The gauged WZ term with boundary

José Figueroa-O'Farrill

Edinburgh Mathematical Physics Group

LMS Durham Symposium, 29 July 2005

A quaternion of sigma models

WZ	bWZ
gWZ	gbWZ

... and one of cohomology theories

de Rham	relative de Rham
equivariant	relative equivariant

References

- hep-th/9407149
- Phys. Lett. **B341** (1994) 153–159, hep-th/9407196
- JHEP **01** (2001) 006, hep-th/0008038

with Sonia Stanciu

• hep-th/0506049

with Nouri Mohammedi

Sigma models

- Two oriented pseudo-riemannian manifolds: Σ^d , X^n
- $\partial \Sigma$ may or may not be empty
- $\varphi: \Sigma \to X$, $d\varphi \in \Omega^1(\Sigma, \varphi^*TX)$
- sigma model action

$$I_{\sigma} = \int_{\Sigma} \frac{1}{2} |d\varphi|^2$$

defines variational problem for harmonic maps $d\star_{\Sigma} d\varphi = 0$

The Wess–Zumino term

• $H \in \Omega^{d+1}_{\mathrm{closed}}(X)$

• assume $\partial \Sigma = \varnothing$ and $\varphi(\Sigma) \subset X$ bounds

 $\varphi(\Sigma) = \partial M \qquad \exists M \subset X$

Wess–Zumino term

$$I_{\mathsf{WZ}} = \int_M H$$

• $dH = 0 \implies$ field equations for φ

$$\delta I_{\mathsf{WZ}} = \int_M \mathscr{L}_{\delta\varphi} H = \int_M d\imath_{\delta\varphi} H = \int_{\varphi(\Sigma)} \imath_{\delta\varphi} H$$

- \therefore classical theory is independent of choice of M
- quantum theory depends on I_{WZ} modulo $2\pi\mathbb{Z}$
- ... quantum theory is independent of M if $[\frac{1}{2\pi}H]$ is an integral class in $H^{d+1}_{dR}(X)$

Example: the WZW model

- Σ two-dimensional
- X a compact simple Lie group
- $H_2(X) = 0$ so $\varphi(\Sigma)$ always bounds [Cartan]
- $\left[\frac{1}{2\pi}H\right]$ is k times the generator of $H^3(X;\mathbb{Z})\cong\mathbb{Z}$, where k is the level of the WZW model

The presence of a boundary

- suppose $\partial \Sigma \neq \emptyset \implies$ need to specify boundary conditions
- let $i: Y \hookrightarrow X$, $i^*H = dB$ for some $B \in \Omega^d(Y)$
- BCs: $\varphi(\partial \Sigma) \subset Y$
- \implies a theory of relative maps

 $\varphi: (\Sigma, \partial \Sigma) \to (X, Y)$

The boundary Wess–Zumino term

• $\varphi(\Sigma) \subset X$ is not a cycle, but it is a cycle modulo Y:

 $\partial \varphi(\Sigma) = \varphi(\partial \Sigma) \subset Y$

so suppose that it bounds modulo Y:

 $\exists M \subset X , \quad D \subset Y \qquad \text{s.t.} \qquad \partial M = \varphi(\Sigma) + D$

whence $\partial D = -\varphi(\partial \Sigma)$

boundary Wess–Zumino term

$$I_{\rm bWZ} = \int_M H - \int_D B$$

• *B* only enters in the boundary conditions:

$$\delta I_{\mathsf{bWZ}} = \int_{M} d\imath_{\delta\varphi} H - \int_{D} \mathscr{L}_{\delta\varphi} B = \int_{\varphi(\Sigma)} \imath_{\delta\varphi} H + \int_{\varphi(\partial\Sigma)} \imath_{\delta\varphi} B$$

and field equations are not otherwise changed

 \implies classical theory is again independent on choice of M and D, but quantum theory is not unless $\left[\frac{1}{2\pi}H\right]$ is an integral class in the relative de Rham cohomology $H_{dR}^{d+1}(X,Y)$

Example: the boundary WZW model

- $Y \subset X$ a (twisted) conjugacy class
- integrality of $\left[\frac{1}{2\pi}H\right] \in H^3_{dR}(X,Y)$ selects a discrete set of such conjugacy classes corresponding to unitary highest weight representations of the (twisted) affine Lie algebra at level k

Symmetries of sigma model with WZ term

- G a connected Lie group, with Lie algebra \mathfrak{g} with basis Z_a
- G acts on X isometrically preserving H
- $Z_a \mapsto v_a$ a Killing vector, $[v_a, v_b] = f_{ab}{}^c v_c$
- let $\imath_a := \imath_{v_a}$ and $\mathscr{L}_a := \mathscr{L}_{v_a}$, then $\mathscr{L}_a = d\imath_a + \imath_a d$
- $\mathscr{L}_a H = 0$, equivalently $d\imath_a H = 0$

Gauging a sigma model

• means coupling it to a gauge field $A \in \Omega^1(\Sigma, \mathfrak{g})$ so that the action is invariant under (infinitesimal) gauge transformations:

 $\delta_{\lambda}A = d\lambda + [A, \lambda]$ $\delta_{\lambda}\omega = d\lambda^{a} \wedge \imath_{a}\omega + \lambda^{a}\mathscr{L}_{a}\omega$

where $\omega \in \Omega(X)$ and $\lambda \in C^{\infty}(\Sigma, \mathfrak{g})$

• can write $\delta_{\lambda}A = d\lambda^a \wedge \imath_a A + \lambda^a \mathscr{L}_a A$ by defining

 $\imath_a A^b = \delta^b_a \qquad \imath_a F^b = 0 \qquad \text{and} \qquad \mathscr{L}_a = d\imath_a + \imath_a d$

where $F = dA + \frac{1}{2}[A, A]$ is the field-strength

Minimal coupling

• $I_{\sigma} = \int_{\Sigma} \frac{1}{2} |d\varphi|^2$ can be gauged by minimal coupling:

$$d\varphi \mapsto d_A \varphi := d\varphi - A^a \imath_a d\varphi$$

but I_{WZ} is a different matter: the minimally coupled H need not be closed

Gauging the WZ term

• means extending H to a closed gauge-invariant form \mathscr{H} :

 $\mathscr{H} = H + \text{terms involving } A \text{ and } F$

such that $d\mathscr{H} = 0$ and

$$\delta_{\lambda}\mathscr{H} = d\lambda^a \wedge \imath_a \mathscr{H} + \lambda^a \mathscr{L}_a \mathscr{H} = 0$$

equivalently $\imath_a \mathscr{H} = 0$ (and $\mathscr{L}_a \mathscr{H} = 0$)

Differential graded algebras

- a g-dga 🎗:
 - ★ $\mathfrak{A} = \bigoplus_{i \ge 0} \mathfrak{A}^i$ ★ (associative, supercommutative) product

$$\wedge:\mathfrak{A}^i\otimes\mathfrak{A}^j\to\mathfrak{A}^{i+j}$$

- \star differential $d: \mathfrak{A}^i \to \mathfrak{A}^{i+1}$, $d^2 = 0$
- \star derivation $\imath_a:\mathfrak{A}^i
 ightarrow \mathfrak{A}^{i-1}$
- \star derivation $\mathscr{L}_a = d\imath_a + \imath_a d$ defines g-action

- $\Omega(X)$ is a g-dga
- so is the Weyl algebra

$$\mathfrak{W}=\Lambda\mathfrak{g}^*\otimes\mathfrak{Sg}^*$$

with generators $\mathscr{A}^a \in \Lambda^1 \mathfrak{g}^*$ and $\mathscr{F}^a \in \mathfrak{S}^1 \mathfrak{g}^*$ and where $\imath_a \mathscr{A}^b = \delta^b_a$ and $\imath_a \mathscr{F}^b = 0$ and $d\mathscr{A}^a = \mathscr{F}^a - \frac{1}{2} f_{bc}{}^a \mathscr{A}^b \wedge \mathscr{A}^c$

- Weyl homomorphism $w:\mathfrak{W}\to\Omega(\Sigma,\mathfrak{g})$ defined by $\mathscr{A}^a\mapsto A^a$ and $\mathscr{F}^a\mapsto F^a$
- $\Omega(X)\otimes \mathfrak{W}$ is a \mathfrak{g} -dga

Equivariant forms

- \mathfrak{A} a \mathfrak{g} -dga, then $\phi \in \mathfrak{A}$ is
 - \star horizontal, if $\imath_a \phi = 0$
 - \star invariant, if $\mathscr{L}_a \phi = 0$
 - * equivariant, if both
- $\Omega_{\mathfrak{g}}(X)$: subcomplex of equivariant elements of $\Omega(X)\otimes\mathfrak{W}$
- $\{w(\phi) \mid \phi \in \Omega_{\mathfrak{g}}(X)\}$ are gauge-invariant
- : gauging the WZ term is finding an equivariant closed extension $\mathscr{H}\in\Omega^{d+1}_{\mathfrak{g}}(X)$ of $H\in\Omega^{d+1}(X)$

The Cartan model

- in a local gauge-invariant quantity, A only appears in minimally coupled expressions (or through F)
- this suggests defining

 $\Omega_C(X) := (\Omega(X) \otimes \mathfrak{Sg}^*)^{\mathfrak{g}}$

called the Cartan model of $\Omega_{\mathfrak{g}}(X)$

• indeed, $\Omega_C(X) \cong \overline{\Omega_{\mathfrak{g}}(X)}$

- $\pi: \Omega_{\mathfrak{g}}(X) \xrightarrow{\cong} \Omega_C(X)$ consists in setting $\mathscr{A} = 0$
- $\pi^{-1}: \Omega_C(X) \xrightarrow{\cong} \Omega_{\mathfrak{g}}(X)$ consists of minimal coupling
- induced differential $d_C = \pi \circ d \circ \pi^{-1} : \Omega^p_C(X) \to \Omega^{p+1}_C(X)$ is

$$d_C \mathscr{F}^a = 0$$
 and $d_C \omega = d\omega - \imath_a \omega \mathscr{F}^a$

for $\omega \in \Omega(X)$

• gauging WZ term is equivalent to finding a d_C -closed extension $\mathscr{H}_C \in \Omega_C(X)$

The Hull–Spence obstructions

• write the most general \mathscr{H}_C in the Cartan model

$$\mathscr{H}_C = H + \theta_a \mathscr{F}^a + \frac{1}{2} \theta_{ab} \mathscr{F}^a \mathscr{F}^b + \cdots$$

where $\theta_a \in \Omega^{d-1}(X)$, $\theta_{ab} \in \Omega^{d-3}(X)$,... satisfy

$$\mathscr{L}_a\theta_b = f_{ab}{}^c\theta_c \qquad \mathscr{L}_a\theta_{bc} = f_{ab}{}^d\theta_{dc} + f_{ac}{}^d\theta_{bd}$$

• • •

• splitting $d_C \mathscr{H}_C = 0$ into types:

$$i_a H = d\theta_a \qquad i_a \theta_b + i_b \theta_a = d\theta_{ab} \qquad \dots$$

which are the first two Hull–Spence obstructions

• overcoming these obstructions yields \mathscr{H}_C and minimal coupling yields \mathscr{H} and the gauged WZ term

$$I_{\mathsf{gWZ}} = \int_M \mathscr{H}$$

The two-dimensional case

- $\mathscr{H}_C = H + \theta_a \mathscr{F}^a$
- $d_C \mathscr{H}_C = 0$ implies
 - $i_a H = d\theta_a$ and $i_a \theta_b + i_b \theta_a = 0$

• $\mathscr{L}_a\mathscr{H}_C = 0$ implies

 $\mathscr{L}_a \theta_b = f_{ab}{}^c \theta_c$

• the gauged WZ term is

$$I_{\mathsf{gWZ}} = \int_{M} H + \int_{\Sigma} \left(\varphi^* \theta_a \wedge A^a + \frac{1}{2} \varphi^* (\imath_a \theta_b) A^a \wedge A^b \right)$$

[Hull & Spence; Jack, Jones, Mohammedi & Osborn]

- to this action we can add a Yang–Mills term $\int_{\Sigma} \frac{1}{4} |F|^2$
- or other topological terms, corresponding to cocycles in $\Omega^3_{\mathfrak{g}}(X)$

Example: the gauged WZW model

• we try to gauge $\mathfrak{g} \subset \mathfrak{x} \oplus \mathfrak{x}$ defined by homomorphisms

 $\ell:\mathfrak{g}
ightarrow \mathfrak{x}$ and $r:\mathfrak{g}
ightarrow \mathfrak{x}$

• the only obstruction is

$$\ell^* \left< -, - \right> = r^* \left< -, - \right>$$

with $\langle -, - \rangle$ is the ad-invariant scalar product on \mathfrak{x}

- typical "anomaly-free" g:
 - \star diagonal: $\ell = r$
 - \star twisted diagonal: $\ell = r \circ \tau$ for some isometry $\tau \in Aut(\mathfrak{x})$
 - \star chiral: r = 0 and $\mathfrak{g} \subset \mathfrak{x}$ an isotropic subalgebra

The twisted Courant algebroid on $T\oplus \Lambda^{d-1}T^*$

• $TX \oplus \Lambda^{d-1}T^*X$ has a $\Lambda^{d-2}T^*X$ -valued bilinear

$$\langle v + \alpha, w + \beta \rangle = \imath_v \beta + \imath_w \alpha \in \Lambda^{d-2} T^* X$$

• and also has a Courant bracket:

$$[v + \alpha, w + \beta] = [v, w] + \mathscr{L}_v \beta - \mathscr{L}_w \alpha - \frac{1}{2} d(\imath_v \beta - \imath_w \alpha)$$

• $H \in \Omega^{d+1}_{\text{closed}}(X)$ twists the bracket

$$[v + \alpha, w + \beta]_H = [v + \alpha, w + \beta] - \imath_v \imath_w H$$

• we say $L \subset TX \oplus \Lambda^{d-1}T^*X$ is isotropic if for all $v + \alpha \in C^{\infty}(L)$, $\imath_v \alpha \in \Omega^{d-2}_{\text{exact}}(X)$

• an isotropic, involutive L defines a Lie algebroid over X

The Lie algebroid of the gauged WZ term

- let L be the image of $\mathfrak{g}\to C^\infty(TX\oplus\Lambda^{d-1}T^*X)$ given by $Z_a\mapsto v_a+\theta_a$

• $\iota_a \theta_b + \iota_b \theta_a = d\theta_{ab}$, whence *L* is isotropic

• $d\theta_a = \imath_a H$ and $\mathscr{L}_a \theta_b = f_{ab}{}^c \theta_c$ then imply that L is involutive

• so L defines a Lie algebroid isomorphic to \mathfrak{g} [cf. Alekseev & Strobl (d = 2), Bonelli & Zabzine]

Gauging the boundary WZ term

• assume G acts preserving (Y, B)

- gauging I_{bWZ} consists in finding equivariant extensions \mathscr{H} and \mathscr{B} of H and B such that $d\mathscr{H} = 0$ and $i^*\mathscr{H} = d\mathscr{B}$ on Y
- or in the Cartan model finding \mathscr{H}_C and \mathscr{B}_C with $d_C \mathscr{H}_C = 0$ and $i^* \mathscr{H}_C = d_C \mathscr{B}_C$
- the gauged boundary WZ term is then

$$I_{\rm gbWZ} = \int_M \mathscr{H} - \int_D \mathscr{B}$$

Two-dimensional gauged boundary WZ term

• $\mathscr{B}_C = B + h_a \mathscr{F}^a$, where $h_a \in C^{\infty}(X)$ obeying

 $\mathscr{L}_a h_b = f_{ab}{}^c h_c$

• $i^* \mathscr{H}_C = d_C \mathscr{B}_C$ is equivalent to

$$i^*\theta_a + i_a B = dh_a$$

and

$$I_{gbWZ} = \int_{M} H - \int_{D} B + \int_{\Sigma} \left(\varphi^{*} \theta_{a} \wedge A^{a} + \frac{1}{2} \varphi^{*} (\imath_{a} \theta_{b}) A^{a} \wedge A^{b} \right) + \int_{\partial \Sigma} \varphi^{*} h_{a} A^{a}$$

- one can add topological terms, corresponding to relative cocycles in $\Omega^3_{\mathfrak{g}}(X,Y)$

The boundary Lie algebroid

• the twisted Courant bracket restricts to $TY \oplus \Lambda^{d-1}T^*Y$, but since $i^*H = dB$, it is *B*-related to the untwisted Courant bracket:

$$[v + \alpha, w + \beta]_{dB} = [e^B(v + \alpha), e^B(w + \beta)]$$

• the image of the map $\mathfrak{g} \to C^{\infty}(TY \oplus \Lambda^{d-1}T^*Y)$ defined by

$$Z_a \mapsto e^B(v_a + i^*\theta_a) = v_a + \imath_a B + i^*\theta_a = v_a + dh_a$$

is isotropic and involutive: a Lie algebroid on Y isomorphic to \mathfrak{g}

Example: the gauged boundary WZW model

• possible boundary conditions are *G*-orbits:

* (twisted) diagonal gaugings: (twisted) conjugacy classes
 * chiral gaugings: cosets

boundary offers no new obstructions

• $dh_a = 0$ and $h_a \in [\mathfrak{g}, \mathfrak{g}]^o$

- boundary Lie algebroid is the action Lie algebroid of $\mathfrak g$ on Y

Open questions

- are there CFT constructions for the cosets?
- relation with boundary conditions on $X \times X$?
- relation with boundary integrable systems?
- (oidish) interpretation for 'higher' obstructions?

Thank you!

