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A cosmological motivation

• Hubble (1920s) discovered that the universe expands uniformly in

all directions

• Penzias and Wilson (1965) discovered Cosmic Microwave

Background

⇐= isotropy

• ‘principle of mediocrity’ =⇒ homogeneity

=⇒ spatial universe has the geometry of a ‘space form’
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Space forms

• locally isometric to one of:

uflathyperbolic spherical

parameterised by 1/R ∈ R, R = radius of curvature

• constant curvature

• ‘maximally symmetric’
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Isometries

Manifest via embeddings:

• Sn ⊂ Rn+1:

x2
1 + x2

2 + · · ·+ x2
n+1 = R2

isometry group: O(n + 1) ⊂ GL(n + 1)

• Hn ⊂ Rn+1:

x2
1 + x2

2 + · · ·+ x2
n − x2

n+1 = −R2, xn+1 > 0

isometry group: O(n, 1) ⊂ GL(n + 1)
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• En ⊂ Rn+1

xn+1 = 1

isometry group: O(n) n Rn ⊂ GL(n + 1)

• Isometry groups have ‘maximal’ dimension: n(n + 1)/2
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Infinitesimal isometries

• (Mn, g) riemannian manifold:

g =
n∑

i,j=1

gij(x)dxidxj

where

? xi are local coordinates

? gij(x) = gji(x), smooth, positive-definite
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• isometries are generated by Killing vector fields:

ξ =
n∑

i=1

ξi(x)∂i such that Lξg = 0

• ξ is determined uniquely by

? its value ξp at a point p; and

? its (covariant) derivative ∇ξp at the same point

• ∇ξp : TpM → TpM

Killing’s equation ⇐⇒ ∇ξp is skew-symmetric

i.e., (ξp,∇ξp) ∈ TpM ⊕ so(TpM)
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• dim (TpM ⊕ so(TpM)) = n + n(n− 1)/2 = n(n + 1)/2

• (Mn, g) is maximally symmetric iff

dim {Killing vectors} =
n(n + 1)

2

• (Mn, g) complete, simply-connected =⇒ one of Sn, Hn or En

• (Mn, g) complete =⇒

M = M̃/Γ

where
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? M̃ is one of Sn, Hn or En; and

? Γ discrete subgroup of isometries acting freely and properly

discontinuously on M̃

• Clifford–Klein space form problem: to classify all such Γ
(Posed by Killing in 1891, reformulated by Hopf in 1925.)

? flat: Bieberbach (1910s), Γ crystallographic

? spherical: Vincent (1940s), Wolf (1970s)

? hyperbolic: still open despite many partial results
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Lorentzian space forms

• (Mn, g) lorentzian: gij(x) has signature (n− 1, 1)

• one in a family:

uMinkowski de Sitteranti de Sitter

again parameterised by 1/R ∈ R
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• dSn ⊂ Rn+1:

x2
1 + x2

2 + · · ·+ x2
n − x2

n+1 = R2

isometry group: O(n, 1) ⊂ GL(n + 1)

• E1,n−1 ⊂ Rn+1

xn+1 = 1

isometry group: O(n− 1, 1) n Rn ⊂ GL(n + 1)
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• AdSn embeds locally in Rn+1:

x2
1 + x2

2 + · · ·+ x2
n−1 − x2

n − x2
n+1 = −R2

isometry group: O(n− 1, 2) ⊂ GL(n + 1)

• quadric is not simply-connected; its universal cover is AdSn
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Supersymmetry is a nontrivial extension of the notion of symmetry,

and the analogue of maximal symmetry is maximal supersymmetry.

The natural context is supergravity theory.
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General relativity

The universe is a 4-dimensional lorentzian manifold (M4, g), where

g is subject to the Einstein field equations :

Ric(g)− 1
2Rg = T or Rij − 1

2Rgij = Tij

where

• Ric(g) is the Ricci curvature;

• R is the Ricci scalar; and

• T is the energy-momentum tensor, e.g., T = Λg
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• Big industry: finding solutions for various idealised T

• symmetry plays a fundamental role in finding solutions: simplying

PDEs to ODEs or even to algebraic equations

• e.g., Friedmann–Lemâıtre–Robertson–Walker cosmology:

−dt2 + a(t)2g(3)

with

? t cosmological time;

? a(t) expansion factor; and

? g(3) a three-dimensional space form
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Indeed, recent surveys of large scale anisotropy:

suggest that g(3) is the Poincaré dodecahedral space S3/E8
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String theory

• ‘quantum theory of gravity’

• fundamental objects are not point-like, but one-dimensional

‘strings’

• particles are vibrational modes of string

• String theory embodies:

? general relativity;

? gauge theory; and

? supersymmetry
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Stringy geometry

• classical geometry:

? arises out of our visual intuition

? concept of ‘point’ is key; a manifold is a collection of points

• strings do not just occupy points, but can wrap around things

• stringy geometry 6= classical geometry

• stringy geometry is still elusive; but can be probed in various

limits
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Supergravity

• ‘gauge theory of supersymmetry’

• ‘massless’ limit of superstring theories

• nontrivial extension of General Relativity

• ‘tight’ structure: determined from representation theory of Lie

superalgebras

=⇒ ∃ finite number of supergravity theories

all in dimension ≤ 11
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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A natural question

Which are the maximally supersymmetric backgrounds of

supergravity theories?
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Eleven-dimensional supergravity

• geometric data:

? 11-dimensional lorentzian spin manifold (M, g), and

? a closed 4-form F

subject to the field equations

Ric(g)− 1
2Rg = T (F, g) and d ? F = 1

2F ∧ F
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• a connection on spin bundle S:

DX = ∇X + 1
6ιXF − 1

12X
[ ∧ F

• (M, g, F ) is supersymmetric ⇐⇒ ∃ ε ∈ C∞(M,S) such that

Dε = 0: Killing spinors

• (M, g, F ) maximally supersymmetric =⇒ D is flat

Flatness of D:

• ∇F = 0
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• Riem(g) = Θ(F, g) =⇒ (M, g) is locally symmetric

• F obeys the Plücker relations

ιXιY ιZF ∧ F = 0 for all X, Y, Z

so that F is decomposable:

F = θ1 ∧ θ2 ∧ θ3 ∧ θ4

? F = 0 =⇒ (M, g) = E1,10; or

? F defines a parallel rank-4 sub-bundle E ⊂ TM
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∗ E has signature (4, 0): a one parameter R > 0 family

AdS7(−7R)× S4(8R) F =
√

6R dvol(S4)

∗ E has signature (3, 1): a one parameter R < 0 family

AdS4(8R)× S7(−7R) F =
√
−6R dvol(AdS4)

∗ E is degenerate: a one parameter µ ∈ R family of plane waves
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i=4

(xi)2
)
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F = µdx− ∧ dx1 ∧ dx2 ∧ dx3

µ = 0 =⇒ E1,10;

µ 6= 0 all isometric to a solution found by Kowalski-Glikman

in 1984.

They are indecomposable lorentzian symmetric space with

solvable transvection group.

[Cahen–Wallach (1970)]
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All embed (locally) isometrically in E2,11 as the intersection of two

quadrics; e.g.,

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4 and U1V1 + U2V2 = Q(X)

in E2,n+2 with the flat metric

dU1dV1 + dU2dV2 + (dX1)2 + · · ·+ (dXn)2
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Ten-dimensional IIB supergravity

• data:

? (M, g) ten-dimensional lorentzian spin manifold;

? closed selfdual 5-form F

• a connection on real rank 32 spin bundle S+ ⊕ S+

DX = ∇X + IιXF
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D is flat ⇐⇒

• ∇F = 0

• Riem(g) = T (F, g) =⇒ (M, g) is locally symmetric

• F obeys the Jacobi–Plücker identity:∑
i

ιei
F ∧ ιeiF = 0

where {ei} is a pseudo-orthonormal frame

This equation defines a 4-Lie algebra (with an invariant metric).

[Filippov (1985)]
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n-Lie algebras

Lie algebra:

[ ] : Λ2g → g

such that: for all X ∈ g,

adX : g → g defined by adX Y = [X, Y ]

is a derivation over [ ]:

adX[Y, Z] = [adX Y, Z] + [Y, adX Z]
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n-Lie algebra:

[ ] : Λnn → n

such that for all X1, . . . , Xn−1 ∈ n, the map

adX1,...,Xn−1 : n → n

defined by

adX1,...,Xn−1 Y = [X1, . . . , Xn−1, Y ]

is a derivation over [ ]:

[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]
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• 〈−,−〉 a metric on n

• define F by

F (X1, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉

• 〈−,−〉 is an invariant metric ⇐⇒ F totally skew-symmetric
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Ten-dimensional lorentzian 4-Lie algebras

Simply-connected IIB supersymmetric spaceforms ↔
ten-dimensional selfdual lorentzian 4-Lie algebras

Not particularly useful.

One is forced to solve the equations. After a lot of work, we

found that F satisfies the Jacobi–Plücker equation ⇐⇒

F = G + ?G where G = θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5

[FO–Papadopoulos math.AG/0211170]
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? E degenerate: a one-parameter (µ ∈ R) family of waves:

g = 2dx+dx− − 1
4µ

2
8∑

i=1

(xi)2(dx−)2 +
8∑

i=1

(dxi)2

F = 1
2µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
µ = 0 =⇒ flat vacuum

µ 6= 0 =⇒ isometric to same plane wave

[Blau–FO–Hull–Papadopoulos hep-th/0110242]
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Plane wave limits

• (Penrose, 1976): ‘Every spacetime has a plane wave as a limit.’

? (M, g) lorentzian

? γ ⊂ M a null geodesic

? singular limit of (diffeomorphism + homothety) yields a plane

wave in a neighbourhood of γ

? maps solutions of Einstein equation to solutions

• (Güven, 2000): extension to supergravity theories

• (Blau–FO–Papadopoulos, 2002): (super)symmetry is preserved
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• includes the space form problem for AdS; although...

• Physics refines the classification based on:

? supersymmetry,

? spin structure, and

? causal regularity, e.g., no closed timelike curves,...

• (FO–Simón, 2001-2004): classification of smooth, supersymmetric,

causally regular quotients by cyclic groups Γ ∼= Z, ZN

• other Γ?
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Watch this space.


