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Basic terminology I
“manifold”: smooth, connected, finite-dimensional

“Lie group”: finite-dimensional with identity 1
G acts on M (on the left) via G×M→M, sending
(γ,m) 7→ γ ·m
actions are effective: γ ·m = m, ∀m =⇒ γ = 1
M is homogeneous (under G) if either

1 G acts transitively: i.e., there is only one orbit; or
2 for every m ∈M, G→M sending γ 7→ γ ·m is surjective
3 given m,m ′ ∈M, ∃γ ∈ G with γ ·m = m ′

γ defined up to right multiplication by the stabiliser of m:
H = {γ ∈ G|γ ·m = m}, a closed subgroup of G
M ∼= G/H, hence M is a coset manifold
H→ G

↓
M

is a principal H-bundle
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José Figueroa-O’Farrill Why I like homogeneous manifolds 2 / 36



Basic terminology I
“manifold”: smooth, connected, finite-dimensional
“Lie group”: finite-dimensional with identity 1
G acts on M (on the left) via G×M→M, sending
(γ,m) 7→ γ ·m
actions are effective: γ ·m = m, ∀m =⇒ γ = 1
M is homogeneous (under G) if either

1 G acts transitively: i.e., there is only one orbit; or

2 for every m ∈M, G→M sending γ 7→ γ ·m is surjective
3 given m,m ′ ∈M, ∃γ ∈ G with γ ·m = m ′

γ defined up to right multiplication by the stabiliser of m:
H = {γ ∈ G|γ ·m = m}, a closed subgroup of G
M ∼= G/H, hence M is a coset manifold
H→ G

↓
M

is a principal H-bundle
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Basic terminology II
the action of G on M defines G→ DiffM

the differential g→X (M)

evaluating at m ∈M: exact sequence of H-modules

0 −−−−→ h −−−−→ g −−−−→ TmM −−−−→ 0

linear isotropy representation of H on TmM is defined for
γ ∈ H as (dγ·)m : TmM→ TmM

it agrees with the representation on g/h induced by the
adjoint representation restricted to h

G/H reductive: the sequence splits (as H-modules); i.e.,
g = h⊕m with m an Ad(H)-module
there is a one-to-one correspondence{

Ad(H)-invariant
tensors on m

}
↔
{

H-invariant
tensors on TmM

}
↔
{

G-invariant
tensor fields on M

}
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Many of our favourite manifolds are homogeneous:

Examples
Lie groups (H = {1})

affine space An under the group of translations
sphere Sn = SO(n+ 1)/SO(n)

hyperbolic space Hn ∼= SO(n, 1)/SO(n)

projective space CPn = U(n+ 1)/U(n)×U(1)
real grassmannians SO(p+ q)/SO(p)× SO(q)

complex grassmannians U(p+ q)/U(p)×U(q)
more exotic grassmannians SU(n)/SO(n),...
our (spatial) universe!
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The principle of mediocrity

The cosmological principle
At sufficiently large scales, the Universe looks the same to all
observers.

Mathematical rephrasing
As far as cosmology is concerned, the spatial universe is a
3-dimensional homogeneous manifold.

The big questions
What (topological) manifold is it? Is it compact?
Simply-connected?
We know it’s expanding: but will it do so forever? or will it
eventually contract?
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José Figueroa-O’Farrill Why I like homogeneous manifolds 5 / 36



The principle of mediocrity

The cosmological principle
At sufficiently large scales, the Universe looks the same to all
observers.

Mathematical rephrasing
As far as cosmology is concerned, the spatial universe is a
3-dimensional homogeneous manifold.

The big questions
What (topological) manifold is it? Is it compact?
Simply-connected?
We know it’s expanding: but will it do so forever? or will it
eventually contract?
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Homogeneous (pseudo)riemannian manifolds
(M,g) with g ∈ C∞(S2T∗M) everywhere nondegenerate

g has constant signature (p,q):

(n, 0): riemannian
(n− 1, 1): lorentzian

(M,g) homogeneous under G if G acts transitively by
isometries: γ∗g = g for all γ ∈ G
g acts via Killing vector fields: LXg = 0
gm is H-invariant inner product on TmM
in the reductive case and assuming π1(M) = {1} (or H
connected), (M,g) is described algebraically by

1 g = h⊕m
2 h-invariant inner product 〈−,−〉 on m

riemannian: H compact, so G/H reductive
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Reductive homogeneous manifolds

Theorem (Ambrose–Singer, 1958; Kostant, 1960)
A simply-connected (pseudo)riemannian manifold (M,g) is
reductive homogeneous if and only if there exists a linear
connection ∇ with torsion T and curvature R satisfying

1 ∇g = 0
2 ∇T = 0
3 ∇R = 0

if T = 0 then (M,g) is a symmetric space
Cartan (1926)

if R = 0 then (M,g) is either a Lie group with a bi-invariant
metric or the round 7-sphere

Cartan–Schouten (1926); Wolf (1971-2)
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Many of our favourite manifolds have homogeneous metrics:

Examples
left-invariant metrics on Lie groups

euclidean metric on affine space An

round metric on sphere Sn = SO(n+ 1)/SO(n)

Poincaré metric on hyperbolic space Hn ∼= SO(n, 1)/SO(n)

Fubini–Study metric on complex projective space
CPn = U(n+ 1)/U(n)×U(1)
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The name of the game in differential geometry

... is finding “nice” metrics; e.g.,

constant sectional curvature
constant scalar curvature
Einstein: Ric = g

extremal, etc
These are curvature conditions =⇒ (hard) PDEs on g
But on a homogeneous manifold, for X, Y ∈ m Killing

∇XY|m = −1
2 [X, Y]m +U(X, Y)

where U : S2m→ m is defined by

〈U(X, Y),Z〉 = 1
2 〈[Z,X]m, Y〉+ 1

2 〈[Z, Y]m,X〉

curvature conditions (e.g., Einstein) =⇒ algebraic
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Homogeneous riemannian Einstein manifolds
A lot is known in low dimension.

Theorem (Böhm–Kerr, 2003)
Every simply-connected, homogeneous, riemannian manifold of
dimension 6 11 admits a homogeneous Einstein metric.

Theorem (Wang–Ziller, 1986)
There is a simply-connected, homogeneous, riemannian
manifold of dimension 12 which does not admit a homogeneous
Einstein metric.

But for more than century now, in Physics we work in lorentzian
signature...
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The birth of spacetime

Hermann Minkowski (1908)
Die Anschauungen über Raum und Zeit,
die ich Ihnen entwicklen möchte, sind auf
experimentell-physikalischem Boden
erwachsen. Darin liegt ihre Stärke. Ihre
Tendenz ist eine radikale. Von Stund’ an
sollen Raum für sich und Zeit für sich
völlig zu Schatten herabsinken und nur
noch eine Art Union der beiden soll
Selbständigkeit bewahren.
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The birth of spacetime

Hermann Minkowski (1908)
The views of space and time that I wish to
lay before you have sprung from the soil
of experimental physics, and therein
lies their strength. They are radical.
Henceforth space by itself, and time by
itself, are doomed to fade away into mere
shadows, and only a kind of union of both
will retain an independent reality.
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In the beginning there was Newton...

“space and time are absolute”

universe is an A3 (space) bundle over A1 (time)
invariant notions:

time differences
distances between simultaneous points

relavity group = symmetry of trajectories of free particles
Galilean group: translations, rotations, boosts
velocities add
inconsistent with the propagation of light!
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José Figueroa-O’Farrill Why I like homogeneous manifolds 12 / 36



In the beginning there was Newton...

“space and time are absolute”
universe is an A3 (space) bundle over A1 (time)
invariant notions:

time differences
distances between simultaneous points

relavity group = symmetry of trajectories of free particles
Galilean group: translations, rotations, boosts

velocities add
inconsistent with the propagation of light!
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And Maxwell said “Let there be light”

Maxwell’s equations describe the propagation of
electromagnetic waves (e.g., light)

They are not Galilean invariant, but Poincaré invariant
Poincaré group: isometries of a flat homogeneous
lorentzian manifold
Minkowski spacetime: a very accurate model of the
universe (at some scales)
It is consistent with quantum theory (RQFT) and is
spectacularly successful:(
g− 2

2

)
=

{
1 159 652 182.79(7.71)× 10−12 theory
1 159 652 180.73(0.28)× 10−12 experiment
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José Figueroa-O’Farrill Why I like homogeneous manifolds 13 / 36



Einstein’s theory of general relativity
Equivalence principle: gravitation is geometric!

Minkowski spacetime is flat: geodesics which start parallel
remain parallel
Replace it with (four-dimensional) lorentzian (M,g)
subject to Einstein equations:

Ric = T

where T models the “matter” in the universe

GR mantra
Spacetime tells matter how to move,
matter tells spacetime how to curve
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José Figueroa-O’Farrill Why I like homogeneous manifolds 14 / 36



Einstein’s theory of general relativity
Equivalence principle: gravitation is geometric!
Minkowski spacetime is flat: geodesics which start parallel
remain parallel
Replace it with (four-dimensional) lorentzian (M,g)
subject to Einstein equations:

Ric = T

where T models the “matter” in the universe

GR mantra
Spacetime tells matter how to move,
matter tells spacetime how to curve
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Supergravity
result of ongoing effort to marry GR and quantum theory

many supergravity theories, painstakingly constructed in
the 1970s and 1980s
“crown jewels of mathematical physics”
the formalism could use some improvement!
The geometric set-up:

(M,g) a lorentzian, spin manifold of dimension 6 11
some extra geometric data, e.g., differential forms F, . . .
a connection D = ∇+ · · · on the spinor bundle

g, F, . . . are subject to Einstein-like equations
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Eleven-dimensional supergravity
Unique supersymmetric theory in d = 11

Nahm (1979), Cremmer+Julia+Scherk (1980)

(bosonic) fields: lorentzian metric g, 3-form A

Field equations from action (with F = dA)

1
2

∫
Rdvol︸ ︷︷ ︸

Einstein–Hilbert

− 1
4

∫
F∧ ?F︸ ︷︷ ︸

Maxwell

+ 1
12

∫
F∧ F∧A︸ ︷︷ ︸

Chern–Simons

Explicitly,

d ? F = 1
2F∧ F

Ric(X, Y) = 1
2〈ιXF, ιYF〉− 1

6g(X, Y)|F|2

together with dF = 0
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Homogeneous supergravity backgrounds
A triple (M,g, F) where dF = 0 and (g, F) satisfying the
above PDEs is called an (eleven-dimensional)
supergravity background.

A background (M,g, F) is said to be homogeneous if some
Lie group G acts transitively on M preserving both g and F.
There is by now a huge catalogue of eleven-dimensional
supergravity backgrounds:

Freund–Rubin: AdS4 × X7, AdS7 × X4,...
pp-waves
branes: elementary, intersecting, overlapping, wrapped,...
Kaluza–Klein monopoles,...
...

Many of them are homogeneous or of low cohomogeneity.
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Supersymmetry

Eleven-dimensional supergravity has local supersymmetry

manifests itself as a connection D on the spinor bundle
D is not induced from a connection on the spin bundle
the field equations are encoded in the curvature of D:∑

i

ei · RD(ei,−) = 0

geometric analogies:

∇ε = 0 =⇒ Ric = 0
∇Xε =

1
2X · ε =⇒ Einstein

a background (M,g, F) is supersymmetric if there exists a
nonzero spinor field ε satisfying Dε = 0
such spinor fields are called Killing spinors
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Killing spinors

Not every manifold admits spinors: so an implicit condition
on (M,g, F) is that M should be spin

The spinor bundle of an eleven-dimensional lorentzian spin
manifold is a real 32-dimensional symplectic vector bundle
The Killing spinor equation is

DXε = ∇Xε+
1

12(X
[ ∧ F) · ε− 1

6 ιXF · ε = 0

which is a linear, first-order PDE:

linearity: solutions form a vector space
first-order: solutions determined by their values at any point

the dimension of the space of Killing spinors is 0 6 n 6 32
a background is said to be ν-BPS, where ν = n

32
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Supersymmetries generate isometries

The Dirac current V of a Killing spinor ε is defined by

g(V,X) = (ε,X · ε)

Fact: V is Killing and LVF = 0 =⇒ LVD = 0
ε Killing spinor =⇒ so is LVε

This turns the vector space g = g0 ⊕ g1, where

g0 is the space of F-preserving Killing vector fields, and
g1 is the space of Killing spinors

into a Lie superalgebra
JMF+Meessen+Philip (2004)

It is called the Killing superalgebra of the supersymmetric
background (M,g, F)
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The homogeneity conjecture

Empirical Fact
Every known ν-BPS background with ν > 1

2 is homogeneous.

Meessen (2004)

Theorem
Every ν-BPS background of eleven-dimensional supergravity
with ν > 3

4 is homogeneous.
JMF+Meessen+Philip (2004)

What we proved is that the ideal [g1, g1] of g0 generated by the
Killing spinors spans the tangent space to every point of M:
:::::
local homogeneity
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Generalisations

Theorem
Every ν-BPS background of type IIB supergravity with ν > 3

4 is
homogeneous.
Every ν-BPS background of type I and heterotic supergravities
with ν > 1

2 is homogeneous.
JMF+Hackett-Jones+Moutsopoulos (2007)

The theorems actually suggest a stronger version of the
conjecture: that the symmetries which are generated from the
supersymmetries already act (locally) transitively.
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What good is it?

If the homogeneity conjecture were true, then classifying
homogeneous supergravity backgrounds would also classify
ν-BPS backgrounds for ν > 1

2 .

This would be good because

the supergravity field equations for homogeneous
backgrounds are algebraic and hence simpler to solve than
PDEs
we have learnt a lot (about string theory) from
supersymmetric supergravity backgrounds, so their
classification could teach us even more
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Homogeneous supergravity backgrounds

A homogeneous eleven-dimensional supergravity background
is described algebraically by the data (g, h,γ,ϕ), where

g = h⊕m with dimm = 11
γ is an h-invariant lorentzian inner product on m

ϕ is an h-invariant 4-form ϕ ∈ Λ4m

subject to some algebraic equations which are given purely in
terms of the structure constants of g (and h).

Skip technical details
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Explicit expressions

Choose a basis Xa for h and a basis Yi for m.

This defines
structure constants:

[Xa,Xb] = fab
cXc

[Xa, Yi] = faijYj + faibXb

[Yi, Yj] = fijaXa + fij
kYk

If M is reductive, then faib = 0. We will assume this in what
follows.
The metric and 4-forms are described by h-invariant tensors γij
and ϕijkl.
We raise and lower indices with γij.
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Homogeneous Hodge/de Rham calculus

The G-invariant differential forms in M = G/H form a
subcomplex of the de Rham complex:

the de Rham differential is given by

(dϕ)jklmn = −f[jk
iϕlmn]i

the codifferential is given by

(δϕ)ijk = −3
2fm[i

nϕm
jk]n − 3Um[i

nϕm
jk]n −Um

mnϕnijk

where Uijk = fi(jk)
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Homogeneous Ricci curvature

Finally, the Ricci tensor for a homogeneous (reductive) manifold
is given by

Rij = −1
2fi

k`fjk` −
1
2fik

`fj`
k + 1

2fik
afaj

k

+ 1
2fjk

afai
k − 1

2fk`
`fkij −

1
2fk`

`fkji +
1
4fk`if

k`
j

It is now a matter of assembling these ingredients to write down
the supergravity field equations in a homogeneous Ansatz.
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Methodology

Classifying homogeneous supergravity backgrounds of a
certain type involves now the following steps:

Classify the desired homogeneous geometries
For each such geometry parametrise the space of invariant
lorentzian metrics (γ1,γ2, . . . ) and invariant closed 4-forms
(ϕ1,ϕ2, . . . )
Plug them into the supergravity field equations to get
(nonlinear) algebraic equations for the γi,ϕi

Solve the equations!
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Homogeneous lorentzian manifolds I

Their classification can seem daunting!

We wish to classify d-dimensional lorentzian manifolds
(M,g) homogeneous under a Lie group G.
Then M ∼= G/H with H a closed subgroup.
One starts by classifying Lie subalgebras h ⊂ g with

codimension d
Lie subalgebras of closed subgroups
leaving invariant a lorentzian inner product on g/h

This is hopeless except in very low dimension.
One can fare better if G is semisimple.

Definition
The action of G on M is proper if the map G×M→M×M,
(γ,m) 7→ (γ ·m,m) is proper. In particular, proper actions have
compact stabilisers.
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Homogeneous lorentzian manifolds II
What if the action is not proper?

Theorem (Kowalsky, 1996)
If a simple Lie group acts transitively and non-properly on a
lorentzian manifold (M,g), then (M,g) is locally isometric to
(anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)
If a semisimple Lie group acts transitively and non-properly on a
lorentzian manifold (M,g), then (M,g) is locally isometric to the
product of (anti) de Sitter spacetime and a riemannian
homogeneous space.

This means that we need only classify Lie subalgebras
corresponding to compact Lie subgroups!
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Some recent classification results

Symmetric eleven-dimensional supergravity backgrounds
JMF (2011)

Symmetric type IIB supergravity backgrounds
JMF+Hustler (in preparation)

Homogeneous M2-duals: g = so(3, 2)⊕ so(N) for N > 4
JMF+Ungureanu (in preparation)
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A moduli space of AdS5 symmetric backgrounds

AdS5 × S2 × S2 × S2

AdS5 × S2 × S2 ×H2

AdS5 × S2 × S2 × T2
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A moduli space of AdS3 symmetric backgrounds

AdS3 × CP2 × S2 × S2

AdS3 × CP2 × S2 ×H2

AdS3 × CH2 × S2 × S2

AdS3 × CP2 ×H2 ×H2

AdS3 × CP2 ×H2 × T2

AdS3 × CP2 × S2 × T2

AdS3 × T4 × S2 × S2

AdS3 × CP2 × T4

AdS3 × S2 × T6
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A moduli space of AdS2 symmetric backgrounds

AdS2 × S5 × S2 × S2

AdS2 × S5 × S2 ×H2

AdS2 × S5 ×H2 ×H2

AdS2 ×H5 × S2 × S2

AdS2 × S5 × S2 × T2

AdS2 × S5 ×H2 × T2

AdS2 × T5 × S2 × S2

AdS2 × S5 × T4

AdS2 × S2 × T7
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And one final gratuitous pretty picture

AdS2 × CP2 × S3 × S2
AdS2 × CP2 × S3 ×H2
AdS2 × CP2 ×H3 × S2
AdS2 × CP2 ×H3 ×H2
AdS2 × CH2 × S3 × S2
AdS2 × CP2 × S3 × T2
AdS2 × CP2 × T5
AdS2 × CP2 ×H3 × T2
AdS2 × S3 × S2 × T4
AdS2 × S3 × T6
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Summary and outlook

With patience and optimism, some classes of
homogeneous backgrounds can be classified

In particular, we can “dial up” a semisimple G and hope to
solve the homogeneous supergravity equations with
symmetry G
Checking supersymmetry is an additional problem,
perhaps it can be done at the same time by considering
homogeneous supermanifolds
The proof of the homogeneity conjecture remains elusive...

Thank you for your attention
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José Figueroa-O’Farrill Why I like homogeneous manifolds 36 / 36



Summary and outlook

With patience and optimism, some classes of
homogeneous backgrounds can be classified
In particular, we can “dial up” a semisimple G and hope to
solve the homogeneous supergravity equations with
symmetry G
Checking supersymmetry is an additional problem,
perhaps it can be done at the same time by considering
homogeneous supermanifolds
The proof of the homogeneity conjecture remains elusive...

Thank you for your attention
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