CATALAN NUMBERS FOR COMPLEX REFLECTION GROUPS

IAIN GORDON AND STEPHEN GRIFFETH

ABSTRACT. We construct (g,t)-Catalan polynomials and ¢-Fuss-Catalan polynomials for any irreducible
complex reflection group W. The two main ingredients in this construction are Rouquier’s formulation
of shift functors for the rational Cherednik algebras of W, and Opdam’s analysis of permutations of the
irreducible representations of W arising from the Knizhnik-Zamolodchikov connection. In the special case

of well-generated groups, this confirms conjectures of Bessis and Reiner.

1. INTRODUCTION

1.1. Complex reflection groups. Let V be a complex vector space of dimension n. A pseudo-reflection
is a non-trivial element r of GL(V) that acts trivially on a hyperplane, called the reflecting hyperplane of
r. Let W be a finite subgroup of GL(V') generated by pseudo-reflections. The pair (V, W) is call a complex
reflection group and V is called the reflection representation of W. We assume that V is irreducible as a

representation of W.

1.2. Denote by A the set of reflecting hyperplanes of (V, W) and set N := |A|. Similarly, denote by R the
set of pseudo-reflections of (V, W) and set N* := |R]|.

1.3. Let z = ) (1 — ), a central element of C[W]. For any U € Irrep(W), we set cy to be the integer
by which z acts on U. We define the generalised Coxeter number h to be the integer cy. An elementary

calculation shows that
N+ N~
= —

h (1)

1.4. Invariant theory. Let P denote ring of polynomial functions on V. This carries a homogeneous action
of W and we set (P};V) to be ideal of P generated by W-invariant polynomials with zero constant term. The
coinvariant algebra PV := P/(P}") carries the regular representation of W. Given U € Irrep(W), the

exponents of U
el(U) <...< 6dimU(U)

are the homogeneous embedding degrees of U in PV, These may be recorded in the fake degree of U

dim U

fulg) =Y ¢=@.
i=1

Set d; = e;(V)+1fori=1,...,n: these are the degrees of a minimal set of homogeneous elements generating
PWV.
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1.5. There is a permutation ¥ € Perm(Irrep(TW)) such that the fake degrees have a palindromic property

fo(@) = ¢ faw=(@™"). (2)
For complex reflection groups this was first observed by Malle, [8, Section 6B], and then explained in a

case-free manner by Opdam, [10, Proposition 7.4].

1.6. g-Fuss-Catalan numbers. For any positive integer i, set [i], :== 1+¢+---+¢'~!. For a non-negative

integer m, we define the mth ¢-Fuss-Catalan number of (V, W) to be

Cim (g) = H [mh +1+ [e;i(]‘jm(V*)*)]q_ 3)

Theorem. The rational function C‘(/‘T)(q) belongs to N[q]. Assuming Hypothesis 2.4 holds, two reasons for

this are:

(1) Cg,n) (q) is the Hilbert series of (P/(©))W where © is a homogeneous system of parameters of degree
mh + 1 carrying the W-representation 9™ (V*);

(2) C’I(,(,n) (q) is the graded character of the finite dimensional irreducible representation €L, (triv) of
the spherical rational Cherednik algebra Uy, 11,5 (W).

1.7. (g,t)-Catalan numbers. The description of C"(,‘l,)(q) in the second part of the theorem allows us to de-
fine a (g, t)-Catalan number for all W as follows. The rational Cherednik algebra representation Ly /5 (triv)
contains a unique copy of A"V* € Irrep(W): using this element to generate L;/,(triv) one can then con-
struct a filtration whose associated graded module carries the (g,t)-Catalan number by definition. By [6,
Theorem 5.11] this agrees with the definition of Garsia-Haiman in the symmetric group case, and should

agree with the conjectural construction in [14].

1.8. Cyclic sieving phenomena. Let d be a regular number for (V, W) and let ( = exp(27v/—1/d), see
for example [2, 2.2]. As pointed out in [12, (5.1)], for any U € Irrep(W) there exists a permutation o € &,
such that
ei(U) +ex:(U") =0 mod d.
Combining this with the duality encoded in (2) one shows by induction on m that there exists a permutation
p € 6, such that for all ¢
dpiy =mh +1+¢;(¥™(V*)") mod d.

It follows from [2, Proposition 3.2] that C‘(/IT) (¢?) is a positive rational number for any ¢ € Z; by the theorem
it is also an algebraic integer. Hence CI(,(,n )(Ct) is a positive integer for all m and all ¢, and therefore a

candidate for a cyclic sieving phenomena.

1.9. Well-generated case. The pair (V, W) is well-generated if W can be generated by n pseudo-reflections.
It is observed in [12, Section 5] that in this case h = d,,. It then follows from (2) and [12, Proposition 5.2]
that e;(V)+en—i(V*) = h = e;(V) +e,—;(T™(V*)*), so that in this case the formula for the ¢g-Fuss-Catalan

number simplifies,

@) =1] [m}E dj]qdi]q.

This is the standard definition of g-Fuss-Catalan numbers for well-generated groups which is used throughout

the literature.



1.10. In fact, a case-by-case observation made by Malle [8, Corollary 4.9] shows that ¥(V*) = V* if and
only if (V, W) is well-generated. Thus, the first part of the theorem above confirms [2, Conjecture 4.3(i)]

1.11. Galois twists. We prove an analogue of the theorem above for rational Cherednik algebras at any
parameter p/h where p is a positive integer coprime to h. The formulation of this theorem uses certain twists
of V by Galois automorphisms of C, as well as the permutation ¥ of Irrep(W). See Theorem 2.11 for the

precise statement.

1.12. In particular, for well-generated groups the graded character of eL,,, (triv) is

n

p+e(9V)],
I ey @

i=1
where ¢ is an automorphism of C which maps e?™V~1/" to €27V =12/h  This generalises the formula for the
symmetric group &,

1
[n + plg

n-+p

n

Moreover, if p = mh — 1 then (4) confirms [2, Conjecture 4.3(ii)] on “positive” g-Fuss-Catalan numbers.

1.13. Layout of the paper. We give the proof of Theorem 1.6 and its Galois twist version in the next
section, together with details for the others results mentioned here. Our key tools are the equivalences
of highest weight categories discovered by Rouquier in [13] and Opdam’s study of the monodromy of the
Knizhnik-Zamalodchikov connection in [10]. In the third section we give data for exponents of ¥ (V*)* in
the case where (V, W) is not well-generated, thus giving explicit formulae for the associated ¢-Fuss-Catalan

numbers. These data were gathered with the help of the Chevie program in GAP.

2. PROOFS

2.1. Rational Cherednik algebras. Let R = C[[k]] be the ring of formal power series in the indeterminate
k and @ = C((k)). For any C-vector space M, we write Mp for the extension R ®c M. Let S be the ring

Sym(V') of symmetric functions on V. Let k be a rational number which we will call the parameter.

2.2. The rational Cherednik algebra Hp ;(V, W) is the quotient of the R-algebra T'(V & V™) g x W by relations
zy=yzifx,yeVorz,yeV* and

z,af) (0w, y —
yr —ay = (z,y) + (k+ k) > % > (1= det(w)Mw (5)
<aH’ aH>
HeA weWgy

ifz € V* and y € V. Both Sg and Pg are subalgebras of Hg (V, W). Here and throughout we will drop as
many parts of the notation as we can: for instance we will write Hpg, if both & and the pair (V, W) are clear
from the context. We write Hc ,(V, W) or Hc for the specialisation of Hg ;, to C and similarly Hq ,(V, W)
or HQ.



2.3. Category O. Category Opg, is the full subcategory of finitely generated Hpr-modules consisting of on
which the operators in V' C Sgr C Hp act locally nilpotently. It is a highest weight category, [13, Definition
4.11], with standard objects Ag 1 (U) := dHRNWUR labelled by U € lrrep(W) and partial order U <, U’
if k(cyr — cy) € Zsp in the notation of 1.3. We let (’)R),C denote the full subcategory of Op, whose objects
admit a filtration by standard objects.

There are analogous definitions for Oc , and Og i, and base-change functors from Ok to both categories.

2.4. Hecke algebras and the KZ functor. For each hyperplane H € A let eg be the order of the
subgroup Wy of W that fixes H pointwise. Let V'™ = V' \ (J .4 H, choose 29 € V™%, and let By =
w1 (V'8 /W, z0), the braid group of W. Let Hp  be the Hecke algebra of W over R, [3, Section 4.C], the
quotient of the group algebra R[By/| by relations

(TH 27T’L k+k)) H TH CH — O (6)

where Ty is a set of generators for By, running over a minimal set of reflecting hyperplanes.
Hypothesis. The algebra Hg , is free over R of rank |W|.

This is currently known to hold for all W except possibly the groups of types Gag, G31,Gs3 and Gy,

where it is conjectured to be true; see [9] for a recent report.

2.5. Following [4, Section 5] there is an exact functor
KZR,k : OR,k e HRVI{; -mod

such that for M, N € OIAM the natural map Home, (M, N) — Homp,, (KZr(M),KZr(N)) is an isomor-
phism. Similarly, there are functors KZg : Og — Hg-mod and KZ;, : Op — Hj -mod. The first is even

an equivalence of categories, [4, Corollary 2.20 and Theorem 5.14], and so gives a bijection
7+ Irrep(W) = lrrep(Og ) — Irrep(Hg 1).

If 27k £ CiI for all hyperplanes H and integers 1 < j < ey — 1, then KZp j is “1-faithful” in the sense
that if M, N € Ol%,k then Ext}oR(M, N) — ExthR(KZR(M), KZg(N)) is an isomorphism , [13, Theorem
5.3].

2.6. Equivalences. Let g € Aut(C/Q) and let k and k' be parameters such that
g(e2ﬂik) _ 627rilc" (7)

Then g extends to an automorphism of R which fixes k, and the isomorphism v : R[Byw| — R[Bw]? defined
by 7(3- esb) = 3 g(cp)b descends to an isomorphism of Hpj onto HY ;. Let 0%, denote the category
whose objects and morphisms are the same as those for Op ;- as sets, but such that the R-linear structure
on morphisms is twisted by g. Then KZg ;s induces an R-linear functor from (’)f’%) . to H%’ . -mod. Changing

base to K this defines a permutation ¢ ,, € Perm(Irrep(W)) via the isomorphism in H, ;, -mod

TKZq 1 (Aqk(U)) = KZg i (Aqw (87 1 (U))) (8)
4



2.7. The following theorem is at the heart of our work.

Theorem ([13, Theorems 4.49 and 5.5]). Keep the above notation and assume that KZg i, and KZg i are both
1-faithful. If U <x U’ if and only zfqbk w (U) <wr i)k,(U’), then there is an equivalence Sk s : Op,, — O%’k,
of highest weight categories such that Sy (Arx(U)) = Ar (] 4 (U)) for all U € Irrep(W).

The equivalence of categories in this theorem can be specialised to produce an equivalence Oc, — OZ .,

with the same properties as above.

2.8. Local data. By construction, the permutation ¢Z7k, preserves the dimension of a representation U €
[rrep(W). It is an important result of Opdam that d)i,k, also respects the local data of U, that is the set of
integers {nf ;} defined by
Res%HU = @ n%’jdetfj.
0<j<em—1
To be explicit, [10, (3.8)] shows that the action of Ty on KZg 1 (Ak ,(U)) diagonalises to

My () = diag(Che* ™ 1,y Che®™™ I, oo G eI,y )

nHeH 1

g
It follows then from the definition in (8) that n “5’“ k’( :

by applying ¢ to the entries in a matrix representation of U.

=n3Y j where 9U is the representation of W obtained

There are two useful consequences. First, ¢f ,,(triv) = triv for any automorphism g. Second, recall the
element z € Z[W] introduced in 1.3. It may be written as 2 = N + N* =", 4, >~y w and from this it
follows that cy = N + N* — (dimU) =1 3 Hed® Hnll{m. Since twisting by g does not change the dimension of

.. . #7 . (U)
the trivial eigenspace, we have n 'y = n?}{o = nﬂo. We deduce that cgs (1) = cy for all U € Irrep(W).

2.9. We can now check the hypothesis of the above theorem in the case we will require.

(e2k) = 2™k ywhere r € Rsg. If KZry is
1-faithful, then there is an equivalence Oc — Oérk of highest weight covers of Hc i = Hérk, mapping
Ak(U) to A (67 4, (1)) for all U € Irrep(W).

Corollary. Let g be an automorphism of R as in 2.6, with g

Proof. Observe first that KZg .4 is 1-faithful by (7) since KZg j is 1-faithful. By (7) both €2™** and e*™"* are
roots of unity of the same order, so k(cys —cy) € Z if and only if rk(c¢g (U7 —c(i,z‘k/(U)) =rk(cyr —cv) € Z.
Since r is positive, we deduce that U <, U’ if and only if qbk o (U) <rk qbk w (U"). The corollary follows from
the statement following Theorem 2.7. ]

2.10. Catalan numbers. Let Lg(triv) denote the simple quotient of Ag(triv). The following lemma is

proved by the same argument as [1, Proposition 2.1].
Lemma. L_%(triv) = triv.

2.11. We now prove our main result, answering a question of the second author, [7, Section 8|, and giving

a general and case-free construction of the Koszul resolutions produced in [1, 5, 7, 15].

Theorem. Let r be a positive integer coprime to h and suppose g € Aut(C/Q) sends e=2mi/h to e=2mir/h,
Then there is an exact sequence in Oc, —z
0= AL £ (A" (VF)) = - = AL (N0, (V) = Ao g (60 (V7)) = A (triv) — L_ g (triv) — 0

with Ly (triv) finite dimensional.



Proof. The rank one case is easy and left to the reader; we assume that the rank is at least two. In case

k = —1/h we have by Lemma 2.10 an exact sequence A_1(V*) — A_i(triv) — L_ (triv) — 0. Since

1 1
n n
L_ 1 (triv) is finite dimensional, it is elementary that this extends to a resolution in O¢ _1

0—-A_1(A" V) — .. — Afﬁ(/\gV*) —A_1(V*) = A_1(triv) = L_1 (triv) — 0, (9)

1 1 1
h h h

=

see [7, Lemma 3.1].

We wish to apply Corollary 2.9 to this resolution, so we need to know that for all complex reflection groups
of rank at least 2 we have inequalities e 27"/ £ Ci[ for all hyperplanes H and 1 < j < ey — 1. To see this,
observe first that nh =, , eg. Since W is acting irreducibly on V' there are at least n summands on the
right hand side accounted for by a W-orbit of hyperplanes H maximizing ey. Thus h > ey for all H. If we
suppose that h = ey for some H, then we must have 4 = W - H and N = n. Choosing linear forms defining
the hyperplanes gives a basis of V*, and restricting any invariant polynomial to these hyperplanes shows
that the degrees, d;, of all the homogeneous generators of PV have degree divisible by er. By Molien’s
theorem, however, > d; = N* +n = ney and so d; = ey for each i. This implies that W is a product of
n cyclic groups, but since there was assumed to be only one orbit of hyperplanes, we deduce that n = 1.
Thus, since we assume the rank is greater than 1, we have h > ey for all H and that implies the required
inequalities.

Applying the equivalence of Corollary 2.9 to (9) produces an exact sequence in 09 x
0= Aop (o (V) = o = Ap (@ (RBV) = A g (6, (V7))
AL (8 (i) — L (6, (trv)) — O, (10)

By [4, Corollary 4.14] L_x (¢} ;,(triv)) is finite dimensional and by 2.8 ¢} ;. (triv) = triv. It follows that the
image of the generating weight space ¢ ;,(V*) C A_z(¢] . (V*)) in A_z (triv) = P is the linear span of a
regular sequence ©. Thus (10) is just a Koszul resolution when restricted to P x W and it follows that the
generating weight spaces ¢ ., (A\'V*) C A_r (¢} ., (A'V*)) must be isomorphic to A'¢{ ,,(V*). Considering

the sequence in Oc, = instead of Ol = completes the proof of the theorem. O

2.12. We apply this theorem first to the case r = mh + 1 for some positive integer m. In this case we may
take g to be the identity. It is not true, however, that ¢, is the trivial permutation of Irrep(W)! This is a
consequence of the fact that the KZ functor varies in the parameter k rather than in its exponential e?™K:
this phenomenon has been studied and applied by Opdam, [10, 11].

Let U = ¢if%,_1_% € Perm(Irrep(W)), so that in this case ¥ is the permutation on Irrep(W) induced by
the equivalence KZ}}},F1 oKZg  : Ok — Ok -1 applied at k = f%. By [10, Corollary 6.8] U™ equals
P 1 for general m. It follows from [10, Proposition 7.4] that ¥ satisfies (2).

1
— 5 ,—m—

2.13. Proof of Theorem 1.6. Part (1) is now a straightforward application of the standard invariant
theory arguments in [2, Proposition 4.2]. To apply these we need to know the degree of the image of the
generating set © C A_m_%\llm(V*) nA_, 1
(m+ 3)ey= = mh+ 1. It now follows from [2, (4.3)] that the graded W-character of (P/(©))" is given
by the formula for Cl(,f,n )(q) given in 1.6. (Although the formula in [2] is stated only for Galois conjugates
7V of V, this hypothesis is used to know that (P ® A®(°V)) is free over PW; but by [12, Theorem 3.1]

freeness holds for all representations U € Irrep(W) satisfying Y, €;(U) = e1(A**PU). This equality holds for
6

(triv) = P used in Theorem 2.11: this is just (m+ 4 )cgm ) =



U = U™ (V*) since, by [10, Lemma 2.1], Y. e;(U) = > e Zji;ljn%] for any U € Irrep(W), so by 2.8
S e(0mV) = X, (V) = e (AOPV?) = e (AP (U V7)).)

Part (2) follows since for any pair of dual bases {z;},{y;} of V* and V the element h = 137" (2,4, +
Yix;) € He e L acts as a grading operator where non-zero elements of V* C P have degree 1, see for
instance [4, Section 3.1]. O

2.14. (q,t)-Catalan numbers. To deduce the existence of (g, t)-Catalan numbers as in 1.7 we need to

show that A"V* appears with multiplicity one in L_l_%(triv). Now a reflection sz acts on A*PU by the
- N 7lU .

scalar ¢y 2 3 s0 it follows from 2.8 that A"V* = A"W(V*). The multiplicity one result is [7, Theorem

3.2] if we show that e;(U(V*)) + d,,—; = h + 1 for all 4. But this is an immediate consequence of (2).

2.15. We also remark that the above observation produces a W-stable quotient of the diagonal coinvariant

ring Sym(V @ V*)°°W with pleasant properties, see [7, Theorem 3.2].

2.16. Calculating ¢iyk,. Let E = C[v*!] be the ring of Laurent polynomials in the variable v and let
K = C(v). We may define a Hecke algebra Hg as a quotient of E[Bw] by the relations (6), where we
replace e2™(&+k) by v* for some positive integer £. By [10, Theorem 6.7], for ¢ large enough depending on
W, K is a splitting field for Hg. (In fact by [8, Corollary 4.8] we may take £ to be number of roots of unity
belonging to the field of definition of the W-representation V'.) Fix such an ¢ and let xy be the character of
KZg 1(Ak k(U)), so that xy(b) € K for all b € Byy. By definition we then have

X¢iyk,(U)(b)|v=62“’i(k+k/)/£ = g (Xu (0)[y=c2miaerry/e) .

This may be rewritten as
Xo @) (0)(v) = (gxu (b)) () (11)

where 1) = e=27 /L g (€27k/%) is an fth oot of unity and g acts on xy(b) € K fixing v. This last formula

gives an effective method for calculating ¢7 ,, in examples.

2.17. We can now also illustrate Theorem 2.11 by applying it in the case k = —% and r = mh — 1

with g being complex conjugation. In this situation we have n = e2™™/¢ so it follows from (11) that

7 a2 (U) = ¢, . (U*)=9"(U*). Considerations similar to the Proof of Theorem 1.6 then show
h> h h? h

that in this case (P/(0©))" has Hilbert series

7

7 lmh =14 e (I (V)]
-1 [di]q .

2.18. Well-generated case. With the exception of confirming Hypothesis 2.4, our arguments so far have
been entirely case-free. Arguing case-by-case, however, [8, Corollary 4.9] shows that C(v*) is a splitting field
for the reflection representation of Hg and its dual precisely when (V, W) is well-generated. It follows that
xv~(b) is a function in v’ and so (11) implies that ¢p o (V*) = 9(V*). Thus, in this case, Theorem 1.6
confirms [2, Conjecture 4.3(i)] and Theorem 2.11 combined with the analysis in 2.17 confirms [2, Conjecture
4.3(ii)].



2.19. Remarks on several parameters. In general rational Cherednik algebras depend on parameters
{ku,;: He A/W,0<j <eg—1}; we have considered only the case where kg o =k and kg ; = 0 for j # 0.
Nevertheless, the techniques we use here to analyse the equivalences of [13] extend to the general case.
Explicitly, there is a permutation (ZS!(]kH,j)»(k/H_j) € Perm(Irrep(W)) attached to a potential shift from
Oc,(ky.;) tO O(C.,(k/H ) and to apply [13, Theorems 4.49 and 5.5] to deduce an equivalence, one must check the
condition U <(kH,j; U’ if and only if ¢?kH,j)7(k}-{7j)<U) (ki) ¢‘E]kH,j)a(leyj)(U/). By definition, U <z, ) U" if

Yo Hea Z;i_l enkn. ((dim U)~'ny _; — (dim U’)_ln%ﬁj) € Z~y, so the condition can be calculated from

it )
the local data. As in 2.8 we have then nH“;.H’”)’(kH‘J) = nqu] and so we must check U <, ) U’ if and

only if U <(k/11 ;) sy’
In particular, if (k7 ;) is obtained from (kp ;) by the addition of integers then we may take g = id and
we see that we can apply [13, Theorem 5.5] as stated; more generally, in [13, Proposition 5.14] we should use

the formalism here.

3. DATA

Here we record the details necessary to calculate the Fuss-Catalan numbers defined by (3) for all irreducible
complex reflection groups that are not well-generated. For the imprimitive groups G(de, e,n) these data can
be found in [7, Section 8]; for the exceptional groups we used 2.16 combined with the detailed data of
characters and Schur elements for Hecke algebras available in the Chevie program in GAP. (Note that

degrees of W can be read off from the exponents of V = W9 (V*)*.)

Group Generalised Order of ¥ | Exponents of ¥ (V*)*
Coxeter number (0 <m < Order(¥) — 1)
G(de, e, n) de(n—1)+d e de—m)—1,d(2e—m)—1,...,d((n — 1)e —m) — 1,
e>1,d>1 dim(n—1)+n)—1(0<m<e—1)
Gy 18 2 11, 11 (m = 0)
5,17 (m = 1)
Gi 36 2 23, 23 (m = 0)
11,35 (m=1)
G12 12 2 5,7 (m = 0)
1,11 (m =1)
Gis 18 4 7,11 (m = 0)
5,13 (m=1)
7,11 (m = 2)
1,17 (m = 3)
Gis 30 4 11, 23 (m = 0)
17,17 (m = 1)
11,23 (m = 2)
5,29 (m = 3)
Gio 90 2 59, 59 (m = 0)
29, 89 (m = 1)
Gaa 30 2 11, 19 (m =0)
1,29 (m=1)
G 30 2 7,11,19,23 (m = 0)
1,13,17,29 (m = 1)
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