Some drawatis personae

We start with the de Sitter spacetimes in D+1 dimensions: loverlyian manifolds with nonzero constant sectional

. gueralisation of supersymmetry and/or supergravity beyond the arena of localization geometry

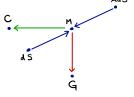
amature;

•
$$dS_{D+1} \subset \mathbb{R}^{D+1,1}$$
 $x_1^2 + \dots + x_D^2 + x_{D+1}^2 - x_{D+2}^2 = + \mathbb{R}^2 > 0$ (de Stitler)

The lie algebra of isometics is SO(D,2) for AdSD+1 and SO(D+1,1) for dSD+1.

taking the curature - 0 limit (equivalently, R - 00) of AdSD+1 or dSD+1 Negults in Minkowski spacetime,

which is an affine space A^{D+1} with a flat metric $g = dx_1^2 + \cdots + dx_D^2 - c^2 dx_{D+1}^2$ (introducing the speed of light c)



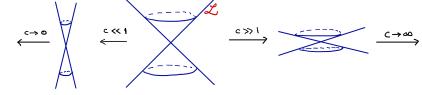
We can now take limits in which c -> as (nonrelativistic) or c -> o (ultarelativistic)

If
$$p \in \mathbb{A}^{D+1}$$
, $(T_p \mathbb{A}^{D+1}, g_p) \cong (\mathbb{R}^{D+1}, \eta) \supset \mathcal{L}$ (light cone)

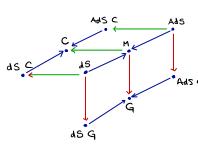
$$\begin{array}{c} \text{Lorentyian} \\ \text{Inverpoduct} \end{array}$$

$$\mathcal{L} \qquad \qquad \chi_1^2 + \dots + \chi_D^2 - c^2 \chi_{D+1}^2 = 0$$

G has a Newton-Cartan structure and C has a carrollian structure



Carroll MINKOWSKI - Galile



If (M,g) is a lorentzian manifold, $(T_pM,g_p)\approx (R^{D+1},\eta)$ and so we have a lightnone and we can take the non- and ultra-relativistic limits. In particular for (A) dSD+1 we obtain Carroll & galilean versions of (A)dS.

(A) dS C & (A) dS G are reductive homogeneous spacetimes of kinewatical lie groups. Their canonical connections (thou with sono Nomise maps) are not flat and the flat limit gives G & C.

(a) 02 = 7 < 6

All spacetimes in the above diagram are symmetric homogeneous spaces of kinematical lie groups. The canonical connection is torsion-face, but only flat for M, C, G. We want to clarify homogeneous spacetimes of kinematical lie groups. We will work locally in terms of their lie algebraic data.

Kinewatical lie algebras and their homogeneous spacetimes

Def. A kinewatical lie algebra (with D-dim'l space isotropy) is a real lie algebra 9 of dim \$0+1)(D+2) satisfying $\bigcirc q > r \cong \underline{so}(D)$ Clamfication: D=0 3! I-dim'e LA and ② 9 = r @ 2 V @ 5

D-dim/l
vector wep Biaudii (1898) D=1 ~ equiv.) ∧2V -> S - D = 2 JMF+Audrzejewski ('18) groine [12 V -> V - D=3 Berry + Nuyts + (lévy-lebland) ('86) JMF (17) $\mathcal{D} > 3$ to more KLAS.

An aistotellan lie algebra is a real LA of dim 2D(D+D+1) satisfying Z = r mod r & V & S Tyrically, anistotelian lie algebras are quotients of KLAs by a nectocial ideal.

The clanifications in D&2 can be done via deformation theory. Every KLA is a deformation of the Static KLA: the unique KLA where 2VBS is an abelian ideal (and hence S is central.)

· a family YE[-1,1] where For generic D, one finds the following KLAs: . static · Newton-Hooke (76±) · galilean 7 → -1 is Tb-. 80 (D'5) · 50 (D+1/1) · a family X > 0 where · Carroll · SO (D+2) x→0 6 n+ · a KLA where ad [S,-] is not We are interested in the "kinematical spacetimes": (D+1)-dimensional homogeneous spaces of kinematical hie groups G of the form M = G/H where the LA g of G is hinematical and the hie subalgebra $g \in G$ corresponding to the (closed) subgroup H is of the form $h = r \otimes V$ (as r-mod).

we work infinitesimally interms of the lie pair (9,6) and we danify these lie pairs up to the natural equivalence: (91, b1) ~ (92, b2) if there exists $\psi: 9 \xrightarrow{\cong} 92$ with $\psi|_{h_1}: h_1 \xrightarrow{\cong} b2$ bu practice, we use the clanification of KLAs to fix a KLA q and clanify he pairs (9, h) subject to the equivalence (2, b1) ~ (2, b2) y 3 q = Aut(9) st. 4/h: b1 => b2 A lie pair (9, 1) is effective if I does not contain any nontained? i deal of g.

Equivalence danes of effective hie pairs are in byective correspondence with local iso danes of homogeneous spacetimes. Notice that there may be non-equivalent he pairs (9, b,1), (9, b) with the same 9. For example, $g = \mathfrak{D}(D+1,1)$ has at least two because dS_{D+1} and H^{D+1} have g as LASI isometries. Non-effective knowatical lie pairs have a vectorial ideal I and (2/I, b/I) desurbes an aristotelian space time.

The result of the clanification (for generic D) is obtained by adding some more spacetimes to our

drawatis personal.

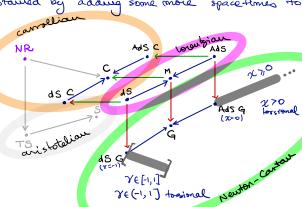
NR: non-reductive homogonous spacetime of 50(04,1)

S: static aristoklian (all limit to it)

TS: torsional static aintotelian

(AdSG) 2: one-parameter family X70. (AdSG is X=0) all forsional except for X=0

(ASG), one-parameter family YE[-1,1]. (dSG is Y=-1) all toosional except for Y=-1.



Some details not in the talk

In writing down KLAs, it is consequent to choose a standard basis $J_{ak}=J_{ba}$ for r, and B_a,P_a for 2V and H for S. The [J,*] brackets are the same for all KLAs and hence they are distinguished by the remaining brackets. When describing he pairs (g,b) we always choose a basis for the KLA in which g is spanned by (J_{ab},B_a) for kinewalical spacetimes or (J_{ab}) for anistotelian spacetimes. The homogeneous spacetimes are then described by uniting the brackets of B_a,P_a,H in this basis. The homogeneous spacetimes in the talk can be described locally as follows:

Avistolelian		Newton-Cartan		
·static	[-,-]=0	· galilean	[H,B]=-P	
· torsional static	[H,P]=P	·(AdS G)x	[H,B]=-P	[H,P]= (1+x2)B+2xP
		· (ds G)y	[H,B] =- P	[H,P] = YB + (1-Y)P

Camollian

· Carroll	[B,P]=H		
· AdS C	[B,P]=H	[H,P] = B	(P,P]=J
· ds C	[B,P]=H	[H,P] =-B	[P,P]=-J
· NR	TB.P7=H+J	[H,P] =-P	[H,B] = B

Lorentzian

· Minhorostei	[H,B]=-P	[B,B]:J	[B,P]=H		
· de Sitter	[H,B] =-P	[B,B]=J	[B,P]=H	[H, P]=-B	[P,P]=-J
. Anti de Sitter	[H,B]=-P	[8,8] = 丁	[B,P]=H	[H,P] = B	[P,P] = J