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Introduction

String solitons (branes, black holes, monopoles,...) play an

essential role in modern string theory.

In the α′ → 0 limit, they are described by classical supergravity

backgrounds, which are often excitations of vacua.

For us, vacuum ≡ maximally supersymmetric brackground.

Vacua have proven useful in the string/gauge theory

correspondence.

Our aim: to classify supergravity vacua.
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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Any theory in the table can be dimensionally reduced down its

column ∴ solutions with symmetries can be reduced à la

Kaluza–Klein into solutions, but some supersymmetry is often

sacrificed.

Solutions can be oxidised up the column without losing

supersymmetry (indeed often gaining) =⇒ vacua oxidise to vacua.

To classify vacua, one can therefore

• classify vacua of theories at the top of each column, and

• investigate their possible Kaluza–Klein reductions.
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Strategy

Let (M, g,Φ) be a classical supergravity background:

• (M, g) lorentzian spin manifold with a choice of bundle S of

spinors (= representation of the Clifford algebra)

• Φ denotes collectively the other bosonic fields

• fermions have been put to zero
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(M, g,Φ) is supersymmetric if it admits Killing spinors; that is,

sections ε of S such that

Dµε = 0 and possibly also A(g,Φ)ε = 0

where

• D is the connection on S

Dµ = ∇µ + Ωµ(g, F )

defined by the supersymmetric variation of the gravitino:

δεΨµ = Dµε
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• A is the algebraic operator defined by the supersymmetric

variation of any other fermionic fields (dilatinos, gauginos,...)

δεχ = Aε

Maximal supersymmetry =⇒ D is flat and A = 0.

Typically A = 0 sets some gauge fieldstrengths to zero, and the

flatness of D constrains the geometry and any remaining

fieldstrengths. The strategy is therefore to study the flatness

equations for D.
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A geometric analogy

Maximal supersymmetry in supergravity is analogous to maximal

symmetry in gravity.

Maximal symmetry =⇒ constant sectional curvature κ.

In riemannian geometry (and up to local isometry):

• κ > 0: sphere

Sn ⊂ En+1 : x2
1 + x2

2 + · · ·+ x2
n+1 =

1
κ2



9

• κ < 0: hyperbolic space



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En

In lorentzian geometry



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En

In lorentzian geometry (and up to local isometry)



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En

In lorentzian geometry (and up to local isometry):

• κ > 0: de Sitter space



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En

In lorentzian geometry (and up to local isometry):

• κ > 0: de Sitter space

dSn ⊂ E1,n



9

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2

• κ = 0: euclidean space En

In lorentzian geometry (and up to local isometry):

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2



10

• κ < 0: anti de Sitter space



10

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1



10

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2



10

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2

• κ = 0: Minkowski space En−1,1



10

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2

• κ = 0: Minkowski space En−1,1

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher



10

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2

• κ = 0: Minkowski space En−1,1

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.
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Maximal symmetry can also be reformulated as a flatness condition:

that of the connection defining Killing transport on the bundle

E(M) = TM ⊕ Λ2T ∗M

A section (ξµ, Fµν) of E(M) is covariantly constant if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν

E(M) has rank n(n + 1)/2 for an n-dimensional M

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors

=⇒ the dimension of the isometry group is ≤ n(n + 1)/2
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Classifications of supergravity vacua

In the table we have highlighted the “top” theories whose vacua

are known already:

• D = 4 N = 1 [Tod (1984)]

• D = 6 (1, 0), (2, 0) [Chamseddine–FO–Sabra]

• D = 10 IIB and I [FO–Papadopoulos]

• D = 11 M [FO–Papadopoulos]
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Vacua of eleven-dimensional supergravity

• bosonic fields:

? metric g, and

? closed 4-form F

for a total of 44 + 84 = 128 bosonic physical degrees of freedom.

• spinors are Majorana; that is, associated to one of the two

irreducible real 32-dimensional representations of C`(10, 1).
Therefore the gravitino also has 128 physical degrees of freedom.
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• the gravitino variation defines the connection

Dµ = ∇µ − 1
288Fνρστ

(
Γνρστ

µ + 8Γνρσδτ
µ

)

For fixed µ, ν, the curvature Rµν of D can be expanded in terms of

antisymmetric products of Γ matrices

[Dµ, Dν] = Rµν
IΓI

where I is an index labeling the following elements

Γa Γab Γabc Γabcd Γabcde
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(We have used that Γ01···9\ = −1 in this representation.)

The flatness equations are the vanishing of the Rµν
I.

Summarising the results:

• F is covariantly constant: ∇µFνρστ = 0

• F obeys the Plücker relations

Fαβγ[µFνρστ ] = 0
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The solution is that F is decomposable into a wedge product of

four 1-forms:

F = θ1 ∧ θ2 ∧ θ3 ∧ θ4 or Fµνρσ = θ1
[µθ2

νθ
3
ρθ

4
σ]

• the Riemann curvature tensor is determined algebraically in terms

of F and g:

Rµνρσ = Tµνρσ(F, g)

with T quadratic in F . This means that Rµνρσ is covariantly

constant; equivalently, that g is locally symmetric.
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The problem reduces to an algebraic problem at a point in the

spacetime: the metric g defines a lorentzian inner product and F is

either zero or defines a 4-plane: the plane spanned by the θi.

If F is zero, then the solution is flat. Otherwise:

• if the plane is spacelike, we can choose a pseudo-orthonormal

frame in which the only nonzero component of F is F1234

• if the plane is timelike, we can choose a pseudo-orthonormal

frame in which the only nonzero component of F is F0123

• if the plane is lightlike, we can choose a pseudo-orthonormal

frame in which the only nonzero component of F is F−123
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We now plug these expressions back into the equation which relates

the curvature tensor to F and g finding the following solutions:

• F spacelike: a one parameter R > 0 family of vacua

AdS7(−7R)× S4(8R) F =
√

6R dvol(S4)

• F timelike: a one parameter R < 0 family of vacua

AdS4(8R)× S7(−7R) F =
√
−6R dvol(AdS4)
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• F null: a one parameter µ ∈ R family of symmetric plane waves:

g = 2dx+dx− − 1
36µ

2

(
4

3∑
i=1

(xi)2 +
9∑

i=4

(xi)2
)

(dx−)2 +
9∑

i=1

(dxi)2

F = µdx− ∧ dx1 ∧ dx2 ∧ dx3

Notice that for µ = 0 we recover the flat space solution; whereas

for µ 6= 0 all solutions are equivalent and coincide with the

eleven-dimensional vacuum discovered by Kowalski-Glikman in

1984.
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Vacua of (1, 0) D = 6 supergravity

• bosonic fields:

? metric g

? anti-selfdual closed 3-form H

for a total of 9 + 3 = 12 physical bosonic degrees of freedom

• spinors are positive-chirality symplectic Majorana–Weyl; i.e.,

associated to the 8-dimensional real representation of Spin(1, 5)×
Sp(1) having positive six-dimensional chirality.

The gravitino has therefore also 12 physical degrees of freedom.



23

• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Hµ

abΓab



23

• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Hµ

abΓab

The connection D is actually induced from a metric connection

with torsion



23

• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Hµ

abΓab

The connection D is actually induced from a metric connection

with torsion; i.e.,

Dµgνρ = 0



23

• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Hµ

abΓab

The connection D is actually induced from a metric connection

with torsion; i.e.,

Dµgνρ = 0 and Dµ∂ν = Γ̂µν
ρ∂ρ



23

• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Hµ

abΓab

The connection D is actually induced from a metric connection

with torsion; i.e.,

Dµgνρ = 0 and Dµ∂ν = Γ̂µν
ρ∂ρ

where

Γ̂µν
ρ = Γµν

ρ + Hµν
ρ
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Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with torsion is locally isometric to a Lie group with bi-invariant
metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with

six-dimensional Lie algebras with an invariant lorentzian metric and

with anti-selfdual structure constants fabc.

The solution to this problem is known.
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Lorentzian Lie algebras

Which Lie algebras have an invariant metric?

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing

But there is a more general construction.
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The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → Λ2g
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whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗; i.e.,

[Xa, Xb] = fab
cXc + ωab iH

i

relative to bases Xa, Hi and Hi for g, h and h∗, respectively.

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)



28

• the double extension admits an invariant metric



28

• the double extension admits an invariant metric


Xb Hj Hj

Xa gab 0 0
Hi 0 Bij δj

i

Hi 0 δi
j 0





28

• the double extension admits an invariant metric


Xb Hj Hj

Xa gab 0 0
Hi 0 Bij δj

i

Hi 0 δi
j 0


where Bij is any invariant symmetric bilinear form on h (not

necessarily nondegenerate).



28

• the double extension admits an invariant metric


Xb Hj Hj

Xa gab 0 0
Hi 0 Bij δj

i

Hi 0 δi
j 0


where Bij is any invariant symmetric bilinear form on h (not

necessarily nondegenerate).

This construction is due to Medina and Revoy who proved an

important structure theorem.
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The structure theorem of Medina and Revoy

A metric Lie algebra is indecomposable if it is not the direct sum of

two orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Six-dimensional lorentzian Lie algebras

Applying this theorem it is easy to list all six-dimensional lorentzian

Lie algebras.

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p + r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.
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(Any semisimple factors in a factor out of the double extension.

[FO–Stanciu hep-th/9402035])

The six-dimensional lorentzian lie algebras are

• R5,1

• so(3)⊕ R2,1

• so(2, 1)⊕ R3

• so(2, 1)⊕ so(3)

• d(R4, R) (actually a family of Lie algebras)
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Antiselfduality of the structure constants narrows the list down to

• R5,1

• so(2, 1)⊕ so(3) with “conmensurate” metrics, and

• d(R4, R) with a particular action of R on R4

The first case corresponds to the flat vacuum. The second case

corresponds to AdS3×S3 with equal radii of curvature and

H ∝ dvol(AdS3)− dvol(S3)

The third case is a six-dimensional version of the Nappi-Witten

spacetime, found by Meessen. [Meessen hep-th/0111031]
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Vacua of D = 10 IIB supergravity

• bosonic fields:

? metric g,

? complex scalar τ ,

? closed complex 3-form H, and

? closed selfdual 5-form F

for a total of 35 + 2 + 56 + 35 = 128 bosonic physical degrees of

freedom

• spinors are positive-chirality Majorana–Weyl spinors.
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There are two gravitini and two dilatini for a total of 112 + 16 =
128 physical fermionic degrees of freedom.

• the dilatino variation gives rise to an algebraic Killing spinor

equation. Maximal supersymmetry =⇒ τ is constant and

H = 0

• the gravitino variation defines the connection (with H = 0 and τ

constant)

Dµ = ∇µ + iαFν1ν2ν3ν4ν5Γ
ν1ν2ν3ν4ν5Γµ

where we have written the two real spinors as a complex spinor,

and α depends on the constant value of τ .
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Expanding the curvature of D into antisymmetric products of

Γ-matrices and setting the coefficients to zero, we find

• F is covariantly constant: ∇µFν1ν2ν3ν4ν5 = 0

• F obeys a quadratic identity:

Fµ1µ2µ3ρ[ν1
F ρ

ν2ν3ν4ν5] = 0

generalising both the Plücker relations and the Jacobi identity.

• the Riemann curvature tensor is again determined algebraically in

terms of F and g:

Rµνρσ = Tµνρσ(F, g)
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with T quadratic in F . Again this means that Rµνρσ is covariantly

constant, so that g is locally symmetric.

Again we can work in a point, where g gives rise to a lorentzian

innner product and F defines a self-dual 5-form obeying a

quadratic equation.

This equation defines a generalisation of a Lie algebra known as a

4-Lie algebra. [Filippov (1985)]

(The notation is unfortunate in that a 2-Lie algebra is a Lie

algebra.)

Furthermore it is a 4-Lie algebra admitting an invariant metric.
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n-Lie algebras

A Lie algebra is a vector space g together with an antisymmetric

bilinear map

[ ] : Λ2g → g

satisfying the condition: for all X ∈ g the map

adX : g → g defined by adX Y = [X, Y ]

is a derivation over [ ]; that is,

adX[Y, Z] = [adX Y, Z] + [Y, adX Z]
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An n-Lie algebra is a vector space n together with an

antisymmetric n-linear map

[ ] : Λnn → n

satisfying the condition: for all X1, . . . , Xn−1 ∈ n, the map

adX1,...,Xn−1 : n → n

defined by

adX1,...,Xn−1 Y = [X1, . . . , Xn−1, Y ]
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is a derivation over [ ]; that is,

[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]

If 〈−,−〉 is a metric on n, we can define F by

F (X1, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉

If F is totally antisymmetric then 〈−,−〉 is an invariant metric.

n-Lie algebras also appear naturally in the context of Nambu

dynamics. [Nambu (1973)]
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Ten-dimensional lorentzian 4-Lie algebras

In this language, IIB vacua are in one-to-one correspondence with

ten-dimensional selfdual lorentzian 4-Lie algebras; but this is not

particularly helpful since the theory of n-Lie algebras is still in

embryonic form.

One is forced to solve the equations. After a lot of work, we

found that a selfdual 5-form obeys the equation if and only if

F = G + ?G where G = θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5

[FO–Papadopoulos math.AG/0211170]
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In other words, G is decomposable; whence, if nonzero, it defines a

5-plane, and hence F defines two orthogonal planes.

If F = 0 we recover the flat vacuum. Otherwise there are two

possibilities:

• one plane is timelike and the other spacelike, and we can choose a

pseudo-orthonormal frame in which the only nonzero components

of F are F01234 = F56789, or

• both planes are null, and we can choose a pseudo-orthonormal

frame in which the only nonzero components of F are F−1234 =
F−5678.
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the curvature tensor to F and g finding the following solutions:

• in the non-degenerate case, a one-parameter R > 0 family of

vacua

AdS5(−R)× S5(R) F =

√
4R

5
(
dvol(AdS5) + dvol(S5)

)

• in the degenerate case, a one-parameter µ ∈ R family of
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i=1

(dxi)2

F = 1
2µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
Again for µ = 0 we recover the flat space solution; whereas for

µ 6= 0 all solutions are equivalent to the recently discovered plane

wave. [Blau–FO–Hull–Papadopoulos hep-th/0110242]

Notice that g is a bi-invariant metric on a Lie group: a

ten-dimensional version of Nappi–Witten. [FO–Stanciu (unpublished)]
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Other theories we have investigated:

• In D = 10: I, heterotic, IIA only have the flat vacuum. The

same is true for any theory lower in the corresponding columns.

(Roman’s massive supergravity has not vacua at all.)

• D = 6 (2, 0) supergravity: all (1, 0) vacua are also vacua of (2, 0)
and early indications show that there are no others. (1, 0) vacua

do have reductions preserving all supersymmetry.

[Gauntlett–Gutowsky–Hull–Pakis–Reall hep-th/0209114]

[Lozano-Tellechea–Meessen–Ort́ın hep-th/0206200]
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