
Direct Solution of Linear Systems of Size 109

Arising in Optimization with Interior Point
Methods?

Jacek Gondzio1 and Andreas Grothey1

School of Mathematics, University of Edinburgh
JCMB, King’s Buildings, Edinburgh, EH9 3JZ, UK
J.Gondzio@ed.ac.uk and A.Grothey@ed.ac.uk

Abstract. Solution methods for very large scale optimization problems
are addressed in this paper. Interior point methods are demonstrated
to provide unequalled efficiency in this context. They need a small (and
predictable) number of iterations to solve a problem. A single iteration of
interior point method requires the solution of indefinite system of equa-
tions. This system is regularized to guarantee the existence of triangular
decomposition. Hence the well-understood parallel computing techniques
developed for positive definite matrices can be extended to this class
of indefinite matrices. A parallel implementation of an interior point
method is described in this paper. It uses object-oriented programming
techniques and allows for exploiting different block-structures of matri-
ces. Our implementation outperforms the industry-standard optimizer,
shows very good parallel efficiency on massively parallel architecture and
solves problems of unprecedented sizes reaching 109 variables.

1 Introduction

Since their discovery [1] interior point methods (IPMs) have enjoyed well-deser-
ved interest and have been subject of intensive study which led to a development
of complete theory [2] and a thorough understanding of their implementation [3].
Interior point methods for optimization have a number of advantages. Depending
on the algorithm used they guarantee finding a solution of the problem in not
more than O(

√
n) or O(n) iterations where n is the problem dimension. In

practice they display a faster convergence suggesting that they enjoy O(log n)
complexity. But most of all, IPMs are reliable and can be implemented to provide
unprecedented efficiency when applied to solve very large scale problems. We
illustrate these features in this paper.

The bulk of work in every iteration of an interior point method is the solution
of an indefinite system of equations. This system is regularized [4] to guarantee
that an (indefinite) triangular Cholesky-like decomposition of it can be found.
There exists a vast body of literature about parallel Cholesky decomposition.
? Supported by the Engineering and Physical Sciences Research Council of UK, EP-

SRC grant GR/R99683/01.



Indeed, the method is often implemented to exploit block-operations and all
independent operations are executed on different processors.

To increase the degree of parallelism in the implementation of Cholesky
factorization one looks for such an ordering of a sparse matrix which concen-
trates nonzero entries in independent blocks and if possible limits the fill-in to
these blocks. Very large scale optimization problems by their very nature dis-
play block-structure. It is a consequence of the way how these problems are
modelled. Models of engineering problems commonly involve indexing variables
over discretizations in several dimensions hence they replicate few generic blocks.
Such blocks are usually loosely coupled, and the word “loosely” translates into a
high degree of sparsity displayed by matrices involved. Examples of such models
include features such as:

– dynamics: inter-temporal connections are spread over a long horizon,
– uncertainty: scenarios are induced by stochastic (event) tree, or
– spatial distribution: functions are discretized over their domains.

We have developed a structure-exploiting optimization code called OOPS
(Object-Oriented Parallel Solver) [5–7]. OOPS is an implementation of the pri-
mal-dual interior point method which uses all recent algorithmic advances
(see http://maths.ed.ac.uk/~gondzio/parallel/solver.html).
It allows any block-structure of the optimization problem to be exploited by the
linear algebra operations of the interior point method. In this paper we illustrate
the parallel efficiency of this software. We apply it to a class of min-variance
portfolio optimization problems [6, 8]. These models are quadratic (or nonlinear
when higher order moments are used to measure risk). Stochastic programming
modelling techniques [9] are used and this leads to challenging optimization
problems which defy standard software.

The paper is organised as follows. In Section 2 interior point methods for
optimization are briefly explained. In Section 3 the linear algebra operations
involved by IPMs are discussed and exploiting block structure of matrices in
these operations is addressed. In Section 4 the object-oriented implementation
of linear algebra operations is briefly discussed and in Section 5 the formula-
tion of min-variance portfolio optimization problems is given. In Section 6 the
computational results are reported and in Section 7 the conclusions are given.

2 Interior Point Methods for Optimization

Developed over the last two decades, interior point methods have gained a strong
position in the area of optimization. They easily generalise from linear, through
quadratic to nonlinear programming and for all these classes of problems provide
efficient algorithms. In this section we discuss IPMs applied to convex nonlinear
programs and briefly comment on the simplified linear and quadratic models.
Next, we show how their implementation can take advantage of three particular
block-structures: primal and dual block-angular and bordered block-diagonal.



The reader interested in the theory of IPMs is encouraged to consult [2]; aspects
of their implementation for general problems are discussed in [3].

Consider the convex nonlinear optimization problem

min f(x) s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex, twice differ-
entiable. Having introduced a nonnegative slack variable z ∈ Rm the inequality
constraint can be rewritten as an equation g(x) + z = 0. The inequality z ≥ 0 is
“replaced” by the logarithmic barrier terms giving the following barrier problem

min f(x)− µ
m∑

i=1

ln zi s.t. g(x) + z = 0

and the associated Lagrangian

L(x, y, z, µ) = f(x) + yT (g(x) + z)− µ

m∑
i=1

ln zi.

The first order optimality conditions for the barrier problem (conditions for a
saddle point of Lagrangian) have the following form:

∇xL(x, y, z, µ) = 0 ⇒ ∇f(x) +∇g(x)T y = 0
∇yL(x, y, z, µ) = 0 ⇒ g(x) + z = 0
∇zL(x, y, z, µ) = 0 ⇒ Y Ze = µe

(y, z) ≥ 0,

(1)

where Y = diag{y1, y2, · · · , ym} and Z = diag{z1, z2, · · · , zm}. Interior point
algorithm for nonlinear programming [2] applies Newton method to solve this
system of equations and gradually reduces the barrier parameter µ to guarantee
the convergence to the optimal solution of the original problem. The Newton
direction is obtained by solving the system of linear equations:

Q(x, y) A(x)T 0
A(x) 0 I

0 Z Y




∆x

∆y
∆z


 =


−∇f(x)−A(x)T y

−g(x)− z
µe− Y Ze,


 , (2)

where the matrices Q(x, y) = ∇2f(x) +
m∑

i=1

yi∇2gi(x) ∈ Rn×n and A(x) =

∇g(x) ∈ Rm×n are the Hessian of Lagrangian and the Jacobian of constraints,
respectively. After substituting ∆z = µY −1e − Ze − ZY −1∆y in the second
equation we get[−Q(x, y) A(x)T

A(x) ΘD

] [
∆x
−∆y

]
=

[∇f(x) + A(x)T y
−g(x)− µY −1e

]
, (3)

where ΘD = ZY −1 is a diagonal scaling matrix. The matrix involved in this set
of linear equations is symmetric and indefinite. For convex optimization problem
(when f and g are convex), the matrix Q is positive semidefinite.



If the variables x have a sign restriction (x ≥ 0) the above system contains
an additional primal scaling matrix ΘP = XS−1 and the indefinite matrix used
in (3) takes the form

H =
[−(Q(x, y) + Θ−1

P ) A(x)T

A(x) ΘD

]
. (4)

In case of linear programming matrix A is constant and Q = 0 and in case of
quadratic programming matrices A and Q are constant. LP and QP problems
are usually formulated with the equality constraints and nonnegative variables
hence the corresponding reduced systems take forms

HLP =
[−Θ−1

P AT

A

]
and HQP =

[−(Q + Θ−1
P ) AT

A

]
,

respectively. To simplify notation in the rest of this paper we will drop arguments
of A(x) and Q(x, y) in (4) and use A and Q instead.

Standard approach [10, 11] requires 2 × 2 pivots be used in symmetric de-
composition of matrix H . In our implementation we follow [4] and regularize
matrix H to transform it to a quasi-definite matrix [12]. We add primal and
dual regularizations and obtain

HR =
[−Q−Θ−1

P AT

A Θ−1
D

]
+

[−Rp 0
0 Rd

]
,

where diagonal positive definite matrices Rp ∈ Rn×n and Rd ∈ Rm×m can be
interpreted as adding proximal terms to the primal and dual objective func-
tions, respectively. After this modification HR becomes quasi-definite hence
for any symmetric row and column permutation a triangular decomposition
HR = LDLT exists with diagonal matrix D. This matrix has exactly n neg-
ative and m positive pivots. Since 2 × 2 pivots do not have to be used, the
symbolic and numerical factorization phases can be split as in the positive def-
inite case. This is an important feature in the implementation of interior point
methods and it is essential for the implementation of structure exploiting linear
algebra techniques.

3 Linear Algebra for Block-Structured Matrices

There are many structures that could be exploited by an interior point solver. We
restrict our attention to those in which Hessian and Jacobian matrices are built
of blocks. The well-known elementary structures observed in Jacobian matrices
A are: 



A1

A2

. . .
An

B1 B2 · · · Bn B0




,




A1 C1

A2 C2

. . .
...

An Cn


 ,




A1 C1

A2 C2

. . .
...

An Cn

B1 B2 · · · Bn B0




, (5)



and represent a primal block-angular, dual block-angular and row and column
bordered structure, respectively. However, many real-life problems have more
complicated nested structures that embed those and other elementary blocks.
We assume that Hessian matrix Q has a closely related structure induced by the
column partitioning of A.

The corresponding matrix H can be reordered leading to structures which
can be exploited by a parallel factorization. Suppose, for example, that the aug-
mented system matrix has the symmetric bordered block-diagonal structure.

H =




H1 GT
1

H2 GT
2

. . .
...

Hn GT
n

G1 G2 · · · Gn H0




, (6)

where Hi ∈ Rni×ni , i = 0, ..., n and Gi ∈ Rn0×ni , i = 1, ..., n. Under the con-
dition that H is quasi-definite (and we assume that it has been regularized
to satisfy this condition), we can obtain a Cholesky-like block decomposition
H = LDLT , where

L =




L1

L2

. . .
Ln

Ln,1 Ln,2 · · · Ln,n L0




, D =




D1

D2

. . .
Dn

D0




and
Hi = LiDiL

T
i (7a)

Ln,i = GiL
−T
i D−1

i (7b)

S = H0 −
n∑

i=1

GiH
−1
i GT

i = L0D0L
T
0 . (7c)

This decomposition can be used to compute the solution to the system Hu = b,
where u = (u1, . . . , un, u0)T , b = (b1, . . . , bn, b0)T by the following sequence of
operations:

zi = L−1
i bi, i = 1, . . . , n (8a)

z0 = L−1
0 (b0 −

n∑
i=1

Ln,izi) (8b)

yi = D−1
i zi, i = 0, . . . , n (8c)

u0 = L−T
0 y0 (8d)

ui = L−T
i (yi − LT

n,iu0), i = 1, . . . , n (8e)

Note that blocks Ln,i do not have to be stored. This leads to obvious memory
savings: blocks Ln,i are computed because they contribute to the Schur comple-
ment matrix S in (7c) but they do not have to be stored any longer. This also



results in time savings, since the multiplications with blocks Ln,i and LT
n,i in

equations (8b) and (8e) are executed as sequences of less expensive operations
using the following formulae:

Ln,izi = GiL
−T
i D−1

i zi = Gi(L−T
i D−1

i zi),
LT

n,iu0 = D−1
i L−1

i GT
i u0 = D−1

i L−1
i (GT

i u0).

Consequently, these operations have complexity O(nz(Gi)+nz(Li)) rather than
O(nz(Ln,i)) and it is usual to expect that nz(Ln,i) � nz(Gi) + nz(Li).

The block factorization H = LDLT together with computations (7) and (8)
are therefore an implicit representation of the inverse of H .

Apart from the above mentioned efficiency gains the use of a block implicit
inverse facilitates the parallelisation of the calculation. Indeed most of the two
operations: computing the symmetric decomposition (7) and using it for solv-
ing system of equations (8) will parallelise trivially. The sums in (7c) and (8b)
require parallel communications, while operations involving L0 and D0 (namely
factorization of S and the L−1

0 , L−T
0 operations in (8b, 8d)) have to be performed

on all processors.
We conclude this section by giving examples of reordered matrices H for the

three common structures mentioned earlier. The reordering preserves symmetry,
that is we apply the same permutation to block-rows and block-columns of H . To
simplify the presentation we have made three assumptions: (i) Jacobian matrices
A in (5) have only two diagonal blocks, (ii) Hessian matrices Q have block-
diagonal structures induced by the block-column partitions in A, and (iii) the
(2, 2) block in H is zero.
Primal Block-Angular Structure
Blocks of H have been permuted following the reordering {1, 3; 2, 4; 5}.

H =





 , PHPT =







Dual Block-Angular Structure
Blocks of H have been permuted following the reordering {1, 4; 2, 5; 3}.

H =





 , PHPT =







Row and Column Bordered Block-Diagonal Structure
Blocks of H have been permuted following the reordering {1, 4; 2, 5; 3, 6}.

H =





 , PHPT =









4 Object-Oriented Implementation

As shown in the previous section block-structured matrices can be reordered by
permuting blocks to such forms which offer an advantage for parallel computa-
tions. Many real life problems have more complicated structures which include
a nesting of elementary block-structures. The nested block-structure of a matrix
can be thought of as a tree. Its root is the whole matrix and every block of a
particular sub-matrix is a child node of the node representing this sub-matrix.
Leaf nodes correspond to the elementary sub-matrices that can no longer be
divided into blocks. With every node of the tree we associate information about
the type of structure this node represents. This tree determines the order and
type of linear algebra operations needed by the interior point algorithm.

The design of OOPS follows object-oriented principles, treating the blocks
(and sub-blocks) of matrices as objects [7, 5]. We use a Matrix interface that
defines all linear algebra methods needed for an interior point algorithm such
as Factorize, solveL or solveLt. The interface also provides all operations re-
quired for a given Matrix object to become a sub-matrix in the nested structured
matrix. In such case Matrix object is accessed by the Matrix object correspond-
ing to its ancestor in the tree defining the nested structure.

Several specialised classes provide concrete implementation of the Matrix
interface, each exploiting a different possible structure such as for example primal
block-angular, dual block-angular, bordered block-diagonal, rank corrector as well
as a standard dense matrix or sparse matrix. The implementing classes can be

iA

iB

iC

iA

R

Rank corrector

implementation

RankCorrector

D

iA

iC

iB

y=Mtx

y=Mx

SolveLt

SolveL Implicit

PrimalBlockAngMatrix
Factorize

factorization

Implicit

DualBlockAng

factorization

Implicit

factorization

BorderedBlockDiag

linear algebra

General sparse

linear algebra

SparseMatrix

DenseMatrix

General dense

M
at

ri
x 

In
te

rf
ac

e

Fig. 1. The matrix interface and several implementations of it.

classified as either leaf-node classes such as DenseMatrix or SparseMatrix or
the complex classes, such as PrimalBlockAng, DualBlockAng, RankCorrector or
BorderedBlockDiag (see Figure 1). The design of OOPS library is based on the
assumption that an efficient implementation of all methods for a complex class
can be reduced to a sequence of methods performed on its constituents [7, 5].
The top-level class here does not need to know the exact type of its constituent



objects nor whether they themselves are of leaf-node or complex type, it merely
needs to know that they support the methods of the interface and assumes that
they do so in a way most efficient for their particular structure. Summing up,
OOPS re-creates the structured matrix tree with a tree of Matrix objects.

5 Large-Scale Portfolio Optimization Problems

To demonstrate the efficiency of OOPS we have applied it to solve a class of
portfolio optimization problems. We follow a description of these problems given
in [9] and consider extensions [13] which allow for higher order moments to be
incorporated into the model (for more details see [6, 8]).

We consider investment of an initial wealth b into assets j = 1, . . . , J with
uncertain returns. We allow the portfolio be be rebalanced at discrete times t =
1, . . . , T and we want (i) to maximize the expected final wealth of the portfolio
at time T , and (ii) to minimize the associated risk. The standard formulation of
this problem leads to Markowitz portfolio optimization problem [14, 15].

The stochastic process is approximated by a discrete distribution and mod-
elled as an event tree. With each node of the tree i we associate the time stage
t it belongs to, the ancestor node a(i), and the list of successor nodes (children)
which belong to the next time stage t + 1. The probability of reaching node i is
denoted by pi and it is equal to the product of probabilities associated with all
arcs in the the event tree leading from the root node to node i.

At every node i and for each asset j we define three variables xh
i,j , x

b
i,j and

xs
i,j which denote the amount of asset held, bought and sold, respectively. The

inventory constraint for an asset i writes:

(1 + ri,j)xh
a(i),j = xh

i,j − xb
i,j + xs

i,j , ∀i 6= 0, j, (9)

where ri,j is the return associated with a branch (arc of event tree) connecting
ancestor node a(i) with i. The budget constraint imposes an equality of cash
inflow from selling assets and cash outflow for buying new assets:

∑
j(1 + ct)vjx

b
i,j =

∑
j(1− ct)vjx

s
i,j ∀i 6= 0∑

j(1 + ct)vjx
b
0,j = b,

(10)

where vj is a unit price of asset j and ct is a transaction cost. This constraint
takes a simplified form for the root node i = 0 where one can only purchase
assets of total value equal to the initial budget b.

In the standard approach the wealth is measured by an expected value of the
final portfolio converted into cash

y = IE((1− ct)
J∑

j=1

vjx
h
T,j) = (1− ct)

∑
i∈LT

pi

J∑
j=1

vjx
h
i,j , (11)



where LT denotes the subset of nodes in the event tree which belong to the
terminal stage. It is common to use the variance of return as a risk measure:

r = Var((1− ct)
J∑

j=1

vjx
h
T,j) =

∑
i∈LT

pi[(1− ct)
∑

j

vjx
h
i,j − y]2. (12)

The min-variance portfolio minimizes the aggregate objective of the form y−λr
which combines two criteria into a single one and uses an arbitrary parameter λ
to express the wealth-risk trade-off. The larger the λ the more attention is paid
to risk hence more of safe assets are selected into the portfolio.

Summing up, the standard multi-stage Markowitz portfolio optimization
problem consists in minimizing y − λr subject to constraints (9), (10), (11)
and (12). Models require all decision variables xh

t,j , x
b
t,j , x

s
t,j be nonnegative and

may impose additional constraints on portfolio selection. This standard model
leads to a quadratic programming problem. It is a challenging problem because
the event tree corresponding to a multi-stage problem is usually very large (it
grows exponentially with the number of stages). Various extensions to the stan-
dard model which do not change the underlying structure were given in [6, 8].

6 Numerical Results

In this section we present computational results of our approach.
We have compared the performance of OOPS with that of the commercial

code CPLEX 9.1. Since we do not possess a parallel CPLEX license these results
are from runs on a serial 3GHz Linux PC with 2GB of memory. We summarize
our findings in Table 1. As can bee seen OOPS needs consistently less memory
than CPLEX. CPLEX actually fails to solve problem C70 due to running out
of memory (OoM). In this case we give an estimate solution time based on the
number of flops reported from its symbolic Cholesky factorization. The small-
est problem C33 is solved slightly faster by CPLEX, while for larger problems
OOPS becomes much more efficient than CPLEX. We demonstrate the paral-

prob vars cons f.s.d. CPLEX 9.1 OOPS

time mem time mem

C33 168.451 57.274 33 292 497MB 344 156MB
C50 382.801 130.153 50 1361 1.3GB 828 345MB
C70 745.651 253.522 70 (5254) OoM 1627 664MB
Table 1. Comparison of OOPS with CPLEX 9.1.

lel efficiency of our code on a massively parallel environment. All computations
were performed on the BlueGene (BlueSky) service at Edinburgh Parallel Com-
puting Centre (EPCC). This machine has 1024 nodes each of which comprises 2
IBM-PowerPC-440 processors running at 700Mhz and 512MB of RAM. In our
experiments we run the machine in co-processor mode, that is the two processors



on each node are split into a computing and a communicating unit, with all the
memory available to the computing unit.

On the BlueGene service the memory is local to each node. A problem that
just solves on the available memory on n processors is therefore likely to run out
of memory on n/2 processors. To circumvent this difficulty we present our results
in two series of problems. The first comprises the biggest problem we have been
able to solve on BlueGene: an ALM problem with 6 stages arranged in an event
tree of dimension 128x24x16x10x5x4 resulting in a total of 12.831.873 scenarios
considered. This problem has just over 500 million variables. When solved on
1024 nodes, each node works with a decision tree of dimension 3x16x10x5x4 or
12532 scenarios, leading to a sparse system matrix of size 175.448× 488.748. We
have solved variations of this problem A16 through A1024 on 16− 1024 nodes
where each node works with the same sub-tree as for the big problem, but the
total problem has fewer first stage decisions (f.s.d.).

Prob f.s.d. constraints variables nz(A) nz(L) peak Mem

A16 2 2.806.987 7.819.462 15.638.922 118.774.704 260MB
A32 4 5.613.959 15.638.884 31.277.766 237.549.408 260MB
A64 8 11.227.903 31.277.728 62.555.454 475.098.816 264MB
A128 16 22.455.791 62.555.416 125.110.830 950.197.632 264MB
A256 32 44.911.567 125.110.792 250.221.582 1.900.395.264 268MB
A512 64 89.823.133 250.221.582 500.443.086 3.800.790.528 276MB
A1024 128 179.646.223 500.443.048 1.000.886.094 7.601.581.056 292MB

B1280 128 352.875.799 1.010.507.968 2.021.015.944 18.869.419.008 661MB
Table 2. Problem Dimensions.

For completeness we have also included the details of our largest problem
in the series solved at all (B1280). This example has a slightly larger event
tree and almost twice as many variables per scenario as A1024. Due to larger
memory requirements it could not be solved on BlueGene, but was solved on
the 1600 1.7GHz-processor HPCx service instead. Due to limited allocation of
computing resources on this system we are unable to provide further details for
this problem. Problem sizes for this series are summarized in Table 2. Columns

Prob nodes time(20iters) peak mem/node generation communication rest

A16 16 1815 260MB 6 26 1783
A32 32 1845 260MB 12 51 1782
A64 64 1911 264MB 23 102 1786
A128 128 2050 264MB 45 206 1799
A256 256 2289 268MB 89 416 1784
A512 512 2797 276MB 178 825 1794
A1024 1024 3818 294MB 361 1666 1791

B1280 1280 1139 (HPCx) 661MB - - -
Table 3. Solution Statistics and breakdown by parts of algorithm.

nz(A), nz(L) are the numbers of nonzeros in the system matrix and the implicit
inverse of the augmented system, respectively. Column peak Mem is the peak



Memory used per node by our implementation. As can be seen the number of
nonzeros in the implicit inverse grows linearly in the problem size and hence
the memory per node stays roughly the same. The memory increase for higher
number of processors is due to the local O(nodes2) memory requirements of
communication routing tables.

Table 3 gives run times for the first 20 iterations of each problem. Due to the
changing topology of the scenario tree between problems our IPM takes differ-
ent numbers of iterations to reach optimality. We have therefore truncated our
benchmark runs after 20 iterations. We have also ensured that the same numbers
of centrality correctors were used in each runs, so that results are comparable.
The largest problems A1024 and B1280 are solved to optimality in 45 and 53
iterations respectively. To interpret the results note that in the setup of this
series the calculations done on each processor for (7, 8) are the same for all the
problems. Computation time should therefore not increase with problem size.
Indeed this is demonstrated by the results where the only time increase is due
to (not entirely parallelisable) problem generation and parallel communications.

Our second series of experiments comprises a 64x24x16x10 decision tree
problem, resulting in a total of 271.936 scenarios and a system matrix of size
3.807.119 × 10.605.544. This problem is solvable within the available memory
on 16 nodes, while the tree architecture should enable efficient parallelisation
to up to 512 nodes. As can be seen in Table 4 the algorithm parallelises well,

nodes peak Mem time Comm Cholesky Solves MatVectProd

16 426MB 2587 (1.00) 24 1484 (1.00) 956 (1.00) 28.8 (1.00)
32 232MB 1303 (0.99) 13 743 (1.00) 485 (0.98) 18.0 (0.80)
64 132MB 688 (0.94) 6 377 (0.98) 270 (0.88) 13.0 (0.55)

128 84MB 348 (0.93) 3 187 (0.99) 139 (0.86) 9.0 (0.40)
256 56MB 179 (0.90) 3 93 (0.99) 73 (0.82) 5.8 (0.31)
512 46MB 94 (0.86) 2 47 (0.98) 39 (0.76) 3.9 (0.23)

Table 4. Second series of results.

reaching a parallel efficiency of 0.86 on 512 compared with 16 processors. If the
time spent by the algorithm is broken down, we see that communications and
problem generation (not reported because it was below 1s) are less of an issue
than for the first series due to smaller problem size. The factorization paral-
lelises virtually perfectly (the only non-parallel bit, the factorization of S being
negligible). The backsolves (8) parallelise fairly well, while the worst efficiency
is obtained from matrix vector products (mainly needed to obtain primal-dual
residuals), but these do not contribute much to the overall performance.

7 Conclusions

We have demonstrated in this paper that block-structure of matrices can be
exploited by an interior point algorithm. IPMs work with indefinite systems
which can be transformed to quasi-definite ones by adding regularization terms.
After this transformation an arbitrary symmetric reordering of the indefinite



matrix can be used and a symmetric decomposition can be computed which
does not need 2× 2 pivots be used. Hence full advantage of the block-structure
in the matrix can be taken and by exploitation of block-operations a high degree
of parallelism can be achieved. Indeed, we have demonstrated that a modern
implementation of interior point method run on massively parallel computer
displays good parallel efficiency. Eventually, this allowed us to solve optimization
problems of dimensions reaching one billion variables.

Acknowledgements
We are grateful to the EPCC for allowing us to use the BlueGene service and to
Dr Joachim Hein in particular for his help in running OOPS on this machine.

References

1. Karmarkar, N.K.: A new polynomial–time algorithm for linear programming. Com-
binatorica 4 (1984) 373–395

2. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)
3. Andersen, E.D., Gondzio, J., Mészáros, C., Xu, X.: Implementation of interior

point methods for large scale linear programming. In Terlaky, T., ed.: Interior
Point Methods in Mathematical Programming. Kluwer Acad Pub (1996) 189–252

4. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior
point methods for linear and quadratic optimization. Optimization Methods and
Software 11-12 (1999) 275–302

5. Gondzio, J., Sarkissian, R.: Parallel interior point solver for structured linear
programs. Mathematical Programming 96(3) (2003) 561–584

6. Gondzio, J., Grothey, A.: Parallel interior point solver for structured quadratic pro-
grams: Application to financial planning problems. Technical Report MS-03-001,
School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland,
UK (2003) Accepted for publication in Annals of Operations Research.

7. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of in-
terior point methods for optimization. Technical Report MS-04-004, School of
Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK (2004)

8. Gondzio, J., Grothey, A.: Solving nonlinear portfolio optimization problems with
the primal-dual interior point method. Technical Report MS-04-001, School of
Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK (2004)
Accepted for publication in European Journal of Operational Research.

9. Ziemba, W.T., Mulvey, J.M.: Worldwide Asset and Liability Modeling. Publica-
tions of the Newton Institute. Cambridge University Press, Cambridge (1998)

10. Arioli, M., Duff, I.S., de Rijk, P.P.M.: On the augmented system approach to
sparse least-squares problems. Numerische Mathematik 55 (1989) 667–684

11. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct methods for sparse matrices. Oxford
University Press, New York (1987)

12. Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM Journal on Optimization
5 (1995) 100–113

13. Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness
portfolio optimization model. Annals of Operational Research 45 (1993) 205–220

14. Markowitz, H.M.: Portfolio selection. Journal of Finance (1952) 77–91
15. Steinbach, M.: Markowitz revisited: Mean variance models in financial portfolio

analysis. SIAM Review 43(1) (2001) 31–85


