6 and 8.8, Ε the unique exceptional divisor of h
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and B\ = g~lSf\E = P1 the irreducible curve of property (iii) in 8.5. Since h is
extremal we have p(Y/Z) = 2 and NE(7/Z) has two extremal rays R\ and R2,
with cont/j, = h . The proof continues from this point as in Reductions 7.2 and 8.2.
The flips of R2 are considered separately depending on their types.

We start with type (8.5.1). Suppose first that Bo c g~lS, the inverse image of
the flipping curve, does not pass through Ρ = β ( η g~lC. Then by construction
Bo is irreducible and not contained in g~lB. Hence g~xBRi < 0, ERi > 0 and
g~'S7?2 < 0. Therefore the support of R2 coincides with Bo , since B\ e Ri . Note
that the flip in Bo exists by Corollary 5.20. (Contracting or flipping a ray of NE(Y/Z)
of course preserves the morphism to Ζ .) Here since Κγ + g~lS + g~lB + Ε is log
terminal in a neighborhood of Bo, the flip throws Bo over into a curve B£ lying
on the modified surface Ε , and preserves the index 2 or index 1 and log terminal
property of the given divisor on Ε in a neighborhood of B£ . It is not hard to check
that the transformed curve B£ intersects the modified B\ and is irreducible. The
subsequent ray R2 can be negative against g~lS only when it is generated by the
modified B\ = g~lS Γ\Ε and is hence negative against Ε. As in reduction 7.2, in
this case the flip of / exists. Thus, except for the case of a divisorial contraction,
it remains to deal with the case that the next flipping curve C\ lies on Ε and does
not intersect B\ . Here B\ > 0.

Since C\ is numerically 0 against g~lS, it must be negative against Ε and
positive against g~[B. If the restriction (KY + g~lS + g~lB + E)<E is log terminal

in a neighborhood of the support of R2 , the flip of R2 exists by Corollary 7.3, since
it is an exceptional flip of index 2 for every connected component of the flipping
curve. (In the analytic case, passing to connected components while preserving the
assumptions that the contraction is extremal and the space is Q-factorial can be
carried out either by changing the base by an extraction outside a fixed fiber or by
localizing as in the proof of reductions 6.4-5.) In the opposite case, by Theorem 6.9,
Ε contains a curve B2 that intersects the support of R2 in a unique point Q at
which (KY + g~lS + g~xB + E)ig is not log terminal, and the reduced part of the

boundary of the most recent restriction is of the form Β ι + Β2 •
The curves B\ and B2 intersect in a unique point Ρ , hence since B\ is ample

on the original Ε , it follows that B2 is irreducible. But after flipping, the curve
B2 is nef and numerically 0 only on BQ . After contracting any of the irreducible
components of Ct , since B\ is ample on the original Ε, we get that B2 is ample.
By Lemma 8.9 the flipped curve is totally contracted, that it, it is irreducible. Con-
sequently a flip in C{ again has type (8.5.1), and exists by Proposition 8.6 because
the number of good extractions has decreased.

We now proceed to the case that Bo passes through Ρ. Then the extremal ray R2

generated by Bo is positive against Ε and g~lB, but negative against g~{S. The
flip in Bo exists by Corollary 5.20 and the flipped curve B£ lies in the intersection
of the modified .EnSuppg"'/?, and B\ — Eng~!S. Again it is enough to consider
the case that the flipping curve C\ is on Ε and does not intersect g~lS. If the locus
of log canonical singularities of the restriction (KY + g~xS + g~x Β + E)\£ is disjoint

from C\ then the flip exists and is of type IV by Proposition 5.13. Otherwise, by
Theorem 6.9, B£ is irreducible and is contained in the reduced part of the boundary
of the most recent restriction.

On the other hand, the divisor ^"'^i^· was ample before the flip, and its support

intersects B[ only in P. Hence the support of the modified i~lBi£ is contained

in C\ and is a contractible curve. After its contraction, by Lemma 8.10 the curve
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B£ becomes numerically ample and by Lemma 8.9 the image of C\ must be 0, that
is, the support of the modified g~xBig is exactly C\ . If the divisor KY + g"lS +

g~xB + Ε is log terminal along every component of Cv , we arrive at a flip of type
(8.5.3); otherwise C\ is irreducible and defines a flip of type (8.5.2). This completes
the reduction in case (8.5.1).

Consider now the unstarred case (8.5.2), when the good extraction g has an ex-
ceptional divisor over a point. By construction, in this case, the birational transform
of Bo, the curve contracted by / , generates R2. Thus 7? 2 satisfies ER2 > 0 and
g~lSR2 < 0. Hence the flip of Bo exists by Corollary 5.20.

After the flip the curve g~xS Π Ε may be reducible. However, this can only
happen when g~lB is numerically negative against Bo . By our choice Η — g*B,
Κγ + g~xS remains log terminal. Moreover the flipped curves on g~lS land in the
intersection with Ε. As in the proof of Proposition 8.8, the intersection g~lS η Ε
has at most two curves, Βχ and a flipped curve B2. In particular, B2 is exceptional
on Ev . Now Bi becomes the support of the subsequent extremal ray, which is
numerically 0 against g~lB, positive against Ε and negative against g~lS. It
follows that g~xB is positive on all the remaining curves of Ε. As in the proof of
Proposition 8.8, using this one can verify that KY + g~xS + Ε is log terminal in a
neighborhood of Ε except at the point PQ = B\ Π B2. Hence Ε is normal.

We carry out the flip in B\ described in Proposition 8.3. The arguments from the
proof of Proposition 8.8 in the case (8.5.2*) allow us to prove either that the flip
of / exists, or that B2 is nef on the minimal resolution of Ε. But the last case is
impossible since B2 is exceptional on Ε. Hence we can assume that the intersection
g~lSr\E — B\ is irreducible. The log terminal property of KY + g~lS + Ε continues
to hold on g~xB , which is nef on Bo , as follows since otherwise g~lB is ample on
the modified Ε.

Thus, again the new flipping curve C\ is contained in Ε and does not intersect
g~lS . If the restriction (Κγ + g~lS + g~lB + E)\g has log terminal singularities

along C\ then the flip exists by Corollary 7.3 as above. Otherwise by Theorem 6.9
there exists an irreducible curve B2 that is contained together with Β χ in the bound-
ary of (Κγ + g~xS + g~lB + E)\£ after modification and intersecting B\ in P. I

claim that B2 is contained in the support of the new ray R\ , that is, the ray obtained
after flipping -So • For otherwise all the components of the flipped curve B£ would
intersect B\ only at Ρ . After contracting B£ we return to the situation before flip-
ping, when the curve B2 = Supp g~lSf)E is ample on Ε . Therefore by Lemma 8.9
there is no C\ . Thus B2 is contained in B£ , the remainder of B£ is contracted to
a point Ρ and its components intersect B\ and B2 only at Ρ. The surface Ε is
normal, because Κγ + Ε is log terminal.

By Theorem 6.9 and Lemma 8.9, after contracting the support of g~xB\g outside

B2 we get that C\ coincides with the given contracted curve. By Lemma 8.10, B2

becomes ample after contracting C\ and the components of B£ other than B2.
(The components of g~xB\j? other than B2 are contained in C\ , since they do not

intersect B{ and are numerically 0 on g~lS.) If the support of g~xBig outside

B2 contains a curve along which KY + g~lS + g~xB + Ε does not have log terminal
singularities, then it coincides with it, and the contraction of the curve in question
has type (8.5.2). Here in the unstarred case (8.5.2), by Proposition 8.6, the number
of good extractions is decreased and the flip exists by induction. In the opposite case
we get a reduction to type (8.5.2*). Type (8.5.3) arises if KY + g~lS + g'[B + E is
log terminal along C\ .
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In case (8.5.2*), the ray R2 with g~~lSR2 < 0 leads at the first step to a flip in B\
and separates the surfaces Ε and g~xS. After this the contraction of Ε to a point
gives a flip of / . Thus the case that is essential for us is when the flipping curve C\
is contained in Ε and disjoint from g~lS. As above, we need only consider the case
that C\ passes through a point at which the restriction (KY + g~lS + g~lΒ + Ε) £

is not log terminal. Then the fiber B2 of the ruled surface Ε over Ρ - B\ π g~lC
is irreducible and contained in the boundary of (Κγ + g~xS + g~lB + E)\g . Since

g~lB is positive against Rt and R2 it is positive on Ε, and by contracting the
components of Suppg~ lBi£ other than B2 we transform B2 into an ample curve.

Thus again by Lemma 8.9, C\ coincides with the given contracted curve. If C\
contains a curve of the locus of log canonical singularities of Κγ + g~xS + g~x Β + Ε
then it is equal to it, and the contraction of the given curve is of type (8.5.2*).
Here by choice of a good extraction in Proposition 8.8, δ decreases. Indeed, the
exceptional divisors of £•, over C\ have log discrepancy 0 for K.Y+g~xS+g~xB+E
precisely when a,•• = 0, and the multiplicity of Ej in Ε equals its multiplicity in
g~lS + E , and is greater than or equal to its multiplicity in g~lS + dE = g*S . This
gives strict monotonicity for δ. In the remaining cases we get a reduction to type
(8.5.3).

In case (8.5.3), we first perform flips in curves of the intersection £ n S u p p g ' Β .
These curves intersect B\ in points P\ and P2 that are log terminal for KY + g~lS+
g~lB+E . Hence after such flips the intersection By = g~lSr\E remains irreducible.
However, now g~[B only intersects Β ι in a point Ρ = B\f]g~xC which is possibly
not log terminal, and the curve B\ becomes the unique curve on g~xS over Ζ in
a neighborhood of the flipping fiber. Again it remains to deal with the case that the
subsequent flipping curve C\ is contained in Ε and is disjoint from g~lS. As
before, we need only consider the case that C\ passes through a point Q' at which
the restriction (Κγ + g~lS + g~lB + Ε) Ε is not log terminal. Then there exists an

irreducible curve B2 φ Β\ such that B\ + B2 is the reduced part of the boundary of
the restriction and Q' £ B2 . Since g~lB is positive against R\ and R2 , it is ample
on Ε.

By Lemma 8.10, after contracting the components of Suppg^ ' i?^ other than B2

we transform B2 into an ample curve. Thus again by Lemma 8.9 C\ coincides with
the given contracted curve. But by construction C\ is not contained in the locus of
log canonical singularities of Κ γ + g~]S + g~]B + Ε . Here by our choice of the
good extraction in Proposition 8.8, δ decreases, or more precisely δ' for Q' is less
than δ. Q.E.D.

§9. APPLICATIONS

We give here some consequences of the main results.

9.1. Corollary. An algebraic (or analytic) 3-fold X has a strictly log terminal model
f:Y—>X for Κ + Β (in the analytic case, in a neighborhood of a projective subspace
W c X), even if X is not ^-factorial and Κ + Β is not log canonical. Moreover,
there exists such a model f:Y—>X that is nontrivial only over the points of X
at which X is not ^-factorial or Κ + Β is not log terminal. (In the analytic case,
we should include in the non-log-terminal locus the singular curves of irreducible and
reduced components Β in a neighborhood of W.)

Proof. The singular locus of X and of components of Β , together with the nonnor-
mal crossings of components of Β , form a closed algebraic (or analytic) subset of



192 V. V. SHOKUROV

dimension < 1 , so that the same holds for the locus Μ of points at which Κ + Β is
not log terminal. Hence through Μ (in the analytic case, in a neighborhood of W)
we can choose a general hyperplane section Η such that, outside Μ, Κ + Β + Η
is log terminal and Η + \Β] has normal crossings. After this, the proof of reduc-
tions 6.4-5 is applicable. However, now flips exist by (1.3.5) and the corollary in §0,
and the log terminal model satisfies the properties we want. By (1.5.7), it is enough
to verify this for the strictly, but not purely, log terminal points of Κ + Β. Since
Κ + Β is divisorially log terminal, these are either triple points, or points on double
curves. Now Η does not pass through triple points or contain double curves. But
the log terminal extraction over a point of a double curve is the identity, since by
Corollary 3.8 the log discrepancy of Κ + Β over such a point is > 0. Q.E.D.

The next result follows from this in the same way that Corollary 1.11 follows from
Theorem 1.10.

9.2. Corollary. An algebraic (or analytic) 3-fold X has a log canonical model for
K + B, even if X is not ^-factorial and K + B not log canonical, provided that K + B
is log terminal outside Β and Β locally supports a Cartier divisor.

The last clause means that Β is LSEPD for Ίάχ. If K + B is numerically negative
relative to / , Theorem 1.10 can be strengthened:

9.3. Corollary. Let f: X —> Ζ be a contraction of an algebraic [or analytic) 3-fold
X, and suppose that K + B is log terminal and numerically negative relative to f.
Then the flip of f exists.

Proof. By Corollary 9.1, and the fact that log terminal singularities are Q-factorial
in codimension 2, there exists a strictly log terminal extraction g: Υ —> Ζ for
Kz + f{B), that blows up only the image of the exceptional set Μ for / in a
neighborhood of Μ. As in (1.5.6) one can check that because Κ + Β is negative
relative to / , the log discrepancies of Ky+f(B)Y are positive over Μ. In particular
g is small over Μ and is log terminal. Thus it remains to contract a finite number
of curves over Μ on which Κγ + f(B)Y is numerically 0. These obviously span an
extremal face of NE(7/Z). But by the above, in a neighborhood of the connected
fibers of g containing those curves, it is not hard to find an effective Cartier divisor D
such that KY+f(B)y+eD is log terminal for small ε > 0 and is negative on the whole
fiber. On localizing around a fiber one may lose the strictly log terminal property, but
weakly log terminal is preserved. Hence by [8], 3-2-1, and rational approximation
(1.3.5), these curves are contractible; by the same arguments, KY + f(B)Y pushes
down as a log terminal divisor (compare the proofs of (1.3.2) and 4.5). Q.E.D.

9.4. Corollary. Let f: X —> Ζ be a projective morphism of algebraic 3-folds (or
analytic spaces), and suppose that K + B is weakly log terminal. Then every extremal
face R of the Kleiman-Mori cone NE(7/Z) (in the analytic case, NE(7/Z; W),
where W is a compact subset of Z) on which K + B is negative defines either a
nontrivial fiber space cont« of log Fanos, or a flip \rR of the contractions cont/?
(respectively, over a neighborhood of W).

The proof is similar to that of the corollary in §0, replacing the theorem of §0 by
Corollary 9.3. The contraction cont« exists by [8], 3-2-1, and rational approximation
(1.3.5).

The conditions that Κ + Β is weakly log terminal and X projective over Ζ is
preserved under flips (in the analytic case, over a neighborhood of W). Hence the
termination of flips would either give a nontrivial fiber space cont« of log Fanos,
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or a log terminal model of / (in the analytic case, over a neighborhood of W).
However, termination remains a conjecture. (14)

Corollary 9.1 and Inversion 3.4 give the following result:

9.5. Corollary. Problem 3.3 on the inversion of adjunction has an affirmative solution
in dimension 3.

APPENDIX BY Y. KAWAMATA: THE MINIMAL DISCREPANCY

OF A 3-FOLD TERMINAL SINGULARITY

Theorem. Let (X, P) be a 3-dimensional terminal singularity of index r > 1, and
μ: Υ —> X a resolution of singularities. Write Ej for the exceptional divisors, with
1 < j <t, and set

Then dj — \/r for some j , and hence min{dj} = \jr.

Proof. (15) It is enough to construct some partial resolution u: X' —* X where X'
is a normal variety having an exceptional divisor Ε of discrepancy 1/r, in other
words, such that

Κχ< = ν*Κχ Η—Ε + other components.

For this, we use Mori's classification of terminal singularities ([Mori] or [22], (6.1));
up to local analytic isomorphism, (X, P) is the singularity at the origin of a hyper-
surface X :(<p = 0) c W = C4/G in a quotient of C4 by G = Z/(r). The quotient
W is of type \{a, b, c, d) if a generator of G acts on C4 by

where ζ is a primitive rth root of 1 . The hypersurface X is defined by a semi-
invariant <p(x, y, z, w). We prove the result separately in the following six cases.

Case 1 . W is of type -r{a, -a, 0, 1) and φ = xy + f(z, wr), where 0 < a < r
are coprime integers. Give ζ and w weights wt(z, w) = (1, 1/r), and write k =
ord / ; we consider the weighted blow-up σ: W —> W with weights

wt(x, y , z , w) — (a/r + i, k - i - a/r, 1, 1/r)

for an arbitrary fixed / with 0 < i < k . Then W has an affine open subset U,
where U is a quotient of C4 of type

-^-r-r{-r, (k-i)r-a, r, 1),

and σ is the map given on U by

(x, y , z, w) >-> (xa/r+l, x^'-^'y, xz , x]/rw).

On U , the birational transform X' of X is defined by y + f(xz + xwr)x~k = 0,
the exceptional divisor F of σ by χ = 0, and Ε = Χ' Π F is reduced. Set
Kw = o*Kw + aF , σ*Χ = X' + βΕ and Kx< = v*Kx + dE, where ν = σ*χ, .
Then

a = (a/r+i) + {k - i-a/r)+ 1 + 1/r- 1 = k + 1/r,

(14) See [Kawamata3, 4] and [Utah], Theorems 6.10-11 and 6.15, for more recent information.
(15) According to the Kollar, a student of Mori has proved that the discrepancies take all the values

{1/r, 2/r, ... , (r- l)/r}. (See also [28], 4.8).
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and β = k, so that Ε is the required component with discrepancy d = a - β —
l/r. In this case it can be proved that X' has only terminal singularities and Ε is
irreducible. The calculation in all the other cases is similar.

Case 2. W is of type ^(1,0, 1, 1) and φ = χ2 + y2 + f(z, w). Suppose
ord f =2k , and take the weighted blow-up σ: W —> W with weights

, ίί^ψ,-ι,ΐ) if k is odd,
wt(x,y,z,/) = ,+ 1 k ,

^ v~~2~ ' ^ ' 2 ' 2' even.
Then W has an affine open set U of type ^(A; , -2,1,1) if A: is odd or of

tyP e E + T ( ~ 2 , k, 1, 1) if A; is even, and σ is the map

( {xyk/2,y{k+1)/2,yl/2z,yl'2w) if £ is odd,
( x , y , ζ , ω ) ~ | ( x ( /c + i )/2 ^ ̂ / 2 y > χι,2ζ ; j . i / 2 ^ i f fc i s e v e n

H e r e X' i s g i v e n o n U b y x 2 + y + f(yl/2z, y{l2w)y~k = 0 , a n d t h e e x c e p t i o n a l
divisor F by y = 0 if k is odd (respectively, the same with χ and y interchanged
if k is even), and Ε = Χ' η F is reduced. Since α = k + 1/2 and β = k we have
</= 1/2.

Caje 3 . W is of type ^(1, 1,0, 1) and φ = w2 + f(x, y , z), with ord/ = 3 ;
we take σ with weights

w t ( x , y , z , 0 = (l/2, 1/2, 1,3/2).

Then the open set U has type ^ ( 1 , 1, 2, - 2 ) , and σ is given by

(x, y, ζ , w) i-> ( χ ω 1 / 2 , y u ; 1 / 2 , ζ ω , ω 3 / 2 ) .

X' a n d -F are respectively given by w + y X x i u ' ^ + y t i ; 1 / 2 , zw)w~2 = 0 a n d w = 0 .
T h u s £ has a reduced irreducible c o m p o n e n t E\ . If we set Kx> = v*Kx + dE{ +
other components, then α = 5/2, β = 2, hence c? = 1/2 .

^(

moreover, if we write f = h + higher order terms, then / 3 = x3 + y3 + z* or
x 3 +yz2 or x 3 + y 3 . In the first case (respectively, the remaining cases) we take σ
with weights

w t ( x , y , z , i) = (2/3, 1/3, 1/3, 1) (respectively ( 2 / 3 , 4 / 3 , 1/3, 1).

Then U has type 5 (2, 1, 1 ,0) , and σ is given by

(x, y , ζ, w) i-> (xu> 2 / 3 , y w 1 / 3 , z m 1 ' 3 , w)

(respectively ( χ ω 2 / 3 , yu; 4/ 3, ζ ω ' ^ 3 , ω)) .

Then in the three cases, X' is given by t » + x 3 w + y 3 + 2 3 H — or by l + x 3 + y z 2 H —
or by 1 + x 3 + y 3 tu 2 Η , while F is given by ω = 0 . So F is reduced, α = 4/3 ,
β = 1 (respectively α = 7/3 and β — 2), and ί/ = 1/3 .

Case 5 . W is of type i ( 0 , 1, 1, 1) and φ = w2 + x 3 + x/(y , z) + g(y , ζ),
where o r d / > 4 and o r d g = 4 . Write g = g4 + higher order terms; if g4 is a
square we can assume that g 4 = y 4 or y 2 z 2 . If g4 is not a square (respectively, is
a square), we take σ with weights

w t ( x , y , ζ , ω ) = ( 1 , 1/2, 1/2, 3/2) (respectively ( 1 , 3/2, 1/2, 3/2)).

Then U has type j ( 0 , 1, 1, 1), and σ is given by

(x , y , ζ , ω ) H-> (χ , x ' / 2 y , x ' / 2 z , χ 3 / 2 ω )

(respectively (χ , x3/2y , χ ' / 2 ζ , χ 3 / 2 ω ) ) .

/ , β ,

Case 4 . VF is of type ^ ( 1 , 2 , 2 , 0 ) and φ = w2 + f(x , y , z), where ord / = 3 ;
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X' is given by xw2+x + f(xl/2y, xll2z)x~l +g(xll2y, xl/2z)x~2 — 0 (respectively
w2 + I + f(x3t2y, χι'2ζ)χ-2 + g(x3t2y, χι'2ζ)χ-3 = 0) and F by χ = 0. So F is
reduced, a — 5/2 and β = 2 (respectively a = 7/2 and β = 3), hence d = 1/2 .

Case 6 . PF is of type | ( 1 , 3, 2, 1) and ^ = x2 + y2 + f(z, w2). Give ζ and
w weights wt(z, to) = (1, 1/2), and suppose ord/ = A;; then take σ with weights

Λ f ( | , * ί Μ . * ) iffc =wt(jt, y,z,t) = < 7 , , : 7

Then [/ is of type ^(/c, -4, 2, 1) if fc = Imod4 (respectively ^ ( - 4 , k, 2, 1)
if k = 3 mod 4), and σ is given by

ί (xyk/4,y{k+2)/4,yl/2z,yl'4w) i f f c ^ l m o d 4 ,
{XyZW)~^ i { k = 3 m o d 4 .

X' is given by x2 + y + f{yl/2z, _y1/2u;.2)}>~/c/2 and F by y = 0 if k = 1 mod4
(respectively the same with χ and y interchanged if Α: Ξ 3 mod 4). Thus Ε is
reduced, a = (2k + l)/4 and β = k/2, hence d = 1/4 . Q.E.D.

§10. COMMENTARY BY M. REID

Nothing is easier than for a man to translate, or copy, or compose
a plausible discourse of some pages in technical terms, whereby he
shall make a shew of saying somewhat, although neither the reader
nor himself understand one tittle of it. (16)

10.1. General review of contents of paper. The paper proposes a program for con-
structing 3-fold flips (including Mori's flips) and log flips, and claims to carry it
out. The rough idea is an inductive approach along the following lines: suppose
/ : X —* Ζ is a flipping contraction, with exceptional curve C . We attempt to con-
struct a partial resolution Υ —> X that either blows up one point on the flipping
curve, or blows up C at the general point, and such that the composite Υ —> Ζ has
p(Y/Z) = 2 , and NE(F/Z) has two extremal rays (or log rays) i?old and i?new • One
of these gives the old contraction to X , and Rnew , if it exists and is divisorial, gives
the new contraction to the flipped X+ . Then X —> X + is the flip.

In carrying out this construction, we need to use auxiliary flips for two purposes:
(1) To establish the model Υ: Start from a more-or-less arbitrary resolution of

singularities X -+ X that includes either a blowup of a point of C or a blowup of
C itself, then proceed to climb down from X to the controlled model Υ by the
minimal model program.

(2) To deal with the possibility that Rnev/ is not a divisorial contraction.
In order for this to provide a proof of the existence of flips, we need to know that

the auxiliary flips can be done. This might be achieved in one of two ways: either
(a) by induction, because we can assert that the auxiliary flipping contractions are
simpler than f:X—*Z (for example, some invariant is smaller); or (b) because we
know the auxiliary flipping contractions from some other point of view, for example,
as fibers of semistable families of surfaces, for which the epic theorem of Tsunoda-
Shokurov-Kawamata-Mori (see [7], [23], and [28]) is applicable.

Shokurov's attempt at this in the 3-fold case is extremely serious, and it seems to
me almost certain that it is correct and complete (after all, he is the master of the

(16) George Berkeley, Bishop of Cloyne, "A defence of free-thinking in mathematics" (1735), in his
Works, Vol. IV, T. Nelson, London, 1951, p. 140.
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spaghetti proof), although the presentation cannot exactly be described as attractive.
The Utah seminar [Utah] seems to guarantee the results (at least in general terms)
up to the middle of §8. It seems at least possible to me that we may eventually fully
understand the inductive workings of Mori theory, and that we will then be able to
make this program work purely by induction, maybe even in higher dimensions when
the more concrete approach in terms of classifying singularities seems doomed.

In addition to his main theorems, Shokurov introduces several important new
ideas, including

(1) the LSEPD trick (see before Example 1.6, (10.5) below, and compare [Utah],
Definition 2.30);

(2) the ideas of §5 on complements of a log divisor and the 1-, 2-, 3-, 4-and 6-
complements that are characteristic to dimensions 2 and 3 (compare [Utah],
§19);

(3) the insight in §4 that invariants of log canonical singularities and varieties
such as discrepancy, index and so on have "spectral" properties such as a.c.c.
(see [Utah], Theorem 1.32, for a discussion);

(4) the ideas and results on "inverting adjunction" of Problem 3.3.

Shokurov's theorem on log flips already has very substantial applications in the lit-
erature, most notably Kawamata's solution of the abundance conjecture ([Kawamata
2] and [Utah], Chapters 10-15).

10.2. The Utah seminar. A preprint of this translation was circulated as a Warwick
and Utah preprint in May 1991, and formed the basis for the second Utah summer
seminar on Mori theory, August 1991. A number of corrections by participants in the
seminar have been included in the final edition of the translation. Most importantly,
the seminar discovered the mistake in the preprint version of Proposition 8.3. The
book of the seminar [Utah] works out (and straightens out) practically all the ideas
of results of this paper.

It is clear that the Utah book represents a very major step in Mori theory, and
3-fold geometry more generally. However, I find regrettable their attitude towards
the mistake in §8 of the preprint, which they try to make out as a terminal crash. It
is not hard to point to similar mistakes in the papers and preprints of several of the
top specialists in the subject. If Shokurov's patch (in 7 or 8 pages) of Proposition 8.3
turns out to be correct, then it is surprising that a truly joint effort of 30 seminar
participants failed to look for it or to find it. It was a traditional complaint of Soviet
mathematicians (Arnol'd and Shafarevich were outstanding specimens) that their
work would be implicitly rubbished by Westerners working under infinitely better
conditions, and I would like to echo the sentiment in this case.

10.3. The log category. This section is an appendix to (1.1). The genuine, that
is, nonlog category of classification theory has varieties X, birational morphisms
/ : X —* Υ , a notion of resolution, birational transform of divisors; then canonical
divisors Kx , discrepancy KY = Kx + Af (in essence the Jacobian determinant of
/ ) ; and of course other ingredients such as irregularity Η1 {Χ, <?χ), which we're not
dealing in at present. The moral backbone of the theory is that invariants such as
irregularity Hl(X, <fx) and the plurigenera are biregular invariants of X , and are
birational invariants when restricted to varieties with canonical singularities.

The log category was developed by Iitaka in the 1970s. This deals with pairs X
with Β, where Β is a divisor (usually reduced); and the intention is to study differ-
entials with log poles along Β . The basic starting point of the theory is Grothendieck
and Deligne's theory of Hodge structures; Deligne proves that if X with Β is non-
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singular with normal crossings, then the log de Rham complex Ω' x(log B) of differ-
ential forms on X with log poles along Β defines a Hodge theory that is a biregular
invariant of Χ \ Β. Starting from this, Iitaka went on to discuss log plurigenera
Η°(τη(Κχ + Β)), log irregularity, etc. as "proper birational" invariants of X with
Β; this means that in addition to being biregular invariant of the "open" variety
X \ Β , they are also invariant under some operations that change Χ \ Β by blowups
or blowdowns without losing exceptional divisors. More recently, log varieties have
achieved prominence in classification theory as a kind of intermediate step between
dimension η and η + 1.

It is most unfortunate that Iitaka's students, Fujita, Kawamata and others, while
making formidable technical extensions of this notion, have lost sight of the simplicity
of Iitaka's original conception. If you are faithful to the original guiding principles,
and regard the log category as part of primeval creation, then there is practically no
argument about the correct log generalisation of the notions of the genuine category,
and all the fine points about when multiplicity 1 is allowed are just irrelevant. In
fact the only substantial argument is whether to extend the category of log varieties to
allow nonnormal varieties with ordinary double points in codimension 1 , to which
the whole apparatus of differentials with log poles extends very naturally, and with
many compatibilities, for example, invariance under log normalisation and under
restriction to a component. This is the semilog category of the Utah seminar, [Utah],
Chapter 12.

(10.3.1) Definition. A log variety X with Β is a normal variety X with a Q-Weil
divisor Β with multiplicities 0 < b,< 1 .

The initial case is that all b,• = 1 , but one might reduce a value of bt, if we
are absolutely certain that no log pluricanonical differential e H°(X, (Ω1 (logB)) m)
will ever have a higher order pole along Bt. This is Kawamata's approach to minimal
models of log surfaces [Kawamata], when you have to reduce the bi in a Zariski
decomposition, at the same time as contracting certain (-l)-curves, to get Κχ + Β
nef on a log surface.

(10.3.2) Definition. A log morphism f: X with Bx —> Υ with BY is a morphism
f: X ^ Υ such that f{Bx) c Β γ . It is log proper if / is proper and Bx contains
the set-theoretic inverse image f~l(By), and all exceptional divisors of / (including
those not mapping anywhere near By) with multiplicity 1 . If / : X —» Υ and
BY are given, there's a unique Βχ that fits the bill, the log birational transform
(f~[)l'log(BY). (Compare after (1.1).) That is, if X -+ Υ is a morphism, and D a
divisor on Υ, the log birational transform of D on Υ is the birational transform
(see (10.8.3) below) plus all the exceptional divisors of / with multiplicity 1 .

The exceptional components of / must be included in Βχ in order to ensure that
/ : X \ Bx 3* Υ \ Β γ , so that invariants of X with Β and Υ with Β γ defined by
log differentials in codimension 1 coincide.

(10.3.3) Definition. X with Β is log nonsingular if X is nonsingular and Suppi?
is a divisor with (local) normal crossings. / : X with Bx —> Υ with BY is a log
resolution of Υ with Βγ if X with Β is log nonsingular and / is log proper.

(10.3.4) Exercise. Find your own definition of log discrepancy, log canonical and
log terminal singularities, and check that they agree with those of §1 (compare [8]).

Log canonical and log terminal surface singularities were completely classified in
[Kawamata] (although the definition was not explicitly known until around 1981,
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possibly first occurring in work of S. Tsunoda). It's an exercise to prove from first
principles that a log terminal surface singularity Ρ e S with Β = 0 is a quotient
singularity (several different proofs are possible). Thus the codimension 2 behaviour
of log varieties with log canonical singularities is completely known.

(10.3.5) There are important respects in which the log category is simpler to work
in than the genuine category. The behaviour under cyclic covers is an obvious case.
Another case is the toric description of plurigenera and log plurigenera of hypersur-
faces singularities: if / is a polynomial that is nondegenerate for its Newton poly-
gon Newton(/), then the log plurigenera of the hypersurface singularity (/ = 0) are
given in the simplest possible way in terms of the interior of Newton(/), whereas
the genuine plurigenera are very much more subtle (see [22], Remark 4.14). I have
repeatedly failed to impress the importance of this point on singularity theorists.

10.4. Eventual freedom. A point that requires care is the correct statement of Kawa-
mata's eventual freedom theorem for log varieties; in some quarters, it's been taken
for granted for almost 10 years that the log version is false as stated, and that to
get a good statement requires mutilating the log category by imposing restrictions of
the form b, < 1 . (This is the source of an incredible lot of mess in the theory, for
example all the different technical flavours of log terminal.) In reality, you just have
to give the right statement of what "log big" means, and the theorem goes through
exactly as in the case of the genuine category of varieties.

I explain. Recall Zariski's famous counterexample to finite generation: a nonsin-
gular rational surface S, an elliptic curve Ε ~ — K$ with E2 = - 1 , and a divisor
class L on S such that L is nef and big, LE = 0, but L\g is a nontorsion divisor

of degree 0 (for example, this arises by blowing up k > 10 general points P, on
a plane cubic EQ , and considering plane curves of degree k > 10 having these as
triple points). Then \mL\ has scheme-theoretic base locus Ε for every m > 0, so
that R(S, L) is not finitely generated; or again, Ε is contractible in the category
of analytic spaces, but not projectively contractible. If you think the log version of
eventual freedom is

L nef and L - s(Ks + E) nef and big => L is eventually free,

then of course Zariski's example is a counterexample, since L is nef and big and
Ks + Ε = 0. What's really going on here is that L is numerically 0 on a boundary
component Ε with KE = {Ks + E)\£ = 0 of (log) Kodaira dimension > 0; to make

further progress with this particular L involves the log classification theory of Ε.
In other words, minimal model theory (which should only involve Κ not nef, and
the aim is to exploit the vanishing of cohomology groups) has got mixed up with
classification theory (K nef, the point is to prove that cohomology groups do not
vanish). In other words, you must stay away from bi = 1 if you intend to restrict
Κ + Ε to a nonexceptional component Ε of Β on which L is numerically 0 and
hope to be able to continue to use Kawamata-Viehweg vanishing.

Thus define log big to mean that LkT > 0 for every fc-dimensional stratum Γ =
B[ Π · · · Π Bn_k C X of the log divisor with b\ = ••• = bn_k = 1 . Then eventual
freedom can be stated and proved in exactly the same form as in the genuine case.
Shokurov's LSEPD trick of subtracting a relatively principal divisor is one way of
reducing this to the standard Kawamata result.

10.5. LSEPD. If / : X —> Ζ is a proper morphism, and Β a boundary on X,
the notion here is LSEPD, that is, Β supports a principal divisor locally over Ζ (or
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relative to / ) . That is, for any point ζ e Ζ there is a rational (respectively mero-
morphic) function h on Ζ defined locally at ζ such that one connected component
of the principal divisor /*(div/z) contains \_B\ and is contained in Supp β . In
other words, this means that there exists a divisor B' whose support contains all the
components with bj = 1 and is contained in Supp Β and which is a fiber relative to
/ : there exists a morphism Ζ -> C of Ζ to a curve such that B' equals a union
of fibers of the composite X —> C. Working locally over Ζ , which is enough for
the construction of the log canonical model, this is equivalent to the existence of an
effective Cartier divisor D with Supp D = Supp B', that is, linearly 0 relative to
/ , that is, principal on X (locally over Z ) . Moreover, by what we have said, we
can replace linearly 0 with numerically 0 relative to / , even when / is weakly log
canonical, that is, Κ + Β is nef relative to / (compare (1.5.7)), Β is a Q-divisor
and Κ + Β is big relative to / .

10.6. Shokurov's different. The different is well known (without the name). By the
adjunction formula 3.1, it measures the failure of the Q-divisor adjunction formula
(K + S)< e - Ks for a prime divisor S arising from S passing through codimension

2 terminal singularities (transverse surface quotient singularities). For example, con-
sider the adjunction formula for a line generator of the ordinary quadratic cone in
P 3 .

3.1 of the Russian says assume S <£ Supp(A" + S + D), which is illiterate; for ex-
ample, it could mean that K + S + D is linearly equivalent to a divisor not containing
S. But the Grothendieck duality adjunction formula ω ·̂ = ^xt^x(tfs, ωχ) gives an
exact sequence

0 ^ ωΧ -^J^om^iJ^^s, ωχ) -+ ω 5 ->· 0

that coincides with the Poincare residue cox(S) —> ω5 in codimension 1 , so that
Ks» , Ks and (Kx + S)i$v can be intrinsically compared.

For a technically more sophisticated treatment of the different, see [Utah], Chapter
16.

10.7. Comment on Reduction 8.4. The final remark on algebraic approximation
seems to me to be nonsense: an analytic flipping singularity is more-or-less isolated
(quotient singularities have no moduli), so analytically equivalent to an algebraic
singularity. The analytic flipping contraction over it is projective. Complete any-old-
how to a projective variety and resolve singularities with a couple of B52 loads of
blowups. Then the algebraic situation is Q-factorial, nonsingular outside a codimen-
sion 2 locus of transverse quotient singularities, and the single contracted curve is an
extremal ray of a projective variety. What's the problem? (Response from Shokurov:
The problem is to give the complete proof.)

10.8. A treatise on terminology.

(10.8.1) To hyphenate or not to hyphenate! The expressions log differentials, log
terminal singularities, and so on'are etymologically logarithmic differentials, that is,
differentials with log poles, or logarithmically terminal singularities; (Iitaka's original
papers are full of logarithmic irregularity, logarithmic Albanese map, log of general
type, etc., all written out in full). Therefore the word log stands either for an adjective
or for an adverb, and in neither case is it grammatical or desirable to hyphenate it
or join it as a single word. So there!

(10.8.2) Pseudoextremal rays. Shokurov and others sometimes use extremal rays
only in the sense of convex body theory, so that the rays are only boundaries of the
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cone, not necessarily extremal rays in the sense of Mori theory. A pseudoextremal
ray i?2 is not a priori rational or spanned by curves, although this will be the case
whenever (K + D)R2 < 0 against a log canonical divisor Κ + D by the log version
of the theorem on the cone. Without some such assumption, I don't think anything
useful can be said about it.

(10.8.3) Birationai transform. If / : X —> Υ is birational and D a Weil divisor
on X, there is a well-defined divisor obtained as the Zariski closure of the divisorial
part of the image fo{Do), where / 0 : Xo —> Υ is the biggest morphism in / (compare
the section after (1.1)). This is traditionally called proper transform by Russians and
in my papers, for example, and strict transform by people in resolution of singularities,
for example, although there is no logic in either term. I propose birational transform
as self-documenting terminology, and use this throughout the translation.

When / : Υ —• X is a birational morphism, and D an effective divisor of X,
Shokurov writes f~lD for the birational transform of D, meaning that he takes
f~l of the generic points of Ο (where of course / " ' is well defined). By definition
f~xD is an effective divisor without any exceptional terms, so it's nothing to do with
the set-theoretic inverse image f~l-setsD, which contains all exceptional divisors.
More logical notation would be gxD to mean the forward image under a rational
map g of D as a codimension 1 cycle, so f~l'lD or (f~l)[D for the birational
inverse image.

(10.8.4) Blowup or extraction. It's traditional to think of a birational map / : Υ
-* X either as a birational contraction (of something on Υ , for example a divisor
or an extremal ray) or as a partial resolution (of something on X, for example
singularities or indeterminacies of a rational map). Another traditional name for
the same object is a model (for example, the relative minimal or canonical model
/ : Υ —* X of a singularity X). It seems to me to be wrong to call the last type
of construction a blowup of X, since it is not usually constructed as a blowup of a
sheaf of ideals / in the sense of Grothendieck and Hironaka, and even if it happens
to be so (every projective birational morphism is a blowup of some sheaf of ideals),
there may be no sensible way of saying what / is, or of proving that it makes sense,
in terms of X. In surface singularities, it is traditional to make a partial resolution
which extracts (or "pulls out") a subset of the curves of the minimal resolution.
Therefore I launch extraction as a bottomup counterpart to birational contraction,
and may God bless all who sail in her. (Actually, Shokurov deliberately uses the pair
of words "blowup" or "blowdown" (Russian razdutie and sdutie from duf, to blow)
to mean a birational morphism / : I - » Z viewed bottom-up or top-down, so my
translation is deliberately going against his clearly expressed preference.)

(10.8.5) Multiplicities di of a divisor D — ]Γί/,Α. The Russian has coefficients
throughout, but the same word is used later in the extraordinary circumlocution
coefficient of taking part in divisors such as g~[D + Ε on an extraction g: Υ ^ X ,
so multiplicity is a better term. Multiplicities di are often opposed to discrepancy
coefficients a,.

(10.8.6) Exceptional. The key notion of exceptional complement (ray, flip, etc.)
is defined in Theorem 5.6 and the following paragraph (involving only one component
with log discrepancy 0). Unfortunately, exceptional divisor for / seems also to be
used in the Russian preprint in the ordinary meaning of divisor contracted by a
birational map / . It is possible that the context makes clear (in the author's mind)
which is intended, but with the limited time available for the translation, I may not
always have succeeded in untangling it.
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