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Solving Distribution Planning Problems with the Interior Point Method

Abstract

A real-life distribution planning problem is dealt with in this paper. Modelling of this
problem combines the use of graphs to describe the topology of the distribution network,
dynamics to capture multi-periodicity of the planning, and uncertainty of the future demands.
The combination of these factors causes the (overall) problem to be non-trivial and defy
standard optimization software. The problem is an example of an Operations Research
application which needs a dedicated solution approach. In this paper the problem has been
modelled in such a way that its complicated structure can be exploited by a specialised
optimization tool: its main difficulty has been converted into an advantage. The use of
structure-exploiting modelling and solution methodology has enabled solving larger instances
of the problem and has shed new light on the interpretation of results. The use of OOPS
(Object-Oriented Parallel Solver) was crucial in achieving these goals.

1 Introduction

Planning problems are at the heart of Operations Research. They include every day operations
of companies facing uncertainty of the market and adjusting production to changing needs of
customers. Increasing computational power allows for more complicated problems to be dealt
with. However, the need to model reality with a high degree of accuracy challenges existing
modelling and optimization tools. The use of algebraic modelling languages such as AIMMS
[6], AMPL [9] or GAMS [7] is helpful. It facilitates the development and testing of prototype
models and occasionally allows for running the (smaller) real-life production models. Modelling
languages access standard optimization software and this software has been subject of impressive
progress in the past decade. This resulted in the development of many tools able to solve small
to medium optimization problems with sizes reaching tens or hundreds of thousand (occasionally
millions) of variables. Convenient access to optimization codes offered by algebraic modelling
languages comes with a high price: these tools interface to general solvers and in consequence
any particularities in the model which could have facilitated the solution process are lost in the
generation phase.

We have developed a structure-exploiting optimization code called OOPS (Object-Oriented Par-
allel Solver) [14, 12]. OOPS (cf http://maths.ed.ac.uk/"gondzio/parallel/solver.html)
is an implementation of the primal-dual interior point method and uses all recent algorithmic
advances including multiple centrality correctors. What distinguishes it from general optimiza-
tion solvers such as Cplex, LoQo, PCx or Xpress is its ability to exploit the problem structure
in the linear algebra of interior point method. Its design features have been discussed in detail
in [14, 12] and we will not review them in this paper. The modern design of OOPS payed off in
the ability to solve problems of unequaled size exceeding one billion variables. There is neither
hope nor sense to generate such problems with current algebraic modelling languages. These
problems have to be generated by specialised optimization-driven modelling tools.

Attempts have been made to extend modelling languages and retrieve the underlying structure of
the problem. The development of the Structure Exploiting Tool (SET for short) [10] addressed
this issue in detail. SET is an addition to a modelling language which appends structural
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information to the general model produced by the modelling language and passes this information
to the solver. We have developed a simple interface (SPI - Structure Passing Interface) to
OOPS along these lines, which makes it possible to retrieve the structure in an optimization
model and pass it to OOPS. We have used this integrated modelling and optimization tool to
solve some otherwise intractable distribution planning problems. Another advantage coming
naturally with the combined use of SPI/OOPS is the access to parallelism and the ability to use
high performance computing both during the generation of the model and during the following
solution of the problem.

We illustrate this approach with a case study of a real-life distribution planning problem. The
model is proprietary and the Company has not agreed for us to reveal its details. Therefore we
will use a generic description of this class of problems and illustrate advantages resulting from
the use of different reformulations of it. These different reformulations are fed into OOPS and
lead to very different behaviour and efficiency of the solver. This shows very clearly the scope
for better modelling, the importance of being able to reformulate the model and finally the key
role of the integrated modelling/optimization approach which enables structure exploitation.

The paper is organised as follows. In Section 2 generic structures which are combined in the
distribution planning model are presented. In Section 3 the linear algebra techniques employed
by the interior point method in the solution of problems with these particular structures are
discussed. In Section 4 a generic distribution planning model is presented, specific features of the
problem being at the origin of exploitable structures are discussed and the structures obtained in
different reformulations are displayed. Our integrated modelling approach of combining OOPS
with a modelling language via a SET-like approach is described in more detail in Section 5. In
Section 6 the computational results are reported for attempts to solve different formulations of
the problem, while finally in Section 7 we draw our conclusions.

2 Generic Structures in Distribution Planning Problem

Modelling generic distribution problems combines networks, dynamics and uncertainty. The
reader interested in a background material in this area may consult [15, 17]. We discuss generic
features which are used in the modelling of distribution planning problems and demonstrate the
associated structures.

Networks
Graphs are commonly used to describe the topology of distribution networks [1]. Consider a
graph G = (V, &) with m nodes V and n (directed) arcs £ C {(3,7) : 1 € V,j € V,i # j}. Let
A € R™*™ be its node-arc incidence matrix. Each column & corresponds to an arc (i,7) with
entries aj, defined as
-1 ifk=34
Qe = 1 if k= ]
0 ifk+#4andk#j.

Let z € R™ be a network flow, where z;; is the flow passing through arc (7,7). The general
flow constraint can then be expressed in a form of linear equation Ax = b. Its right-hand-side
vector b € R™ is the generalized demand/supply. It is common to deal with distribution centers
(depots) which are large supply points and numerous demand nodes which receive the goods
shipped through the network.
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The node-arc incidence matrix displays a specific structure: All its entries are 0,41 or —1 and
each column contains only two nonzero entries. This structure may be exploited by the solu-
tion algorithm. Indeed, there exist many specialized approaches which originate from standard
methods and make good use of these features. For example, the simplex method exploits the
fact that the basis matrices are triangular and can be represented as spanning trees in the graph

[1].

Dynamics
Processes evolve in time and in the simplest case (discrete, linear, and stationary) their evolution
can be described by the following equation

Typ1 = Az + Buy,

where x; and u; are the state and control variables at time ¢t € 7 and A and B are matrices
of appropriate dimensions [3]. More generally the state vector z;;1 may depend on states of
several previous time periods, matrices involved in the equation may depend on time, etc and
the dynamics are described by a more complicated equation:

iy = App10e + A1 g1 001 + -+ A p i1 Ti—p + Brug.

After concatenating the state and control variables into one long vector (z1,u1, ... ,z|7-|,u|fr|),
the constraints of the model can be expressed in a usual linear programming form. The constraint
matrix displays a well-known staircase structure as shown in Figure 1. The left figure corresponds
to simple dynamics (without time lag) and the right figure corresponds to a situation with time
lag p = 2 and displays larger inter-temporal overlaps. Note that a problem with a lag of p > 1
can be reformulated into one with p = 1 at the expense of introducing additional variables.
Again such structures can be exploited by optimization algorithms, for example the simplex
method can take advantage of them in the pricing and basis inverse representation [8].

ts—l
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Figure 1: Staircase structure resulting from modelling of dynamics.

Uncertainty
Planning problems reflect attempts to hedge against uncertainty and are well-suited to the use
of stochastic programming approaches [16]. In a simple two-stage model, a first stage decision
has to be made immediately and a recourse action is postponed to stage two. This is described
by the following equation

Tz + Wiy =b;, i=1,...,8

where the first stage decision z! is common for all possible scenarios while the recourse actions

Y1,92,--.,ys depend on the scenario i = 1,2,...,S. The decision z' is made in the initial
stage and the second stage decisions y; adjust to (uncertain) future described with a finite
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number of scenarios {(T;, W;,b;), i = 1,2,...,S}. In a more complicated situation where the
decision process expands into multiple stages, event trees are used to describe the unfolding of
the uncertainty over the planning period [16]. The dynamics are then captured by the equation

Tlt‘ra(lt) + Wlt Ty = blta

where [; is a node of the event tree in stage ¢t and a(l;) is its ancestor (a node in stage t —1). A
stochastic programming problem formulated as a deterministic equivalent is usually a large linear
program with specially structured constraint matrix. The constraint matrix displays a nested
block-angular structure as shown in Figure 2. The left figure corresponds to a two-stage problem
and the right figure corresponds to a multi-stage one (three-stage). Again, such structures can
be exploited by optimization algorithms, for example through decomposition approach [4, 11]
or directly in the interior point algorithm [5, 12].

‘T W
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I w \i?w .
: Tl %
] T

Figure 2: Block-angular structure resulting from modelling of uncertainty.

In the following section we give a brief computational view of interior point methods and show
how the structures discussed in this section are exploited in the implementation of the linear
algebra kernel of OOPS [14, 12].

3 Linear Algebra Techniques in Interior Point Methods

Over the years, interior point methods for linear optimization have proved to be a very powerful
technique. We review basic facts of their implementation in this section and show how their
implementation can take advantage of two particular structures resulting from the presence of
dynamics and modelling of uncertainty in the model. The reader interested in the theoretical
background of interior point methods should consult [18]; practical aspects of these algorithms
are discussed in [2] and the references therein.

Counsider the linear programming problem

min 'z st. Az =05, x>0,

where A € R™*™ is the full rank matrix of linear constraints and vectors z,c and b have
appropriate dimensions. The usual transformation in interior point methods consists in replacing
inequality constraints with the logarithmic barriers to get

n
min ¢’z — ,uz Inz; st. Az=0b,
i=1
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where 4 > 0 is a barrier parameter. The Lagrangian associated with this problem has the form:
L(z,y,p) = 'z —y" (Az — b) Z Inz;,

and the conditions for a stationary point read as

Vel(z,y,p) = c—ATy—pX'le = 0

VyL(z,y,p) = Az —b = 0,
where X! = diag{z;',z5",...,2,;'}. After defining s = pX'e (that is XSe = pe), and
e=(1,1,...,1)T, the first order optimality conditions (for the barrier problem) become:
Az = b,
ATy+s = ¢
XSe = pue (1)
(z,s) > 0.

Interior point algorithms for linear programming [18] apply Newton method to solve this system
of nonlinear equations and gradually reduce the barrier parameter p to guarantee convergence
to the optimal solution of the original problem. The Newton direction is obtained by solving
the system of linear equations:

A 0 O Ax &p
0 AT T Ay | =] & |, (2)
S 0 X || As £,

where
& =b— Az, ti=c— ATy —s, &y = pe — X Se.
By elimination of
As=X ¢, — SAz) = -X 1SAz + X ¢,

from the second equation we get the symmetric indefinite augmented system of linear equations
-0t AT Az | [ &—X71¢, (3)
A 0 Ay | p )

where © = X S~! is a diagonal scaling matrix [2)].

We will focus in particular on the case where the augmented system matrix in (3) displays a
block-sparsity pattern (possibly after reordering). A standard tool when analysing eliminations
in block matrices is the notion of Schur complement which we recall here, since it will be used
in the rest of the paper.

We consider a symmetric matrix H given in block form

K M"
no K]
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If the leading block K is nonsingular we can use it as a pivot in a block-elimination leading to
the block-decomposition

SR I B

of H, where S = C — MK~'M7" is called the Schur complement. Computing factorizations
K=LkgL%, S = LSL%: of K and S thus gives the block-factorization of H as

ne[ e, [
ML" Lg A

In the following two sections we discuss particular forms of augmented system matrices obtained
for problems which model dynamics and uncertainty.

3.1 Dynamics

We provide an example of the augmented system (3) corresponding to dynamic structure in
the LP constraint matrix. Assume that matrix A has banded block-diagonal sparsity pattern
as detailed in the previous section and matrix ©~! is diagonal (block-diagonal in the figure),
leading to an augmented system Matrix H of the form

The dynamic structure in this problem can be broken by reordering the rows and columns of the
matrix. If we number rows and columns of H as {1,2,...,30} and the rearrange them in the order
{1,2,3,16,17,18; 5,6,7,20,21,22; 9,10, 11, 24, 25, 26; 13,14, 15,28, 29, 30; 4, 19; 8,23; 12,27}
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we obtain the following

‘H EN 7
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Consider a diagonal block in a form of a (smaller) augmented system, for example the one
corresponding to the leading 6 x 6 diagonal block in PHP” and its generalized symmetric
LDL" factorization. In the figure below we display the 6 x 6 block and its triangular factor L

.. ==l .. .. ==l

(PHP )11 = am h|coand Lu=| ® | Liy = T
mEm EEEEE T

1 EEEEE n

The elimination of this 6 x 6 block creates a Schur complement contribution to the bottom
lower block corresponding to the original row and column blocks {4, 19; 8,23; 12,27}. We will
look closer at the block-sparsity pattern contributed to the leading 2 x 2 block in it, namely
to the Schur complement part corresponding to rows and columns {4,19}. Let V € R?*6
denote the block-matrix corresponding to rows 4 and 19 and columns 1, 2, 3, 16, 17 and 18. Its
block-sparsity pattern has the following form

V:[ -‘ .]

and its Schur complement contribution is VLﬁTLi1 VT, This contribution can be computed in
several different ways depending on the order of matrix operations or equations to be solved.
Although the result is always the same

VL1_1TL1_11VT - ((VL1_1T)L1_11)VT = (VLl_lT)(LﬂlVT) - V(L1_1T(L1_11VT))a
the cost of performing all arithmetic operations may differ significantly. First we note that the
first and the last possibility are identical apart from a transposition. Observe that U7 = L]'V”
has the following block-sparsity pattern
l] T

T —1y,T __
Ut = LV _[ _‘ g
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This can easily be obtained after analysing the block-sparsity pattern in equation L, UT = VT:

Our following options are to compute the Schur complement contribution VLl_lTLl_llVT as
VL 'UT or as UUT. Note that the block-sparsity pattern of Z7 = L;'UT = L' L'VT
is computed by analysing the equation L{IZT =UuT:

hence the block-sparsity pattern of Z7 is completely dense:

T
T_ ;- Tr-1y7T — |HAHEER
Z =Ly LV = [IIIIII] .
Therefore it is not efficient to form the matrix LflTLilVT; it is preferable to compute U and

then form the Schur complement contribution as UU” for example by outer products of the
sparse column vectors of U.

Similar operations have to be performed when other blocks in the 6 x 6 Schur complement are
computed. It is advisable to analyse each of such operations and organise the computations in
a form which guarantees maximum efficiency. These issues have been addressed with great care
in the implementation of OOPS [14, 12].

3.2 Uncertainty

As a second example we consider a block-structure originating from the modelling of uncertainty.
The following matrix structures correspond to a three stage stochastic program with 3 second
stage and 9 third stage realisations. Matrix A has a block-tree sparsity pattern and matrix @ is
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diagonal (block-diagonal in the figure).

If we number rows and columns of H as {1,2,...,25} and rearrange them in the order
{5,15,6,16,7,17; 8,19,9,20,10,21; 11,23,12,24, 13, 25; 14,18,22; 2,3,4; 1} we arrive at

PHPT =

[ I B

Which as before achieves to break the links between different parts of the model, by delaying
them into the right and bottom block-borders. The implementation in the linear algebra kernel
of OOPS [14, 12] does not actually physically reorder rows, but rather (equivalently) use the
tree-sparse structure of the stochastic programming problem to guide the order of the elimination
process.

The exploitation of special structures in the linear algebra operations of interior point method
offers a number of advantages:

e it improves the overall efficiency,
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e it reduces memory needs (through the use of implicit inverse representation),

e it allows for a straightforward parallelisation.

We demonstrate these advantages when OOPS is applied to a class of real-world distribution
planning problems.

4 Formulations of Distribution Problem and Their Structures

In this paper we are concerned with the optimization of a general distribution planning problem.
This section gives a general description of possible problem formulations. Note that these are
kept fairly general to demonstrate the adaptability of our approach. We discuss a generic
distribution planning model and skip details which are proprietary and which the Company has
not agreed to be revealed.

4.1 Deterministic Formulation

We are concerned with the distribution of a (storable) utility (gas, oil, electricity) over a network.
The network is described by a graph G = (V,£), where V and £ are the sets of nodes and arcs
of the graph respectively. Let A € IRV*I€l be the node-arc incidence matrix of the network.

The network is considered over a sequence of time periods t € 7 = {1,...,|T|} (typically one
per day over one or several years). The time periods are partitioned into seasons s € S, where
each season consists of the time periods ¢ € S(s). The model is cyclic, so that time period ¢t =1
is identified with ¢ = |T.

Different time periods are linked in the following manner:

e Some arcs in the network exhibit a time lag: in-flow into an arc will need several time
periods before it appears as the out-flow of the same arc. In terms of the problem formu-
lation, these are captured by the delay matrices B(~7) that contain those —1 entries of A
corresponding to the sources of arcs with a delay of 7 time periods. As pointed out earlier,
the problem can always be modelled as one with a maximum delay of 7 = 1.

e At certain nodes in the network there are storage facilities that allow to siphon off some
of the flow through this node and re-inject it at a later (variable) time period. Use of this
storage facility will usually incur a loss of the utility.

Storage can be easily modelled by the above matrices A, B{"7), where the loss of utility is
accounted for by a weight v € (—1,0) in position of the target entry.

The network has to satisfy deterministic daily demands d;. The utility can be obtained from a
set of n, sources in the network. Let Qs € IR"*IV| be the matrix that projects the space of all
nodes onto the space of sources and ¢; € IR™ be the value of the sources at time period ¢, then
quzt is the current injection into the network.
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For all arcs a record of maximal seasonal use z; is kept. Pricing is done both by actual daily
use of arcs as well as by maximal seasonal use. The injection &t is decomposed into a fixed
component ¢g plus a daily varying component ¢;. Typically, the price py of the utility obtained
through the fixed component is lower than the price p; of the daily varying component.

The complete model description is as follows

Yo (cFzy + pFey) + Zzsczfs + pt o
se

min
teT

7

s.t. Az + Z B(iT)ilIt_T + QZ(]S() + QZ(ﬁt = d; teT (4)
T=1
g < Ty, teS(s),seS
If we concatenate the variables in the order (z1, ¢1,... S TITIDIT Ty - -5 TS ¢0), the structure
of the constraint matrix (for lag 7 = 1) is as follows
A QT B QT T
I —I
B A QT QT
I —I
B
(5)
A QT QT
I -1
B A QT QT
- I _I =

This is a cyclic dynamic structure with a “dense” column border block. The corresponding
augmented system matrix H can be reordered into structured form PHPT as outlined below (the
19 rows and columns are in the order {1,12,2,13,3,14,4,15,5,16,6,17,7,18,8,19; 9,10,11})

,PHPT =

which is again of cyclic bordered structure. As outlined in Section 3.1, the dynamic structure
in the augmented system can be broken by further reordering the rows and columns. Consider
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for exemplifying purposes a larger augmented system of the same structure as PHPT:

:llll

Smmas

where each box now fepresenté one of the small 2 x 2 augniented system blocks in PHPT. The
cyclic nature of the main block can be broken by ordering the marked rows and columns (i.e.
numbers {1,6,11,16,21}) to the bottom and right to obtain

o " s

T B E

= . e B
mmmmmamniSiEEEEEEZEE, j2mn

The Schur complement part now consists of original rows and columns {1, 6,11, 16, 21; 26, 27, 28 }.
The elimination of the leading 4 x 4 diagonal block in the manner exemplifyed in Section 3.1 will
lead to a Schur complement contribution of the form S, so that the elimination of all diagonal
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blocks gives a Schur complement of form C' — > S;:

which still exhibits significant block sparsity.

Traditionally the Schur complement technique is used to delay pivoting on dense rows or on
linking rows which have entries in every column-block. In either case the Schur complement
will be a dense matrix and is usually treated as such. As its size is typically small, there is no
performance degradation in using dense linear algebra. Using the Schur complement technique
to break dynamic structures however leads to a different type of Schur complement matrix.
The delayed links are very sparse but there might be many of them, leading to a large but
sparse Schur complement matrix. Usually a Schur complement matrix of this size would not be
considered feasible, but savings are to be gained by using sparse linear algebra for the Schur
complement calculations.

4.2 Stochastic Programming Formulation

Some parameters in the utility distribution problem are random. Typical examples are demands
and prices that vary with (unknown) changes in weather and economics. To account for this
case we can reformulate problem (4) as a stochastic programming problem. For this assume that
the prices ¢, p; and the demands d; depend on a random variable £ with a known underlying
distribution. The prices ¢; for the maximal seasonal use of a link (or storage) however are fixed.
In the stochastic programming formulation the aim is to solve the stochastic version of (4)

min B, (z (ct(&)Tze(€) + (&) T 1 (€)) +po(£)T¢o(£)> + 3 T

teT sES
st An(©)+ 3 BCn (O + Q0O + QT4 = 4o teT ®
” 5(6) < t€S(s),s €S,

where z;, ¢; and ¢ are recourse variables, that is their values can be determined after the value
of ¢ is known. The maximum usage of the links z; on the other hand has to be decided in
advance.

Assume that the distribution of ¢ is discrete (or otherwise is approximated by a discrete dis-
tribution), that is £ attains values &;, 4 € Z with probabilities m; : m; > 0, ;.77 = 1 and set
c; = ci(&),ph = pol&i), Pt = pe(&i),d; = di(&). Then the stochastic programming formulation
(8) can be written as the deterministic equivalent problem

. T T, T _
min Y m (Z(c@ zi +pi ¢)) + ph ¢6) + Y cl'zg
¢ teT SES
. T . ) ' _
st. Azj+ 3 BOal QI+ Q4 = 4 tE€T i€l 9)

=1
z; < Zyz teS(s),se€S,iel.



Distribution Planning Problems 14

If we write the constraint matrix in (5) as blocks [X R], where the X part corresponds to
variables (z1,¢1, ..., 27|47, $0) and the R part to (Z1,...,7Zs|), then the constraint matrix of
the stochastic problem has the structure

R X

R X
: (10)

R X

described in Section 3.2. The X matrices, even after removing the T columns, display the
bordered dynamic structure described in Section 3.1. We can combine the reordering techniques
described for both structures to arrive at a bordered block diagonal matrix with a sparse Schur
complement similar to that described in (6),(7).

5 Conveying Structure to the Solver

The problem formulations presented in the previous section all display a nested block-structured
pattern. Exploiting this block-sparsity in our solver OOPS turned out to be instrumental in
being able to solve the larger instances of these problem.

So far conveying the problems and their structure to structure exploiting solvers (such as OOPS,
but also various decomposition approaches) has required carefully handcrafted routines in a
language such as C or Fortran to fill the required data-structures with the correct parts of the
model. Clearly this approach is cumbersome and error prone especially for large models, while
lacking flexibility for later changes to the model.

The Structure Exploiting Tool (SET: [10]) shows a possible solution to this problem which
we have largely followed: The usual output of an algebraic modelling language is a problem
description via sparse data structures together with a dictionary: a mapping of row and column
indices to the names for constraints and variables used in the model. Qur Structure Passing
Interface (SPI) uses a structure definition file that describes the block-structure of the model
in a nested text format. Basic sparse blocks are described by matching expressions for relevant
row and column names. Special constructs allow the combination of basic blocks into structured
matrices and finally the complete model. SPI analyses the structure definition file by comparing
it with the dictionary and builds a skeleton problem description (consisting of the matrix block
structure and a list of row and column indices for each block, but no matrix entries). This is then
used by the solver to set up its data structures. The solver now has an internal representation of
the structure of the problem, but as yet without the actual matrix entries. These are passed in a
second step, via the use of a call-back-function supplied to the solver as part of the description of
the basic blocks. The second phase essentially only involves communication between the solver
and the modelling language, bypassing SPI, much in the same way as the traditional passing of
problem data from modelling language to solver.

An important advantage of the two-phase approach is that the second phase is able to take
advantage of the structure in the problem. When a parallel solver is used the setting up of the
solver-internal data structures involves dividing the problem among processors. In the second
phase each processor requests only request the relevant parts of the problem from the modelling
language, resulting in important speed-up during the problem generation phase.
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Our implementation of this approach is modular in its nature, it is flexible both about which
modelling language to use as well as which solver to link to. Currently we have interfaces to
MPS and AMPL. So far the only solver linked into this approach is OOPS, although interfaces
to other structure exploiting solvers could be produced without significant overhead.

However, it should be kept in mind that this approach is not fully satisfactory: the structure
of the model is first lost in the generation process and an additional effort is needed to restore
it afterwards. Another disadvantage of this approach is the inevitable loss of efficiency and
potential parallelisability in the processing of the model by the modelling language. Indeed, as
noted in [10], the generation of a problem by an algebraic modelling language can sometimes
take longer than the subsequent solution phase. An example of such inefficiency was given in
[13], where a small stochastic linear program with 17,741 constraints, 35,484 variables and 92,800
non-zero elements in the constraint matrix was generated by GAMS in 1630 seconds; the same
model was generated by a specialised generator written in the C programming language in just
2 seconds. Generally speaking, modelling nontrivial problems with current algebraic modelling
languages integrated with general optimization software faces a number of difficulties: (i) the
structure of the problem is lost, (ii) the generation process is inefficient. To address these issues
in their entirety would require the development of a dedicated modelling language.

Several variants of the distribution planning problem have been considered in this study. We
discuss the computational experience in the following section.

6 Numerical Results

We have tested the above methodology on the set of distribution planning problems available to
us. In total there are five different problems. Three of these are deterministic problems: D1Y1
models one year and takes time lags into account, D1Yn is identical to this apart from not having
time lags and D7Yn is a 7 year problem without time lags. The other two correspond to the
stochastic model: S7 is a small network with 36 scenarios, whereas S321 is a stochastic version
of D1Yn modelled with 7 scenarios. The problem characteristics are summarized in Table 1.

name | variables constraints | planning period nodes arcs scenarios
D1Yl 850,324 484,355 365d 321 763 det
D1Yn 850,324 484,355 365d 321 763 det
D7Yn | 5,880,190 3,390,485 2555d 321 763 det

S7 459,980 341,640 365d 7 10 36
S321 | 4,939,945 3,390,485 365d 321 763 7

Table 1: Problem characteristics for the five test problems

Here the column planning period gives the length of the planning period of the model in days (i.e.
1 or 7 years), nodes and arcs give the dimensions of underlying distribution network, and the
column scenarios gives the number of probability scenarios considered (det for a deterministic
problem). As a base for further comparisons we will state the performance of CPLEX 9.1
barrier code on these problems in Table 2. We report the values used to judge the suitability
of our approach, namely apart from the time and IPM iterations to reach the convergence
tolerance (10~* apart from S$7 which CPLEX could only solve to 1073), the peak memory



Distribution Planning Problems 16

name | time(s) memory | IPM iters nz in factor
D1Yl1 1448  917MB | 60 (le-4) 62,023,149
D1Yn 894 808MB | 49 (le-4) 48,512,375

D7Yn - OoM ~ 594,452,075
S7 161 262MB | 162(le-3) 2,601,576
3321 ; OoM - 530,000,000

Table 2: CPLEX 9.1 barrier code solution statistics (OoM = Out of Memory)

requirement and the total numbers of nonzeros in the inverse representation of the matrix to be
inverted at every iteration (Cholesky factor of AAT for CPLEX). The number of nonzeros can
serve as an indication of necessary peak memory and solution time per iteration independent of
implementational issues.

Our solution approach is based on breaking up the dynamic structure of the problem by delaying
column elimination wherever necessary. This is also done for the dense columns corresponding
to the first stage decision variables in the stochastic formulations. We have experimented with a
different number of cuts of the dynamic part of the problem in the pursuit for a reordering that
minimizes both solution time and memory requirement. Table 3 summarizes the characteristics
of each of these cutting schemes.

name | div vars/div | n(S) nz(S) nz(Lg) | nz(A) nz(Ly) tt nz
D1Y1 0 237 | 1119 626K (100%) 626K 3.3M 8.5M 9.1M
2 237 | 1593 1,019K (80%) 1,268K 1.6M 3.9M 9.1M

2a 237 605 183K (100%) 183K | 1.814M 9.3M | 18.8M

) 237 | 2304 1,767K (67%) 1,873K 633K 1,4M 8.9M

D1Yn 0 83 | 1119 626K (100%) 626K | 3,224K 7.4M 8.0M
2 83 | 1285 581K (70%) 581K | 1,610K 3.56M 7.6M

5 83 | 1534 776K (66%) 778K | 626K  13M | T7.3M

D7Yn 7 83 | 8328 5.6M (16.3%) 5.7T™M 3.3M 74M | 57.5M
Ta 83 | 1412 OoM 3.7M  17.1M | >120M

14 83 | 8909 4.1M (10.3%) 4.3M 1.6M 3.6M | 54.7M

14a 83 | 1993 OoM 1.8M 8.9M | >125M

35 83 | 10652 5.4M (9.5%) 6.3M 664K 1.42M | 56.0M

ST 36 0 8 28 (100%) 28 29K 43K 1.5M
5321 7 0 577 167K (100%) 167K | 1.56M 7.3M | 51.5M
14 214 | 2075 1.2M (55%) 1.2M 772K 3.3M | 46.7TM

35 93 | 3818 2.54M (35%) 2.64M 308K 1.22M | 45.3M

Table 3: Problem characteristics for different cutting schemes

Here div gives the number of cuts in the dynamic structure and vars/div the number of rows
and columns that are moved to the Schur complement for every cut in the dynamic structure;
additional Schur complement variables represent the dense columns corresponding to the Z, ¢
variables in (4). n(S),nz(S),nz(Lg) give the dimension, number of nonzeros and nonzeros in
the Cholesky factors of the Schur complement, respectively. For nz(S) we also report the density
of the Schur complement (per cent in brackets). nz(A),nz(Ly4) give corresponding values for
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the resulting diagonal blocks: the number of nonzero elements in the block and its Cholesky
factor, respectively. Note that due to the cyclic nature of the dynamic structure the number of
cuts equals to the number of resulting diagonal blocks. In our default setting all dense columns
of the dynamic blocks are included in the Schur complement. When dividing D1Y into 2 blocks,
or D7Y into 7 or 14 blocks, however there is no link between the seasonal maxima Z, so these
columns could be assigned to the corresponding diagonal block, resulting in a smaller Schur
complement. These reorderings have been tried, corresponding to the D1Y1-2a, D7Yn-7a/14a
rows of Table 3.

As can be seen for all problems we are able to improve dramatically on the total size of the
factors and hence on the memory requirements for the method. We are buying this advantage
at the cost of an increase in computational effort for large Schur complements. However, it can
be seen that for the problems with a large Schur complement, this is fairly sparse and does
not fill in considerably during factorization. The a versions of the reordering do indeed lead to
a smaller Schur complement, however the dense columns lead to much more difficult to factor
diagonal blocks, resulting in a much higher number of total nonzeros. For the larger problem
D7Yn these versions ran out of memory in the factorization phase.

In Table 4 we present our results on the various formulations of the problem

name div time memory IPM iters time/iter
D1Y1 0 120m  377MB 46(1e-6) 2.6m
2 119m  378MB 48(1e-4) 2.5m

2a 108m 1396MB 52(1e-4) 2.1m

5 136m  388MB 56(1e-4) 2.5m

D1Yn 0 151lm  363MB 70(1e-4) 2.1m
2 142m  362MB 67(1le-4) 2.1m

5 156m  362MB 69(1e-4) 2.2m

D7Yn 7 - OoM - -
14 - OoM - -

35 - OoM - -

ST 36 | 10.8m/11.6m  184MB 67 (1le-3), 72(1le-4) 9.6s
5321 7 1223m  2.25GB 162 (le-4) 7.5m
14 1488m  2.21GB 166 (le-4) 9.0m

35 1318m  2.27GB 163 (le-4) 8.0m

Table 4: OOPS solution statistics

In all cases memory requirement is less than for CPLEX (apart from D1Y1-2a). Problem S321
can be solved by OOPS, although CPLEX ran out of memory. Unfortunately we are buying
this advantage at the cost of an increase in computational effort. Even with this more efficient
memory use problem D7Yn is not solvable on one processor. The final Table 5 gives solution
times for this problem on 2 processors.

We end this section by indicating the parallel peformance that is achievable with OOPS. In
Table 6 we compare the time spent on the first 10 iterations of OOPS. The columns of the table
give the serial time (1p) in seconds, the parallel time (np), the number of processors used in the
parallel run (n) and the resulting parallel efficiency (pe).
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name div ‘ time memory IPM iters time/iter
D7Yn 71 92lm 3.5GB total 77 (le-4) 11.96m
14 | 1161m 3.4GB total 79 (1le-4) 14.7m
35 | 1260m 3.4GB total 84 (le-4) 15.00m

Table 5: OOPS solution statistics: 2 processors

name div | time (1p) time (np) n pe
D1Y1 2 1236 721 2 85.7%
D1Yn 2 1133 690 2 82.1%
D1Yn 5 1161 330 5 70.4%
S7 36 72 37 2 97.3%
S7 36 72 31 3 77.4%
ST 36 72 20 6 51.4%
5123 7 6322 1616 7 55.8%
S123 14 7111 1474 7 68.9%

Table 6: Parallel performance

As can be seen OOPS is displaying good parallel efficiency. The main reasons for not achieving
perfect speed-up are the non-trivial work of factorizing the Schur complement (which is not
paralellised) as well as load-balancing issues due to the problems not decomposing into equal
sized parts.

7 Conclusions

We have presented a study of modelling and solving a challenging utility distribution planning
problem. Real life instances of the problem defy the industry standard solver CPLEX 9.1. A
dedicated modelling environment together with the structure exploiting interior point solver
OOPS enabled us to exploit the structure present in the problem. Important memory savings
could be achieved and these have resulted in the ability to solve at least one of the challenging
real life problems. Breaking the dynamics structure present in the problem resulted in large but
sparse Schur complement matrices. While using sparse linear algebra in the Schur complement
calculations made the memory requirements for Schur complements with up to 10,000 columns
feasible, there is a performance degradation associated with it.
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