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AsstrACT. We briefly review the notion of the intrinsic torsion of a G-structure and then go on to classify
the intrinsic torsion of the G-structures associated with spacetimes: namely, galilean (or Newton—Cartan),
carrollian, aristotelian and bargmannian. In the case of galilean structures, the intrinsic torsion classification
agrees with the well-known classification into torsionless, twistless torsional and torsional Newton—-Cartan
geometries. In the case of carrollian structures, we find that intrinsic torsion allows us to classify Carroll
manifolds into four classes, depending on the action of the Carroll vector field on the spatial metric, or
equivalently in terms of the nature of the null hypersurfaces of a lorentzian manifold into which a carrollian
geometry may embed. By a small refinement of the results for galilean and carrollian structures, we show that
there are sixteen classes of aristotelian structures, which we characterise geometrically. Finally, the bulk of the
paper is devoted to the case of bargmannian structures, where we find twenty-seven classes which we also
characterise geometrically while simultaneously relating some of them to the galilean and carrollian structures.
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Introduction

“What are the possible geometric structures of space and time?”

Classification of kinematical symmetries
Classification of 4d kinematical Lie algebras
Classification of kinematical Lie algebras (any dimension)

Classification of kinematical Klein geometries
(simply-connected, spatially isotropic, homogeneous spacetimes)



Families of spacetimes

* lorentzian (M, g)

o galilean (M,7,7) 7€Q'(M) ~veI(®*TM)

Y 2 0 7(7_7 _) =0
e carrollian (M,&h) € X(M) hel(@*T*M)

o aristotelian (M, 7,&,v,h) 7(&§) =1



Non- and ultra-relativistic
limits
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Why carrollian?

“‘My dear, here we must run as fast as we can, just to stay in place.”



Bargmann geometry

(M : g) lorentzian
£ € X(M) nowhere vanishing g(f, f) = 0

bargmannian

null reduc’y \null hypersurface

galilean carrollian



Null reduction

(M , ) lorentzian

I" one-dimensional connected Lie group '~ M  isometrically

£ € X(M)  nullKilling vector field m: M — M :=M/T
€ QY (M) T =&
yeD(@TM)  my(a,B) = g((m" ), (7" B)*)
o, B e (M)

— (M, T,7) galilean



Null hypersurfaces

(M : g) lorentzian
£ € X(M) nowhere vanishing g(f, f) = 0

Suppose [fj‘,fL] C §J‘ ( < fb /\ dfb — O)

f - f L —> leaves of foliation are null hypersurfaces

1: N — M h =1"g  degenerate

— (N,f,h) carrollian



G-structures

lorentzian O(n —1,1) < GL(n,R)
t
galilean {((1) Zx) e GL(n, R) | veR"™ 1 AeO(n— 1)} ~ O(n — 1) x R"™!

carrollian {(21} 2) € GL(n,R) ‘ veR" 1 Ac O(n — 1)} ~0n—1)K R 1

aristotelian {G) 21) e GL(n,R) ‘ AeO(n— 1)} >~ 0O(n—1)

bargmannian
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(/1 —Lyty ot ‘

)

(0 1 O) € GL(n + 1,R) veER" 1, AcOMn—1)=20Mn—-1)xR"!
0 v A
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What are the intrinsic torsion classes of these G-structures?



Intrinsic torsion

M™ G < GL(n, R) P C F(M) (7 -structure
V affine connection adapted to P

TV(X,Y)=VxY —VyX — [X,Y] torsion

V' another adapted affine connection K =— V' -V ¢ Ql(M; ad P)

TV — TV = 9k §: QY (M;ad P) — Q*(M; TM)
Spencer @H(X, Y) = KxY — Ky X

coker 0 = (TM @ N*T*M)/0(ad P @ T*M)
intrinsic torsion [Tv} - F(Coker 8)



Lorentzian structures

(M, g)
ker 0 = coker 9 = 0

There exists a unique torsion-free adapted connection
I

metric

(Fundamental theorem of riemannian geometry.)



Galilean structures

(M, T,7) € QM) v e T(®*TM)

ker O =2 coker O =2 N2T* M unique proper G-sub-bundle
_Tv} — dT g1 C coker o

g() = dr =0 torsionless Newton—Cartan

M

G1 T ANdT =0 twistless torsional NC

M

Go = coker 0 TNdT # 0 torsional NC

dim M = 2.5 are special



Carrollian structures

(M, &, h) e X (M) h el (O*T*M)
ker @ =2 coker 0 = ®° Ann¢é = (h) ® ®f Ann £

TV| — Lch
Co =0 Leh =0 totally geodesic
C1 = ®F Ann ¢ divy, & =0 minimal
Co = (h) Leh och totally umbilical
Cs = &2 Ann & generic

dim M = 2 is special



Aristotelian structures

(M, &, m,h,y)  TeQY(M) EexX(M) T =1
v e T(G°TM) hel(®T"M)

Sixteen classes (dim M # 2,5)

T ANdT = ( < divp & =0
TAAT #0 Ler =0 Leh och

FAdT A0 Lot #0 none of the above



Bargmannian structures

(M, g,¢) 9(§,§) =0
G <O0O(n,1) = kerd=0
coker 0 = £+ Q@ T*M

[Tv} — VY f VY  Levi-Civita connection

dim M # 3, O 27 classes

dimM =3 11 classes
dimM = 0 47 classes



Null distributions

(M, g,¢) g9(¢,8) =0 &t cTM

L C fJ" line bundle spanned by & b= fJ‘/L
f + — B F/  has a riemannian structure
A=A hX,Y) = g(X,Y)

In all but the generic case [L,fJ‘] C fJ" (<= £ is geodetic)

which guarantees the existence of a null Weingarten map

W:.:E— FE
X = V%E




Null distributions

and a null second fundamental form

B(X,Y) = h(W(X),Y) = g(V%&, V)

B is symmetric <— [fJ_,fj_] C fJ_

Bym(X,Y) = B(X,Y) + B(Y,X)

1
f is totally geodesic if Bsym =0
minimalif trW/ = 0
totally umbilical if Bsym x h

generic otherwise.
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Outlook

Are the inclusions strict? (cf. G5 structures)
Construct examples
Higher invariants?

Supersymmetric kinematical G-structures?
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