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Distinguishing Prymians from Jacobians 

V.V. Shokurov  
Ul Jersmana 5/235, Moscow 127312, USSR 

1. Main Result, Terminology, and Notation 

1.1. Throughou t  this paper we fix an algebraically closed field k of characteristic 
=4=2; all varieties considered are defined over k. 

We denote  by C a connected curve with an involution i: C--+ C (i 2=Id). 
Throughou t  this paper we also suppose that the pair  ((~, i) satisfies the following 
conditions: 

(i) C has only ordinary double  points; 
(ii) The fixed points of i are exactly the singular points, and at a singular 

point  the two branches are not  exchanged under  i. 
In this situation, due to Mumford  [M]  in the non-singular case and to Beau- 

ville [B] in the general case, we have the principally polarized Prym variety, 
or Prymian for short, (P, ~), i.e. an Abelian variety P with a principal polarization 
~. In this paper we are interested in establishing when (P, ~) is not  a Jacobian 
of  some smooth curve or a sum of  them. Of course, we consider Jacobians with 
their principal polarizations. 

Note  that (i), (ii) imply 
(iii) For  any decomposi t ion (~ = C1 L) C a we have :~:(C1 ('~ C2) ~-~0 (mod 2). 
If (~ = (~1 w C2 with (~1 n t~ 2 = {p, q}, and C'i (i = 1, 2) is the curve obtained 

from Ci by identifying p, q, then by Lemma  (4.11) [B] P~-P1 xP2, where Pi is 
the Prym variety associated to 01 with the involution induced by i. So in view of 
(iii) we may restrict our  interest to curves which satisfy the following condit ion:  

(iv) For  any non-trivial decomposi t ion C =  (~1 u (~2, # C1 c~ C2>4.  
The main result is 

1.2. Theorem. Let (C, i) be a pair consisting of  a curve C of genus 2 p -  1 and an 
involution i of  C satisJying (i), (ii) and (iv); let C= C/(i) be the quotient curve, (P, ~) 
the associated Prym variety. Recall that pa( C) = p and dim P = p - 1 .  Assume that 
p > 8. 7hen (P, ~) is a Jacobian or a sum of  them iff one of the following holds: 
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(a) C is hyperelliptic; 
(b) C is obtained fi'om a hyperelliptic curve by identifying two points; 
(c) C is trigonal. 
By a hyperelliptic (trigonal) curve we mean a curve that  possesses a finite 

morphism on IP a of degree 2 (of degree 3) in a general point. 
F r o m  Theorem (4.10) I-B] we know all suspected cases (see Sect. 3) where 

(P, S) may be a Jacobian.  To  prove our  theorem we need to eliminate all irrelevant 
cases. In case (f) we shall find a curve on the S-divisor which goes into a point  
under  the Gauss  map,  and so (P, Y,) in this case is not  a Jacobian. The main idea 
of  the proof  in cases (d), (e), (g) is as follows: assuming P = J(S), the construct ion 
of  a subvariety Z ' c  Mult  3 (O) of  dimension p - 7  implies that  S is superelliptic, 
which gives a new componen t  in Sing (if), which leads to a contradiction. In Sect. 2 
we investigate superelliptic curves and their Jacobians. 

1.3. A more detailed t reatment  with a complete distinguishing theorem will be 
given in Russian IS]. This paper  will also contain results, obtained by Beauville, 
Mumford ,  Tyurin,  relating to the theory of  P rym varieties and its application 
to conic bundles and intersections of  three quadrics. 

The author expresses hearty thanks to his father V.N. Shokurov for his help in preparation of 
this English extract from [S]. 

1.4. We  use mainly the terminology and notat ion of  [B]. We shall also need the 
following concepts. For  a curve S ~ IP" and an effective divisor D on S we denote 
by ( D )  the linear span of  D in lP", i.e. the intersection of  all hyperplanes H in 
IP" for which H .S>D.  By Mul t3X  we denote the set of  all singular points of  
multiplicity > 3 on X;  ~c  denotes the canonical sheaf of  a curve C. 

2. Superelliptic Curves 

2.1. In  this section S denotes a smooth  connected curve of  genus g = g ( S ) > 7 .  
To begin with, we recall one general fact 

2.2. Proposition. Let J r (S )= Pic g- 1(S) and 0 = {LeJv(S)lh~ L)> 1} be the 
canonical principal polarization of J ~'(S). Then 
(2.2.1) g - 4 < d i m  Sing O < g - 3 ,  
(2.2.2) I f  S is non-hyperelliptic, then dim Sing O = g - 4. 

2.3. N o w  we describe curves with " lo t s"  of  singularities of  multiplicity 3 on O. 
These will be hyperelliptic or superelliptic curves. The former do not  interest us, 
so we suppose in what  follows that S is non-hyperelliptic. 

A curve S is said to be superelliptic if there exists a morphism 

e: S--*E 

of  degree 2 on E, a smooth  elliptic curve. 
It turns out  that  the structure e is unique if g > 6. Indeed, consider a general 

divisor el + e2 of  degree 2 on E. Then l e*(e I + e2)[ is a linear system on S of  degree 4 
and dimension >1 .  Identify our  curve S with its canonical  model  S c I P  g-1. 
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By geometrical interpretation of the Riemann-Roch formula the points ofe*(e 1 "~ e2) 
span a plane (e*(e 1 +e2) ).  This implies that any two lines (e*(e0) ,  (e*(e2)) 
meet in a common point. So all of them meet in a common point Or We say 
that O is a center of a superelliptic projection. Now we may identify e with a projec- 
tion o rS  from O, and E with the image E ~ I P  g-2 of this projection. E is a projec- 
tively normal curve in IW- 2 of degree g -  1. It is a well-known fact that 

(,) Any divisor F of degree < g -  1 on such a curve spans the projective subspace 
( F )  of dimension deg F -  1, i.e. the "poin ts"  of F are in a general position in ( F ) .  

If we have another superelliptic structure e': S ---, E', then we have another center 
O'. So for general points el, e2eE' a divisor e,e,'*(e I +e2) has degree 4 and ties 
in a plane, i.e. d im(e , e '* (e l+e2) )=2 .  But by (*) this is impossible, since 
deg e, e,'*(e 1 + e z ) = 4 < g - 1  for g>6 .  Therefore when g > 6  there exists a unique 
superelliptic structure on S, i.e. this structure is inherent. In particular, this 
structure allows us to separate in Sing O for such a curve a component 

A={~*(M)(F)[MePic2(E) and Fes~g-5)}, 

where S (k) denotes the k-th symmetric product of S. Moreover, by the Riemann- 
Kempf  singularity theorem we can separate in Mult 3 0  a component 

A'={e*(M)(F)IMePic3(E) and F e S  ~g-7)} 

of dimension g - 6  for g>7 .  We may now state and prove two results which we 
shall need later on. 

2.4. Proposition. Let S be a non-hyperelliptic curve of genus g > 7 with dim Mult 3 0  
> g -  6. 7hen S is a superdlliptic curve and Mult 3 0  = A'. 

Proof Let M be a general sheaf of A' (for a component  of dimension > g - 6 ) .  
Subtracting the fixed component  of M we obtain A" c G~ = {L e Pic d(S) I h~ L) > 3 } 
with d < g -  1 and dim A " > d - 5 .  Now we may suppose that for a general LEA"  
the system ILl has no base points. F rom Marten's  theorem [Ma]  we see that 
dim ILl=2. Therefore ~ ILI~S ~ has d i m e n s i o n > d - 3 ;  a general divisor D 

L E A "  

from this set spans the space ( D )  of dimension d -  3 and d -  1 points of D also 
span ( D )  since D has no base points. So if we take d -  1 points of such a general 
divisor D we obtain a variety of irregular divisors of degree d -  1, and dimension 1 
of their general linear systems. This variety has dimension > d - 3. Sothere exists a 
subvariety Z ~ G~_ 1 of dimension > d - 4 .  Then by the theorem in Appendix [M] 
we have one of the following cases: 
(2.4.1) S is trigonal, and for a general point x e S  and a general M s M u l t 3 0 ,  
any divisor o f [ M ( -  x)[ may be written as g3 ~ + F, where g3 x is a divisor of the trigonal 
series and F is an effective divisor on S; 
(2.4.2) S is a superelliptic curve, and for a general point x e S  and a general 
M ~ M u l t 3 0  , a divisor of [M ( -x ) [  may be written as e*(ex+ez)+F , where F 
is an effective divisor on S. 

We establish that (2.4.1) is impossible. Indeed, in this case every DelM[ has 
the form g~ + F. We may assume that g3 ~ and F have no points in common. Then 
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if x is a point of g3 ~ , the divisor g~ + F - x also has the previous form and so F = (g~)' 
+ F ' ,  i.e. every M may be written as Cs(2g31 + F"), where F" is an effective divisor 
of degree g - 7 .  Therefore the dimension of such singularities of O is at most 

g - 7 ,  which is a contradiction. 
Similarly, we obtain in case (2.4.2) that every M may be represented as 

e*((gE(e1+ez+e3))(F), i.e. M~A'.  More precisely, we prove that for a super- 
elliptic S, A' is the only component  of dimension g - 6  of Mult3(O). The full 
statement is implied by the following lemma (which is essentially proved below): 
Let D be an effective divisor of degree g -  1 on S, and let A be the greatest effective 
divisor on E such that ]D-e*AI:4=O. Then either A = 0  and h~ (gs(D))__<2, or 
h~ (gs(D)) = deg(A), that is IDI = ~* IAI + fixed part. Here we omit the details since 
in what follows we shall need only what has been proved. Q.E.D. 

2.5. Proposition. Let S be a superelliptic curve of Genus g >-_ 7. Then 
(2.5.1) A, A' are irreducible subvarieties in Jr(S) of dimensions g - 4  and g - 6 ,  
respectively," 
(2.5.2) Sing O contains one more component of dimension g - 4  besides A; 
(2.5.3) I f  t~J(S) is an element of the Jacobian J(S) such that t.  A ' c S i n g  O (. de- 
notes the natural action of J(S) on Jv(S)=Picg-X(S)), then t .  A ' c A .  

Proof (2.5.1) is obvious. 
To prove (2.5.2) consider a projection rt: S--, IP 2 from g - 3  general points 

x 1 . . . . .  xg_3eS. Then z (S )c IP  2 is a curve of degree 2 g - 2 - ( g - 3 ) = g +  1 with 
( g -  3 ) ( g -  4) 

the ordinary singular point n(O) of multiplicity g -  3, and p,(7~(S)) 2 
g ( g -  1) ( g -  3 ) ( g -  4) 

= = g + 2 ( g - 3 ) > g  for g>7 .  So we have a singular point 
2 2 

yert(S) other than re(O). Hence there exists an irregular divisor of the form 
O=Xlq-...q-Xg_3-q-Xg_2nt-Xg_l on S. It  is obvious that the dimension of the 
variety of such D is g -  3 and these divisors determine a component  of Sing O 
of dimension g - 4  distinct from A. This proves (2.5.2). 

Now we show that if F e S tg- 1 ~ and F contains a divisor e*(e) then (gs(F) ~ Sing O 
iff (gs(F)eA. Sufficiency is clear. We prove necessity. So F=e*(e)+F' where 
F'  eSt ' -3) .  If F'  contains e*(e') we get what we need. Otherwise, for some point x 
of e*(e), F '  + x does not contain e*(e') and e ( F '  + x )  = (e , (F '  + x)), and hence by (,) 
dim ( e , ( F ' + x ) )  = g - 3 .  It follows that dim ( F ' )  = g - 3  and O q~ (F ' ) .  Therefore 
dim ( F )  = g - 2  since O e ( e * ( e ) ) c  ( F ) ,  which by Riemann-Roch contradicts our 
assumption (gs(F)eSing O, i.e. dim IFI ~ 1. 

Now note that if L e t .  A ' c S i n g  O then, for any el, e2eE, L(e*(eO-e*(e2)) 
eSing O since A'(e*(el)-e*(e2))=A'. If dim ILl=2, then L e M u l t 3 0 = A ' c A  by 
Proposition 2.4. Now consider the case dim ILl = 1. If ILl is base point free, then 

agenera lFe[L lcons i s t so fg - l  di f ferentpointsxl , . . . ,Xg_l  and xi = g - 3 .  
i ) Moreover dim xl = g - 3  and again by (.) O r  or F = e*(e)+ (an effective 

i 

divisor). In the last case by the previous discussion LeA.  So let Or Then 
e ( (F) )  is a hyperplane in IP g-2 and, for a general el e E, dim ( F  + e * ( e 0 ) = g - 1 .  
It follows that h ~ (S, ~2 s | L(e*(eO)-1)=0, and by Riemann-Roch h ~ (S, L(e*(el)) 
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= g + 1 - g  + 1 = 2 = h ~ (S, L). Hence  IL(e* (el))l = ILl + e*(el). But IL(E*(e 0 -  e* (e2))l 
4:0 for a general e2eE, so IL(-e*(e2))]4:0 for such e2. Therefore E*(ez)+(an 
effective divisor)eJLI, i.e. again by  the previous considerat ion LeA .  The case 
where L has base points  is much  easier to investigate using (,) to obtain LeA.  

Q.E.D. 

3. The Proof of the Main Result 

3.1. First note that  in cases (a), (b), (c) of  Theorem 1.2 a Prymian  is a Jacobian  or 
a sum of Jacobians,  by Mumford  [M] ,  Dalalyan,  Recillas [R].  So we must  prove 
that  if this takes place, then C has one of the prescribed forms. By (iv) and  Theo-  
rem (4.10) [B] this is obvious  when dim Sing N > p - 4 .  Therefore by Proposi t ion 
2.2 we may  suppose that  d im Sing S = p -  5, (P, ~) is isomorphic to (J(S), O) for 
some smooth connected non-hyperelliptic curve S of genus g = p - 1  = 7. Then  by 
the same Theorem (4.10) [B] one of the following cases, besides (a), (b), (c) above,  
Occurs 

(d) C is a double cover of an irreducible curve of genus one; 
(e) C is obta ined f rom a hyperell iptic curve by identifying two pairs of  points;  
(f) C = C I u C a  with ~ C  1 ~ C 2 = 4 ,  and neither C1 nor  C2 is a smooth  

rat ional  curve; 
(g) C- -  C~ w C 2 with ~ C1 c~ C2--4, where C 1 is a smooth  rat ional  curve and  

C 2 is a hyperell iptic curve of genus _-> 5. Recall tha t  a curve with ordinary  double 
points  is hyperell iptic if it can be realized as a two-sheeted covering of IP 1. 

We prove that  none of the last cases (d), (e), (t), (g) is possible when (P, S) 
is a Jacobian.  

It  is convenient  to look at  the Prymian  in Pic (C), after t ranslat ion by  n*L 0, 
where n: C ~ C is the natural  project ion and L 0 is a theta-characterist ic  as in 
Proposi t ion (3.10) [B]. Then the Prymian  becomes  the variety 

e v =  ev (  C, i )=  {Le Pic2p- 2( d ) lN  m(L)=(2c 

and h~ L ) - 0 ( m o d  2)}, 

and E becomes the canonical  polar izat ion 

S = S(d,  i) = { L e P v ( d ,  i) I h~ L) > 0}. 

So under  our  assumpt ion  

(Pv( C, i), F_,)=(J v(S), 0). 

3.2. We first consider case (f). 
The concept  o fa  Prym variety may  be extended (without the canonical  principal  

polarization) to include the case where ~: C ~ C has non-singular  branch points, 
i.e. in (ii) we may  admit  non-singular  fixed points  of  i. In this s i tuat ion we can 
construct  

P v (C, i) = {L ~ Pic 2p- 2(C)[Nm(L) = f2c}. 

It will be a complete  Abel ian variety (a connected one when there are branch 
points) and of dimension p + ( b / 2 ) - 1 ,  where b is the number  of  non-singular  
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fixed points for i. For example, take components C1, Cz corresponding to our 
C 1, C2 ~ C with an involution induced by i and also denoted by i. Let f :  C ~, C 2 ~ 
be the desingularization in 4 intersection points {u~}~_ 1 = C1 ~ C2. Then we have 
an isogeny 

f0 :  Pv(C, i)-+ Pv(C1, i)x Pv(d2, i) 
4- 

of degree 4. The reader who has trouble at this point is referred to a detailed 
treatment of this subject in IS]. Let ZcPv(C,  i) be the inverse image under 
f o  of the subvariety PV(dl, i)x {MePv(d2, i)lh~ i) 
x P v (C2, i). It is easy to see that h ~ (C, L) > 0 for all L ~ Z, so Z c E; L has a section 

vanishing in component  C1. Also one can prove that dimZ=dimPv(Cl,  i ) 
+ d i m  {McPv(d2, i)[h~ M)>0}  =pa(C1)+(4/2) - 1  + d i m  If2c21 = p , ( C , ) +  1 + 
pa(C2) - 1 = pa(C1) + pa(C2) = p,(C) - 3 = p - 3. So at a general point of Z we have 
the well-defined Gauss map F: Z+( lPP-2)  * which maps a point z e Z  into the 
projectivization of the tangent space to E at z; henceforth we identify the projec- 
tivizations of all tangent spaces to Pv(C, i) with one fixed IP p 2. Obviously, all 
hyperplanes in IP p-2 corresponding to general points z e Z  under F contain a 
subspace PcIP p-2 which is the projectivization of the tangent space to an 
Abelian subvariety ( fo ) -  l ( p v ( d l  ' i) x {x}). P has the dimension dim Pv(C1, i ) -  1 
=p,(C0+(4/2 ) -  1 -  l=p,(C1) .  So the image of Z under F has the dimension 
p - 2 - p , ( C 1 ) - i  =p -3 -p , (C1 )<p -3  since under our assumption in (f) C 1 is 
not a smooth rational curve. Therefore on E--  6) there exists a one-dimensional 
family of non-singular points which F maps into one point. This is impossible 
for Jacobians by the geometrical interpretation of the Riemann-Roch formula and 
the Riemann-Kempf  singularity theorem. Indeed, if Le6)cJv(S) is a non- 
singular point, then dim ILl =0,  deg L = g -  1 and a unique divisor Fe[LI spans 
a hyperplane H in the space IP g- 1 = ipp- 2 of the canonical imbedding for S. H is 
the image of L under F, and it determines L with F(L) = H up to a finite choice. 
This contradiction shows that case (f) is impossible. 

3.3. Now we consider case (g). So let C =  C i u  C 2, @Clc~ C2=4,  where C 1 
is a smooth rational curve and C2 is a hyperelliptic curve, i.e. we have a finite 
morphism 

y: C2 -..~ ~ 1 

of degree 2 at a general point. Let 

fo: Pv(C, i)--* Pv(C1, i) x Pv(C2, i) 

be the isogeny as above. Now we denote by Z the inverse image under f o  of  a 
subvariety P r ( ( ~ l , i ) x  {(7orO*(M)(F)~Pv(C2, i ) [mePic~(lP ~) and F is a non- 
singular effective divisor}, where ~: (~2 ~ C2 is the canonical projection. It  is 
a well-known fact from [B] that Z c S i n g Z  and d i m Z = p - 5 .  Also we in- 
troduce a variety Z '  which is the inverse image under f o  of Pv(0~ , i )  x 
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{(7o~)*(M)(F)ePv(ff2, i)lMePic2(Ip 1) and F is a non-singular effective divisor}. 
More precisely, we consider the projective closure of these varieties. We shall 
establish that Z ' c  Mult 3 E and dim Z'  = p - 7 .  To prove it we need the following 

3.4. Lemma. Let D be a connected curve with ordinary double points such that 
4t:D1 c~D2>2 for any non-trivial decomposition D=D 1 w D2, and let L be a non- 
singular (see [B]) sheaf of Pic (D) with h~ L)>=deg L/2 + 1. Then If2o| 1[ 
contains a non-singular divisor iJf deg ((f2o| 1)1o, ) > 0 for any component D' c D. 

Proof. Necessity is obvious, so we must prove sufficiency. Denote by D 1 the 
maximal component  of D on which not all sections of H~ Oo| 1) vanish 
simultaneously, and by U the maximal set of points of Sing D c~ D 1 in which all 
sections of H~ f2 o | L 1) vanish. Let f :  D' 1--,D t be the desingularization of 
D 1 in points of U r Sing D1, and L 1 = f * ( ( 1 2 o |  1)1ol ) ( -  ~ x); the summation 

f(x)eU 
is made over different points. Then sheafs f*(Llm) and L 1 =f2oi| -1 
are non-singular in the sense of Sect. 4 in [B]. Hence by Riemann-Roch and our 
h ypo theses h ~ (2 o | L- 1) = h ~ L) + deg (f2 o | L- 1 ) _ deg 0o/2 > deg L/2 + 1 + 
deg f2o/2-  deg L = deg (f2 D |  1) + 1. By Lemma 4.7 [B] 1 + deg (Oo| 1)/2 
<h~ f2o| 1)<=h~ L1)__<deg L1/2+(the number of components of D' O. 
But under our assumption all components of the multidegree of ~2o| are 
positive, so degLl<degf2c) |  This implies the in- 
equality 4t: {xeD'l If(x)~ U}/2<(the number of components of D'I} - 1. So there 
exists a component  of D'a which contains at most one point x with f (x)eU. But 
any component  of D meets other components in at least two points, so this 
component  of D'  1 coincides with D' 1 and D 1 = C. Therefore # {x ~D' 1 [j(x) e U} 
< 0, i.e. U = 0, what we need. Q.E.D. 

3.5. To prove the assertion before Lemma 3.4 we show that 
(3.5.1) A general divisor of If2c~| where M~Pic2(Ip1), is non-singular; 
(3.5.2) dim [f2c~| 
The former follows from Lemma3.4,  since h~176 
=degT*(M)2/2+ 1 and p,(C2)>5. Lemma 4.7 [B] and Riemann-Roch imply 
(3.5.2). Indeed, h~ 7*(M) 2) = 5 and 

hO(C2, i2c~| )- 2) = deg f2e~ |  2 + ho(C2,7,(M)2) 

- d e g  f2c~| 1 =pa(C2)- i - 4 +  1 

=pa(C2)-4=p,(C)-7. 

So there exists a (p-8)-dimensional  family of effective non-singular divisors F 
on C2 with ~z,F~lf2c~| dim lF l=0  for such a general F, since if 
dim ]FI>0 then IF+x- i (x) l<dim [El for a general xe l2  2 and [F+x-i(x)l  also 
contains a nonsingular divisor F '  with rc, F'~lf2c~| Therefore 
dim {(7 ~ rO*(M)(F)IMePic2(IP1) and F is such a non-singular effective divisor 
on ( ~ 2 } = p - 8 .  On the other hand, dimPv(C~, i )=O+(4/2)- l=l;  and so 
dim Z'  = p -  7. 

If  L is a general sheaf on Z' ,  then h~ L)=  6 or h~ L)=  4 and H~ L) 
contains three sections s 1, $2, s 3 for which we have s t | i*sj=sj| i*s t, 1 <l, 
j_-< 3. In the former situation it is obvious that L~ Mult 3 E by the Riemann-Kempf  
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singularity theorem,  since 2 i f =  Ole for the polar iza t ion O of Jr(C). In  the other  
case we add s4 to s l, s 2 , s 3 to fo rm a basis of  H~ L) and  consider Pf(oo~) as in 
Sect. 6 [-M]. This Pfaffian vanishes because ~o~ =(s  t | i*s j -s j  | i*st)/2=O for 
1 < I, j < 3. So the first terms of the Taylor  expansion for a function h giving 
in a ne ighbourhood  of L has order  4, and they vanish on P. F r o m  this we see that  
in this case L e M u l t  3 S also. Therefore  Z ' c M u l t  3 S. 

N o w  we prove  the existence of a surface T c P = P ( ~ ,  i) such that  T. Z '=Z.  
Note  that  just  as we extend the not ion of a P rym variety P v we do the same 

with a P rymian  P, ignoring polarizat ion.  Namely ,  let 

Pt=P(Cz,i)={LePic(Cz)]NmL=O}, l = 1 , 2 .  

The  desingularizat ion f g i v e s  an isogeny 

f * :  P ~ P, • P2 

L~--~f*(L) 

and the act ion of P on P v ( ~ ,  i) and  that  of  P1 x P2 on Pv(C1, i) x Pv(C2 ,  i) are 
concordan t  with f ,  i.e. fO(p. x)=f*(p), f~ for any  peP and xePv(~,  i). So it 
is enough to construct  a surface T '  ~ P2 such that  T ' .  {(7 ~ n)* (M2) (F) BM 2 e Pic 2 (IP l) 
and F as earlier} = {(70 zO*(MI)(F)[M 1 e Pic 1 (IP 1) and F as earlier}. 

For  a general sheaf (7 ~ n)* (Mj)(F)  e P v(C2, i), the divisor F is non-singular  
and n, Fel~2c2| z I. As before it is easy to establish that  d im ln,  F l =  
deg Oc2| - 3 and  dim IQc2@7*(M1)-31 =pa(C2) -5 .  So In, FI 
= 17"(M2) I + [f2c2| 0 -  41 and  n ,  F = 7*(x + y) + (an effective non-singular  
divisor on Cz) for some points  x, yeIP ~. Let D a and D 2 be componen t s  of  F 
over 7*(x) and 7*(Y), i.e. n , D  1 = 7 * ( x ) a n d  n , D 2 = 7 * ( y  ). Then  F=D 1 + O 2 + ( a n  
effective non-singular  divisor on C2). It follows that  ("/on)*(MO(F)(-D 1 
+ i*D2)=(7 o lz)* (Mz) (an effective non-singular  divisor on C2). 

N o w  we may  define the desired surface T '  which is the closure of 
{(ge~(D a -Dz)eP2[D1, D 2 are non-s ingular  divisors of  degree 2 o n  C2 such that  
n,D1, n , D  2 e [7*(M1)I.We have proved  that  T'. {(7 ~ n)* (M2)(F)} _~ {(7 ~ n)* (M 0 (F)}. 
The inverse inclusion is obvious.  

Thus  we have Z '  c Mult  3 ~ = Mult  3 O, dim Z '  = p -  7, and so by Proposi t ion  2.4 
S is a superelliptic curve and Z '  = A'. Moreover ,  there exists a surface T c P = J(S) 
such that  T. A' = T. Z '  = Z. Then  by Proposi t ion  2.5 Z = A and there exists another  
componen t  of  d imension  p - 5  in Sing ~ = Sing O. This componen t  according 
to the p roof  of  Theo rem (4.10) [B] cor responds  to cases (d) and  (e). In all of  these 
cases one pair  of the points  in C 1 n C2 is compat ib le  with 7, i.e. there exist 
ul, u2eC 1 n C 2 such that  7(u1)=7(u2). Let  J ] : / ) 1  ~ C be the desingularizat ion 
relating to the other  two points  u3, u 4 e C l n  C2, and 71: D I = / ) a / ( i ) ~ I P  a be 
the hyperell iptic s tructure induced by  y; yllc~=o~=7, 71(CO=7(uO=7(u2). 
Consider  the isogeny 

f~: Pv(C, i )o  Pv([)l,i) 
4 
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of  degree 2 where x i are points  resulting f rom the desingularization. The  cor- 
responding componen t  Z 1 of  S i n g s  is the inverse image under  j]o of  
{(7~o~zl)*(M)(F)sPv(/51,i)[MsPic1(Ip 1) and F is an effective non-singular  
divisor on D1}, where n l : / ) 1  -~D~ is the natura l  projection. More  precisely, we 
take the closure of  this variety in Pv(C, i). As before we may  also define Z '  1 for 
M e P i c E ( p  1) and  prove  that  Z ' l = M u l t 3 ~ ,  d im Z'I = p - 7 .  In  this si tuation too 
there exists a surface T 1 ~ P such that  T~ �9 Z '  1 -- Z1. So as earlier Z 1 = A, and  Z = Z 1. 
But this is impossible,  since in fact Z # Z I .  Indeed for a general LeZ1, f~ 
= (412 1 o 7~1)* (M)(F) with an effective non-singular  divisor F on/51 and M e Pic 1 (IP 1). 
So J~~ 1 = 0 and f~ = J~~ ( -  fil - fi2) = (gej( - fil - fi2) = const e P v ((~1, i) 
where ul, u2 are points of C1 over  u 1, u2r 1. On the other hand, dim Pv(C1, i) 
= 0 + ( 4 / 2 ) - 1  = 1 and there is a general LeZ  such that  f~ #Oe,(-ul-u2). 
This contradict ion means that  case (g) does not  hold when (P, Z) is a Jacobian.  

We  have slightly misled the reader  here. In  fact there m a y  occur  one more  case, 
the tr igonal case (c), when the harmonic  relat ion of the quadruple  y(ul), ?(u2), 
~(U3) , ~ ( u 4 ) e I P  1 is equal to that  of the quadruple  us, u2, u3, U4. E C 1 ~ ] p 1 .  (See 
Fig. 1.) But then by  degenerat ion of the Recillas theorem [R]  (P, ~) is a Jacobian.  
To  avoid  such trivial cases we suppose in what  follows that  (a), (b), (c) of  Theorem 
1.2 do not hold. 

3.6. Case (e) can be rejected in much  the same way as (g). Namely ,  let V: D ~IP1 
be a hyperell iptic curve, and  after identifying points  ut, u2 and u 3 , u 4 we obta in  C. 
We outline the main  steps. First denote  by f :  i) ~ C the desingularizat ion over 
two identified points. Let 

f o :  Pv(C, i)---~ Pv(/5, i) 
4- 

be the corresponding isogeny, where fi~ is a b ranch  point  of  b over  uieD. In this 
si tuation we consider closures Z, Z '  of the inverse image under f 0  of  
{(7o~)*(M)(F)ePv(/5, i)lMePicl(IW) and F as before} and that  of  
(7o~)*(M)(F)ePv(/5, i)lMsPicE(IW) and F as before}, where ~ : / 5 ~ D  is the 
natural  projection. Then one can prove that  d i m Z = p - 5 ,  d imZ '=p-7 ,  
Z ~ S i n g S ,  Z ' c M u l t 3 Z  and there exists a surface T c P  with T.Z'=Z.  This 
implies that  S is a superelliptic curve and Z'=A', Z=A. So S i n g S = S i n g  O 
must  contain another  component ,  besides A, of d imension p -  5. This is possible 
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only when C is a double cover of  an irreducible curve of  genus one. But we 
shall soon see that the corresponding singularity component  will be again A. 
Therefore case (e) does not  hold. 

3.7. Let E be an irreducible curve of  genus one and let ~: C ~ E  be a finite 
morph ism of degree 2 over a general point  of  E. Consider the closure Z of 
{(e o ~z)*(M)(F)~Pv(C, i)JM ~ Pic2(E) and F is an effective non-singular  divisor 
on C}, where ~: C--* C is the natural  projection. Similarly we define Z '  for 
M~Pic3(E). As earlier Z ' c M u l t 3 2 .  Suppose dim Z = p - 5 .  Then we establish 
that  S is a supereIliptic curve and Z = A. This will complete our  p roof  because we 
have no other componen t  of  dimension p -  5 in Sing (2) besides Z = A. 

Indeed, rc,(F)ef2c| is an effective non-singular  divisor on C 
for a general L = (e o ~z)* ((gE(e + e'))(F)~ Z. Just as for a non-singular  superelliptic 

curve C, rc.(F) = e* e i = e*(ex + e2 + e3) + (an effective non-singular divisor on 

C), where ex, e2, e3 are general non-singular  points of  E. Recall that  p > 8 under  
our  assumption. Denote  by htj a half  of  el + e j ,  1 <=l,j<=3, i.e. 2hu,,~et+ej; h~j are 
regarded as non-singular points of  E for general e~, ej ( ~  denotesl inear  equivalence). 
So F=D1 +D2 +D3  + ( a n  effective non-singular  divisor on C) and 7r.Di=e*(ei). 
Let 

t u = (~ ~ ~)* (hi j)-- Dt - D r 

be a divisor on C. Then ~,tu=2e*(hu)-~*(e~+ej)~O. So Cc(tu)eKerz~ , 
= P ( C ,  i) �9 7Z/27/. On the other hand, we may choose h~ such that ~ h u 

3 3 1_</<j_<3 

,-~ ~ e v Then ~ (co ~)* (htj) ~ ~ (co it)* (et) and 
/ = l  l_--</<j_-<3 / = 1  

2 tlj=(g~ (h12+h13+h23)-2D1-2D2-2D3 
l < l < j < 3  

~-,(g o ~)* (e I + e  2 + e 3 ) - 2 D 1  - 2 D  2 - 2 D  3 
3 

= ~ i*Dt--D t 
l = l  

and the sheaf corresponding to this divisor lies in P(C, i). So one of  Ce(tu)~P(C, i) 
and (e o ~)* ((9 E (e + e'))(F + tu) = (e o ~z)* ((5 E(e + e' + hi j)) (an effective non-singular 
divisor on C), i.e. L( tu)=EeZ' .  N o w  we define a maximal  subvariety T o P  the 
general points of  which have the form 

(ge(D 1 + D2-(~ o g ) * ( h 1 2 ) )  

where D1, D2 are effective non-singular  divisors on C of degree 2 with n ,  D 1 = e*(el), 
x ,  Dz=~;*(e2) , and h~2 is a half  of  e~ + e  2 . Thus  we have proved that T. Z'~_Z. 
The inverse inclusion is clear. So T. Z '  = Z. Since dim Z = p -  5 under  our  assump- 
tion, dim T < 2, dim Z'  < p - 7 by simple check, we have dim Z'  = p - 7, dim T = 2. 
Then  as before S is a superelliptic curve and Z = A. Therefore case (d) is impossible. 

Q.E.D. 

3.8. Nate. When both (~ and C are non-singular,  only one suspected case, (d), 
may  occur, i.e. when C is a superelliptic curve. In particular, we have proved 
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that in this situation (P, S) is not a Jacobian. This is the answer to Mumford's  
question [M] for p > 8 .  This is also true, according to Ph.D. thesis of Dalalyan, 
for p=6 .  

3.9. In conclusion we give a geometrical interpretation of the Recillas theorem: 
if C is trigonal, then (P, 3) is a Jacobian (J, O) o f  a curve S. Moreover this curve S 
is tetragonal, i.e. there exists a g4 ~ series (a one-dimensional linear system of divisors 
of degree 4) on S. Consider the canonical imbedding S = I P  p-2. Let V ~ I P  1 be 
a lPZ-bundle, or in other words a three-dimensional rational scroll, whose fibres 
are planes ( D )  for D6g] .  So we have the inclusion S=  V and the induced map 
S--* IP I corresponds to g~. Denote by I 7 the blowing up of V in S. It is a well- 
known fact that the intermediate Jacobian of 17 is (J, 6)). On the other hand, 
17 possesses the structure of a conic bundle over F, : q : 9"~ F,, where F, is a rational 
scroll surface (see Figure 2). Conics on ( D )  through x~, x 2, x3, x 4 of D after 
blowing up become conics of 17 over F,. By Recillas' construction C is the 
curve of degeneration of q: 9 ~ F ,  and the lines of [z over C form a curve C. 
So the intermediate Jacobian of V is also the Prymian (P, 3) and (P, 3 ) = ( J ,  6)). 
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