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A geometric motivation

Which are the maximally symmetric (pseudo-) riemannian

manifolds?

Isometries of (M, g) are generated by Killing vectors ξ:

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0 for all X, Y

Equivalently, they are parallel sections of the bundle

E(M) = TM ⊕ so(TM)
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relative to the connection

DX

(
ξ

A

)
=

(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if A = ∇ξ,

whence ξ is a Killing vector.

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat

=⇒ M has constant sectional curvature κ.
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In riemannian signature (and up to local isometry):

• κ = 0: euclidean space En

• κ > 0: sphere

Sn ⊂ En+1 : x2
1 + x2

2 + · · ·+ x2
n+1 =

1
κ2

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2
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In lorentzian signature (and up to local isometry):

• κ = 0: Minkowski space E1,n−1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2



6

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher



6

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.



6

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.



6

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.

This is the Clifford–Klein space form problem, first posed by Killing

in 1891 and reformulated in these terms by Hopf in 1925.



6

Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.

This is the Clifford–Klein space form problem, first posed by Killing

in 1891 and reformulated in these terms by Hopf in 1925.

The flat and spherical cases are solved (culminating in the work of

Wolf in the 1970s), but the hyperbolic and lorentzian cases remain

largely open despite many partial results.
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Supersymmetry is a nontrivial extension of the notion of symmetry,

and the analogue of maximal symmetry (in gravity) is maximal

supersymmetry in supergravity.

It is therefore natural to ask

Which are the maximally supersymmetric backgrounds of

supergravity theories?

In this talk I will report on the solution of the local problem in

several supergravity theories.

Note: A maximally supersymmetric supergravity background will

be abbreviated vacuum.
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Gravity...

Classical gravity is described by the Einstein–Hilbert action:∫
M

sg dvolg

where (M, g) is a oriented lorentzian manifold, sg the scalar

curvature, and dvolg the volume form.

Extremals of this action—namely, Ricci-flat manifolds—are called

spacetimes.
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Adding a cosmological constant λ:∫
M

(sg + λ) dvolg

we obtain spacetimes which are Einstein manifolds.

The maximally symmetric solutions are the lorentzian space forms:

smooth discrete quotients of Minkowski space and (the universal

covers of) de Sitter and anti de Sitter spaces, depending on the

sign of λ.
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... and Supergravity

Let (M, g, S) be a spin lorentzian manifold, where S is a real

spinor bundle. Let Ψ be the gravitino, a section of T ∗M ⊗ S. Let

(−,−) denote the Spin-invariant inner product on S.

Supergravity is defined by the action∫
M

sg dvolg +
∫

M

(Ψ,∇Ψ)dvolg

where we have added the Rarita–Schwinger term.

What is so interesting about this action?
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It is invariant under supersymmetry transformations: derivations δε

parametrised by sections ε of S acting on the fields (g,Ψ) as

follows:
(δεg)(X, Y ) = (ε, X ·Ψ(Y ) + Y ·Ψ(X))

(δεΨ)(X) = ∇Xε

The small print: S should really be ΠS.

Also... this really only works as written in four dimensions. In other

dimensions supergravity theories might have other fields and both

the action and supersymmetry transformations become more

complicated. But supergravity theories are uniquely determined by

representation theory (of relevant superalgebras).
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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Strategy

Let (M, g,Φ, S) be a supergravity background:

• (M, g) a lorentzian spin manifold

• Φ denotes collectively the other bosonic fields

• (g,Φ) obey the field equations with fermions (e.g., Ψ) put to zero

• S a real vector bundle of spinors (i.e., modules over C`(TM))
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(M, g,Φ, S) is supersymmetric if it admits Killing spinors; that is,

sections ε of S such that

Dε = 0

where D is the connection on S

D = ∇+ Ω(g,Φ)

defined by the supersymmetry variation of the gravitino:

δεΨ = Dε

(putting all fermions to zero)
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There are possibly also algebraic equations

A(g,Φ)ε = 0

where A is a section of End(S) defined by the supersymmetric

variation of any other fermionic fields (dilatinos, gauginos,...)

δεχ = Aε

Maximal supersymmetry =⇒ D is flat and A = 0.

Typically A = 0 sets some fields to zero, and the flatness of D

constrains the geometry and any remaining fields. The strategy is

therefore to study the flatness equations for D.
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Classifications of supergravity vacua

In the table we have highlighted the “top” theories whose vacua

are known already:

• D = 4 N = 1 [Tod (1984)]

• D = 6 (1, 0), (2, 0) [Chamseddine–FO–Sabra, Gutowski–Martelli–Reall]

• D = 10 IIB and I [FO–Papadopoulos]

• D = 11 M [FO–Papadopoulos]
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where KG is an indecomposable lorentzian symmetric space with

solvable tranvection group (cf. Cahen–Wallach), discovered in this

context by Kowalski-Glikman.



18

Vacua of D = 10 IIB supergravity



18

Vacua of D = 10 IIB supergravity

AdS5×S5



18

Vacua of D = 10 IIB supergravity

AdS5×S5
�

�
�

�
�

��
BFHP



18

Vacua of D = 10 IIB supergravity

AdS5×S5
�

�
�

�
�

��
BFHP

@
@

@
@

@
@R

flat



18

Vacua of D = 10 IIB supergravity

AdS5×S5
�

�
�

�
�

��
BFHP

@
@

@
@

@
@R

flat
?



18

Vacua of D = 10 IIB supergravity

AdS5×S5
�

�
�

�
�

��
BFHP

@
@

@
@

@
@R

flat
?

where BFHP is a Cahen–Wallach space, locally isometric to a

lorentzian Lie group.
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Vacua of (1, 0) D = 6 supergravity

• bosonic fields:

? metric g

? anti-selfdual closed 3-form F

• fermionic fields:

? gravitino Ψ, a section of T ∗M ⊗ S, where

S = [∆+ ⊗ σ]

is a real 8-dimensional representation of Spin(1, 5)× Sp(1).
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• the gravitino variation yields the connection

DX = ∇X + 1
4ιXF

The connection D is actually induced from a metric connection

with torsion; i.e., Dg = 0 and

T (X, Y ) = DXY −DY X − [X, Y ]

is such that

g(T (X, Y ), Z) = F (X, Y, Z)

Maximal supersymmetry =⇒ D is flat.



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with

six-dimensional Lie algebras with an invariant lorentzian metric



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
invariant metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with

six-dimensional Lie algebras with an invariant lorentzian metric and

with anti-selfdual structure constants.



21

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with closed torsion is locally isometric to a Lie group with bi-
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As a corollary, vacua of (1, 0) D = 6 supergravity are locally
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lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with
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with anti-selfdual structure constants.
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Lorentzian Lie algebras

Which Lie algebras have an invariant metric?

(cf. Ines Kath’s talk yesterday)

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing
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The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → so(g) ∼= Λ2g
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whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g, so it defines

a class [ω] ∈ H2(g, h∗)

• we build the corresponding central extension g×ω h∗

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)
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• the double extension admits an invariant metric


g h h∗

g 〈−,−〉g 0 0
h 0 B id
h∗ 0 id 0


where

? 〈−,−〉g is the invariant metric on g,

? id stands for the dual pairing between h and h∗, and

? B is any invariant symmetric bilinear form on h (not necessarily

nondegenerate)

This construction is due to Medina and Revoy.
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The structure theorem of Medina and Revoy

A metric Lie algebra is indecomposable if it is not the direct sum of

two or more orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Six-dimensional lorentzian Lie algebras

It is now easy to list all six-dimensional lorentzian Lie algebras.

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p + r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.

(Any semisimple factors in a factor out of the double extension.)
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Six-dimensional lorentzian Lie algebras:

• R1,5

• so(3)⊕ R1,2

• so(1, 2)⊕ R3

• so(1, 2)⊕ so(3)

• d(R4, R), actually a family of Lie algebras parametrised by

homomorphisms

R → Λ2R4 ∼= so(4)
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Antiselfduality of the structure constants narrows the list down to

• R1,5

• so(1, 2)⊕ so(3) with “commensurate” metrics, and

• d(R4, R) with the image of R → Λ2R4 self-dual

The first case corresponds to the flat vacuum. The second case

corresponds to AdS3×S3 with equal radii of curvature and

F ∝ dvol(AdS3) + dvol(S3)

The third case is a six-dimensional version of the Nappi-Witten

spacetime, NW6, discovered by Meessen. [Meessen hep-th/0111031]
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which can be interpreted here as group contractions à la

Inönü–Wigner.
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Penrose limits and group contractions

As a lorentzian Lie group AdS3×S3 is locally isometric to

SU(1, 1)× SU(2).

We will identify SU(1, 1) with the group of matrices(
a b

b̄ ā

)
with |a|2 − |b|2 = 1

and SU(2) with the group of matrices(
a b

−b̄ ā

)
with |a|2 + |b|2 = 1
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Choose a frame Xi, i = 0, 1, . . . , 5 for su(1, 1)⊕ su(2):

• X0 = iσ3 ⊕ 0, X1 = σ1 ⊕ 0 and X2 = σ2 ⊕ 0

• X3 = 0⊕ iσ1, X4 = 0⊕ iσ2 and X5 = 0⊕ iσ3

where the σi are the standard (hermitian) Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0
0 −1

)
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[X3,X4] = −2X5

,

and inner product:

〈Xi,Xj〉 = ηij ,
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[X1,X2] = 2X0

[X5,X3] = −2X4

[X5,X4] = 2X3

[X3,X4] = −2X5

,

and inner product:

〈Xi,Xj〉 = ηij ,

where η = diag(−1, 1, . . . , 1).

N is obtained by exponentiating the null vector U = sX0 + sX5,

with complementary null vector V = −X0 + X5.
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Introduce Ω > 0 and a new basis:

Pi = ΩXi J = 1
2U K = Ω2V

for i = 1, 2, 3, 4.

The contracted Lie algebra is the limit Ω → 0 of the Lie brackets in

the new basis:

[J,P1] = −P2

[J,P2] = P1

[J,P3] = −P4

[J,P4] = P3

[P1,P2] = −K

[P3,P4] = −K

with K central.
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The inner product is the limit Ω → 0 of Ω−2 〈−,−〉:

〈Pi,Pj〉 = δij 〈J,K〉 = 1 .

This is precisely the (anti-selfdual, lorentzian) double extension

d(R4, R).

In summary, the Penrose limit

AdS3×S3 NW6

is the group contraction

SU(1, 1)× SU(2) D(R4, R)
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Vacua of (2, 0) D = 6 supergravity

• bosonic fields:

? metric g

? anti-selfdual V -valued closed 3-form H, where V is the five-

dimensional real representation of Sp(2)

• fermionic fields:

? gravitino Ψ, a section of T ∗M ⊗ S, where S = [∆+ ⊗ Σ] is a

real 16-dimensional representation of Spin(1, 5)× Sp(2)
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• the gravitino variation yields the connection

DX = ∇X + 1
4ιXH

where ιXH is a section of so(TM)⊗ V ⊂ C`(TM ⊕ V )

Flatness of D implies

• H is decomposable H = F ⊗ v, for some unit norm v ∈ V ;

• (g, F ) is a (1, 0) vacuum.

In summary, up to the action of the Sp(2) R-symmetry group,

(2, 0) vacua are in one-to-one correspondence with (1, 0) vacua.



40

Thank you.
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Lunch beckons.


