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Abstract. This is the written version of a talk given at the Center for Ad-

vanced Mathematical Sciences of the American University of Beirut. The aim
of the talk was to describe my recent work on supersymmetric solutions of

supergravity theories in the broadest possible terms and to make this topic
accessible to an audience unfamiliar with string theory and/or supergravity.

The fundamental tenet of General Relativity can be paraphrased as follows:
“space tells matter how to move and matter tells space how to curve.” A precise
mathematical restatement of this mantra are the Einstein equations relating the
Ricci tensor Ric of the spacetime (M, g) to the energy-momentum tensor T of the
matter. The Ricci tensor measures a certain average of the curvature of the metric
g of the spacetime. One way to write the Einstein equations is

Ric− 1
2Rg = T , (1)

where R is the scalar curvature of the metric g and where we have absorbed New-
ton’s constant and some geometrical factors in the definition of T . The left-hand
side of the Einstein equations defines the Einstein tensor, which, like the right-
hand side, is covariantly conserved; that is, its (covariant) divergence vanishes.
The energy-momentum tensor typically depends on the matter and hence is not
generally geometrical. However for a very particular type of matter, T is purely
geometrical. In this case it can only be proportional to the metric g, and the
Einstein equations rearrange themselves into

Ric = Λg , (2)

where Λ ∈ R is the cosmological constant. A manifold (M, g) obeying (2) is called
an Einstein manifold.

The study of Einstein manifolds is still an active area of differential geometry.
There is no general classification, but many methods of construction are known.
The state of the art in the mid-to-late 1980s is contained in the classic book [2]
by the Besse collective, and some of the progress that has been made since then
is collected in the book of essays [14]. Finding explicit Einstein metrics – that
is, solutions of the Einstein equations (2) – is not an easy task, as the equations
form a system of nonlinear second-order partial differential equations for g; but
by imposing enough symmetry we can simplify the equations and hope to find
solutions. For example, we could demand that (M, g) be a homogeneous space;
that is, that there should be a Lie group G acting transitively and isometrically on
M . In other words, M consists of a single orbit of G and the action of G preserves
the metric. This renders the Einstein equations (2) algebraic. We could relax this
hypothesis somewhat by demanding that G act not transitively but with generic
orbits of codimension 1 (the so-called cohomogeneity-one case) while still preserving
the metric. In this case there is a one-parameter family of generic orbits and the
Einstein equations (2) become ordinary differential equations in that parameter.
There is no classification for cohomogeneity-one Einstein manifolds, although there
is for homogeneous Einstein manifolds in the riemannian case; although in the
lorentzian case even this is lacking.
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The only extant classification is that of Einstein manifolds of maximal sym-
metry. It is a classic result that isometries of euclidean space are given by affine
orthogonal transformations: that is, transformations consisting of an orthogonal
transformation followed by a translation. In n-dimensional euclidean space, there
are n independent translations and n(n− 1)/2 independent orthogonal transform-
ations, generating an n(n + 1)/2-dimensional isometry group. The same is true
in any other signature, for example in Minkowski spacetime, where Lorentz trans-
formations replace the orthogonal transformations.

Something similar happens in any curved space M . The tangent space at any
given point is a copy of a euclidean space whose inner product is given by the
value of the metric at that point. Every infinitesimal isometry (i.e., every Killing
vector) has a translational component and an orthogonal component relative to
this euclidean space, and moreover it is uniquely determined by the values of these
components. Therefore there are at most n(n + 1)/2 linearly independent Killing
vectors, where n = dim M , whence the dimension of the isometry group is at most
n(n + 1)/2. Again a similar story holds in lorentzian signature, where the tangent
space at every point is a copy of Minkowski spacetime.

It is known that maximally symmetric spaces have constant (sectional) curvature.
In the riemannian case (and up to quotients) we have spheres, hyperbolic spaces
and flat space, fitting into a one-parameter (say, λ) family of solutions, illustrated
for two dimensions in Figure 1:

• if λ > 0, then we have the sphere Sn of radius 1/λ2 in E
n+1; that is, the

set of points (x1, x2, . . . , xn+1) ∈ Rn+1 such that

x2
1 + x2

2 + · · ·+ x2
n+1 = 1/λ2 .

• if λ = 0, then we have the euclidean space En itself; and
• if λ < 0, then we have hyperbolic space Hn: one sheet of the hyperboloid

in E
n,1 consisting of those points (x0, x1, x2, . . . , xn) ∈ Rn+1 such that

−x2
0 + x2

1 + x2
2 + · · ·+ x2

n = −1/λ2 .

Notice that although the metric in E
n,1 is lorentzian, the one induced on

the hyperboloid is riemannian.

(a) λ > 0 (b) λ = 0 (c) λ < 0

Figure 1. Riemannian spaces of constant curvature λ.

In the lorentzian case, we have de Sitter and anti de Sitter spacetimes and
Minkowski spacetime, also fitting into a one-parameter family and illustrated for
two dimesions in Figure 2:

• if λ > 0, then we have de Sitter spacetime dSn: the quadric in En,1 consist-
ing of points (x0, x1, . . . , xn) ∈ Rn+1 such that

−x2
0 + x2

1 + x2
2 + · · ·+ x2

n = 1/λ2 .

• if λ = 0, then we have Minkowski spacetime En−1,1 itself; and
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• if λ < 0, then we have anti de Sitter spacetime AdSn: the hyperboloid in
E

n−1,2 consisting of points (x0, x1, . . . , xn) ∈ Rn+1 such that

−x2
0 + x2

1 + x2
2 + · · ·+ x2

n−1 − x2
n = −1/λ2 .

Again we notice that although the embedding space has two “times”, the
metric induced on the hyperboloid is lorentzian.

(a) λ > 0 (b) λ = 0 (c) λ < 0

Figure 2. Lorentzian spaces of constant curvature λ.

Notice that spheres, hyperbolic spaces, de Sitter and anti de Sitter spaces are all
quadrics in some euclidean or lorentzian space one dimension higher, and the flat
spaces (euclidean and Minkowski) correspond to degenerations of these quadrics.
Indeed, in both cases, λ is a continuous modulus which interpolates between the
different solutions. In particular, euclidean space is the limit λ → 0 of the sphere
(for λ > 0) and of hyperbolic space (for λ < 0). Similarly, Minkowski spacetime is
the limit λ → 0 of de Sitter (for λ > 0) and anti de Sitter (for λ < 0) spacetimes.

Now General Relativity is a classical theory: it explains weak field, large scale
gravitational interactions from the large scale structure of the universe to the motion
of planets (and satellites, as used in the Global Posititioning System!) and even an
apple falling from a tree (a process already adequately described by the newtonian
limit); but it insists on treating classically other forces in nature which we know to
be explained by quantum field theories. This does not represent a major problem
provided we restrict ourselves to scales where we can treat the gravitational inter-
actions classically or ignore them altogether. However in regimes where quantum
gravitational effects cannot be neglected, one needs a theory of quantum gravity.
One such theory is superstring/M-theory, as explained to us earlier this week by
Mohab Abou-Zeid. String theories have low-energy limits called supergravity the-
ories, to which Ali Chamseddine made important pioneering contributions. The
study of supergravity is still a very active field of research and is one of the areas
of expertise of both Ali Chamseddine and Wafic Sabra here in CAMS.

For the purposes of this talk we will think of supergravity theories as extensions
of General Relativity describing the dynamics of other fields besides the metric:
bosonic fields such as scalars, gauge fields and their p-form generalisations and
their supersymmetric partners, fermionic fields such as gravitini, dilatini, gaugini.
The field content depends among other things on the dimension of the spacetime,
but one thing that all supergravity theories have in common (apart from the met-
ric and at least one gravitino) is the invariance of the equations of motion under
supersymmetry transformations with an arbitrary spinor parameter. Supersym-
metry is a nontrivial extension of the familiar spacetime symmetries (translations
and lorentz transformations) which mixes particles of different spins and hence of
different statistics.

With fermions put to zero, the classical equations of a supergravity theory consist
of generalised Einstein equations (1) where the energy-momentum tensor T receives
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contributions from all the bosonic fields in the theory, together with field equations
for the other fields which generalise the Klein-Gordon and Maxwell equations.

For example, let us consider eleven-dimensional supergravity. This theory started
life as a promising candidate for Kaluza–Klein unification in the 1980s, and it is
now interpreted as a low-energy description of the strong coupling limit of IIA
superstring theory. It is in fact an eleven-dimensional corner of M-theory. Its
bosonic field content is (g, F ) where g is a lorentzian metric and F is a closed
four-form. The equations of motion are a version of equation (1) with an explicit
right-hand side T (g, F ) depending on g, F , together with a nonlinear generalisation
of the Maxwell equation (written in differential form language)

d ? F = 1
2F ∧ F , (3)

where ? is the Hodge star operator.
As with the Einstein equations (2), these equations admit a plethora of solutions

(with new solutions appearing on a daily basis) whose study continues to be vig-
orously pursued. The analogue of the strategy of looking for solutions with a large
degree of symmetry is to look for solutions with a large amount of supersymmetry.
In the present context, this means to look for solutions (g, F ) which admit Killing1

spinors; that is, solutions of a linear first-order partial differential equation

Dε = (∇+ Ω)ε = 0 , (4)

where ∇ is the spin connection and Ω(g, F ) is a zeroth order piece (strictly speaking
a one-form with values in endomorphisms of the spinor bundle). This is a linear
equation hence the space of solutions is a vector space of (real) dimension ≤ 32,
which is the dimension of the spinor representation. The normalised dimension
ν = 1

32 dim kerD defines a fraction which measures the amount of supersymmetry
preserved by the solution.

For example if F = 0, then the solutions are Ricci-flat lorentzian manifolds and
Killing spinors are parallel. The existence of a Killing spinor then reduces the holo-
nomy group of the spacetime. Since there are two (maximal) spinor isotropy groups
in eleven dimensions: SU(5) or Spin(7)nR

9, there are two types of supersymmetric
solutions, which generalise the Kaluza–Klein monopole and the pp-wave, respect-
ively [7]. If F 6= 0 things are more complicated; although some partial results along
these lines have been obtained recently [10].

To this date, the only complete classification is that of the maximally supersym-
metric solutions, arrived at in collaboration with George Papadopoulos [9]. There
is again one parameter which can be chosen to be the constant scalar curvature R
of the spacetime. Up to local isometry, we have the following classification:

• If R > 0 then the metric is that of S4×AdS7, where S4 has scalar curvature
8R and AdS7 has scalar curvature −7R, and the four-form F is proportional
to the volume form on S4: F =

√
6R dvol(S4);

• If R < 0 then the metric is that of AdS4×S7, where AdS4 has scalar
curvature 8R, S7 has scalar curvature −7R and F =

√
−6R dvol(AdS4);

and
• If R = 0 then there is a one-parameter (µ, say) family of symmetric plane

waves [6]. For µ 6= 0, all solutions are isometric, whereas for µ = 0 the
solution is flat with F = 0.

The maximally supersymmetric plane wave is an example of a symmetric plane
wave, whose metric is generally given by

g = 2dudv +
9∑

i,j=1

Aijx
ixjdu2 +

9∑
i=1

dxidxi , (5)

1so called because they are square roots of Killing vectors.
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where Aij is a constant symmetric matrix. The four-form is null (that is, it has
zero norm) and has the generic form

F = du ∧Θ , where Θ = 1
6

9∑
i,j,k=1

Θijkdxi ∧ dxj ∧ dxk , (6)

where Θijk are constants.
We can give an explicit description of a symmetric plane wave as the intersection

of two quadrics in a flat space with two time coordinates E11,2. Let (U1, V 1, U2, V 2, Xi),
for i = 1, . . . , 9, be coordinates in E

11,2, where Ua, V a are lightcone coordinates so
that the flat metric takes the form

dU1dV 1 + dU2dV 2 +
9∑

i=1

dXidXi . (7)

Then the symmetric plane wave is the induced metric on the intersection of the two
quadrics

(U1)2 + (U2)2 = 4 and U1V 1 + U2V 2 =
9∑

i,j=1

AijX
iXj . (8)

Notice that the solutions for R 6= 0 are also intersection of two quadrics in the
same space.

In the maximally supersymmetric case [13, 8], Aij is given by

Aij =

{
−µ2δij for i, j = 1, 2, 3,
− 1

4µ2δij for i, j = 4, 5, . . . , 9;
(9)

and Θ = µdx1 ∧ dx2 ∧ dx3.
Notice that taking the limit R → 0 in either the AdS4×S7 or S4×AdS7 solutions,

we get the flat solution (corresponding to µ = 0). It is therefore natural to ask
whether one can also obtain the symmetric plane wave (with µ 6= 0) as a limit.

In the 1970s Roger Penrose wrote a paper [16] titled “Any space-time has a plane
wave as a limit”. This limit consists in blowing up the neighbourhood of a null ge-
odesic (that is, the trajectory of light ray) while simultaneously boosting along the
direction of the geodesic. It was Güven [12] who extended Penrose’s limit to super-
gravity theories. The most important property of this limit is that it takes solutions
to solutions and part of its beauty is that it exploits the different symmetries of
the supergravity equations of motion. This limit can be placed in the broader
context of “limits of spacetimes” due to Geroch [11], and this allowed Matthias
Blau, George Papadopoulos and myself [5] to derive other important properties of
the Penrose limit: a covariance property which is useful in classifying the possible
Penrose limits and the fact that in the limit symmetries and supersymmetries are
preserved (or often enhanced). It follows that the plane wave limit of a maximally
supersymmetric solution will be maximally supersymmetric. It turns out that there
are two non-isometric plane wave limits of AdS4×S7 and S4×AdS7: the maximally
supersymmetric plane wave and flat space [4, 5].

The situation is similar for ten-dimensional IIB supergravity. There is a one-
parameter family of solutions, where the parameter R′ now takes nonnegative values
[9]:

• If R′ > 0 then the metric is that of AdS5×S5, where AdS5 has scalar
curvature −R′ and S5 has scalar curvature R′, the self-dual five-form F is
proportional (depending on the value of the constant dilaton) to the sum
of the volume forms

F ∝ dvol(AdS5)− dvol(S5) . (10)

The other fields are not turned on.
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• If R′ = 0 then there is a one-parameter (µ, say) family of symmetric plane
waves. Again for µ 6= 0, all solutions are isometric, whereas for µ = 0 the
solution is flat with F = 0.

The maximally supersymmetric plane wave, discovered in collaboration with
Matthias Blau, Chris Hull and George Papadopoulos [3], has metric of the form
(5), except that i, j run from 1 to 8 and Aij = −µ2δij . The self-dual five-form takes
the form

F ∝ µdu ∧ (dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8) , (11)

where the proportionality constant depends on the value of the dilaton.
These solutions are again related by plane wave limits. This fact, aided by the

fact that string theory on symmetric plane waves are exactly solvable [15], has
led to new insights into the gravity/gauge theory correspondence thanks to the
observations in [1] and much subsequent work by a large number of individuals.
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