Time-dependent string backgrounds via quotients

José Figueroa-O'Farrill

EMPG, School of Mathematics

Erwin Schrödinger Institut, 11 May 2004

Based on work in collaboration with Joan Simón (Pennsylvania)

1

• JHEP 12 (2001) 011, hep-th/0110170

• JHEP 12 (2001) 011, hep-th/0110170

• Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206 (to appear in Adv. Theor. Math. Phys.)

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206 (to appear in Adv. Theor. Math. Phys.), and
- hep-th/0402094 (to appear in Phys. Rev. D)

• fluxbrane backgrounds in type II string theory

- fluxbrane backgrounds in type II string theory
- string theory in
 - * time-dependent backgrounds

• fluxbrane backgrounds in type II string theory

• string theory in

 \star time-dependent backgrounds, and

* causally singular backgrounds

• fluxbrane backgrounds in type II string theory

• string theory in

* time-dependent backgrounds, and

causally singular backgrounds

supersymmetric Clifford–Klein space form problem

• (M, g, F, ...) a supergravity background

- (M, g, F, ...) a supergravity background
- symmetry group *G*

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...
- determine all quotient supergravity backgrounds M/Γ

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity

- (M, g, F, ...) a supergravity background
- symmetry group G— <u>not</u> just isometries, but also preserving F, ...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry,...

4

- (M, g, F, \ldots)
- symmetries

- (M, g, F, \ldots)
- symmetries

 $f:M\xrightarrow{\cong} M$

- (M, g, F, \ldots)
- symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g$$

- (M, g, F, \ldots)
- symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g \qquad f^*F = F$$

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G

• (M, g, F, ...)

symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

• (M, g, F, ...)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \}$

• $X \in \mathfrak{g}$ also defines a Killing vector ξ_X
$$\mathcal{L}_{\xi_X}g = 0$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \ \Gamma \cong S^1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

★ $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ ★ $\Gamma \cong \mathbb{R}$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

• we are interested in the orbit space M/Γ

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong \mathbb{R}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

 $\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

$$\star$$
 Kaluza–Klein reduction by Γ/Γ_L

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z} \cong S^1$

• we may stop after the first step

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - $\star M$ static, but M/Γ_L time-dependent

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - \star M spin, but M/Γ_L not spin

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
 - $\star M$ supersymmetric, but M/Γ_L breaking all supersymmetry

• (M, g, F, ...) with symmetry group G

• (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}

- (M, g, F, ...) with symmetry group G, Lie algebra g
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \overline{\exp(tX) \mid t \in \mathbb{R}} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

• if $X' = gXg^{-1}$, then $\Gamma' = g\Gamma g^{-1}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\overline{\Gamma} = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

• if $X' = gXg^{-1}$, then $\Gamma' = g\Gamma g^{-1}$, and moreover $M/\Gamma \cong M/\Gamma'$
• enough to classify normal forms of $X \in \mathfrak{g}$ under

$$X \sim \lambda g X g^{-1} \qquad g \in G \quad \lambda \in \mathbb{R}^{\times}$$

• enough to classify normal forms of $X \in \mathfrak{g}$ under

$$X \sim \lambda g X g^{-1} \qquad g \in G \quad \lambda \in \mathbb{R}^{\times}$$

i.e., projectivised adjoint orbits of ${\mathfrak g}$

•
$$(\mathbb{R}^{1,9}, F = 0)$$

10

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9}$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \qquad A \in O(1,9)$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1,9) \qquad \boldsymbol{v} \in \mathbb{R}^{1,9}$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1,9) \qquad \boldsymbol{v} \in \mathbb{R}^{1,9}$

• $\Gamma \subset \mathcal{O}(1,9) \ltimes \mathbb{R}^{1,9}$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1,9) \qquad \boldsymbol{v} \in \mathbb{R}^{1,9}$

• $\Gamma \subset O(1,9) \ltimes \mathbb{R}^{1,9}$, generated by

 $X = X_L + X_T \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$

• $(\mathbb{R}^{1,9}, F = 0)$ has symmetry $O(1,9) \ltimes \mathbb{R}^{1,9} \subset GL(11,\mathbb{R})$: $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix} \qquad A \in O(1,9) \qquad v \in \mathbb{R}^{1,9}$

• $\Gamma \subset O(1,9) \ltimes \mathbb{R}^{1,9}$, generated by

$$X = X_L + X_T \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9} ,$$

which we need to put in normal form.

 $\bullet \ X \ \in \ \mathfrak{so}(p,q)$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear

• $\overline{X} \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_i X_i$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

• $X \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

$$\mathbb{R}^{p+q} = \bigoplus_i \mathbb{V}_i$$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

for each indecomposable block

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$, λ^*

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$, λ^* , and $-\lambda^*$

 $\star \lambda = 0$

$$\star \ \lambda = 0 \qquad \qquad \mu(x) = x^r$$

$$\begin{array}{l} \star \ \lambda = 0 \\ \star \ \lambda = \beta \in \mathbb{R} \end{array} \qquad \qquad \mu(x) = x^n \\ \end{array}$$

 $\begin{array}{l} \star \ \lambda = 0 & \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, & \mu(x) = (x^2 - \beta^2)^n \end{array} \end{array}$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \ \lambda = i\varphi \in i\mathbb{R}$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \; \lambda = i arphi \in i \mathbb{R}$,

 $\mu(x) = (x^2 + \varphi^2)^n$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \; \lambda = i arphi \in i \mathbb{R}$,

$$\mu(x) = (x^2 + \varphi^2)^n$$

 $\star \ \lambda = \beta + i \varphi$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \lambda = \beta + i \varphi$, $\beta \varphi \neq 0$

 $\begin{array}{ll} \star \ \lambda = 0 & \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, & \mu(x) = (x^2 - \beta^2)^n \end{array}$

*
$$\lambda = \beta + i\varphi, \ \beta\varphi \neq 0,$$

$$\mu(x) = \left(\left(x^2 + \beta^2 + \varphi^2 \right)^2 - 4\beta^2 x^2 \right)^n$$

Strategy
• for each $\mu(x)$

• for each $\mu(x)$, write down X in (real) Jordan form

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form
- keep only those blocks with appropriate signature

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form
- keep only those blocks with appropriate signature

Signature Minimal polynomial Type

Signature	Minimal polynomial	Туре
(0,1)	x	trivial

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	· · · ·

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial
(1, 1)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1, 2)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1,2)	x^3	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1,2)	x^3	null rotation

• $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

In signature (1, 9):

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$

where $\beta > 0$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3)$

where $\beta > 0$, $\varphi_1 \ge \varphi_2 \ge \cdots \ge \varphi_{k-1} \ge \varphi_k \ge 0$

• $\lambda + \tau \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$

- $\lambda + \tau \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$
- conjugate by O(1,9) to bring λ to normal form

- $\lambda + \tau \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$
- conjugate by O(1,9) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,9}$

- $\lambda + \tau \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$
- conjugate by O(1,9) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,9}$:

$$\lambda + \tau \mapsto \lambda + \tau - [\lambda, \tau']$$
Normal forms for the Poincaré algebra

- $\lambda + \tau \in \mathfrak{so}(1,9) \oplus \mathbb{R}^{1,9}$
- conjugate by O(1,9) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,9}$:

$$\lambda + \tau \mapsto \lambda + \tau - [\lambda, \tau']$$

to get rid of component of τ in the image of $[\lambda, -]$

• the subgroups with everywhere spacelike orbits

 the subgroups with everywhere spacelike orbits are generated by either

 $\star \partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

- the subgroups with everywhere spacelike orbits are generated by either
 - * $\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$; or * $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

 the subgroups with everywhere spacelike orbits are generated by either

* $\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$; or * $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

• the subgroups with everywhere spacelike orbits are generated by either

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \geq \varphi_2 \geq \varphi_3 \geq \varphi_4 \geq 0$

• both are $\cong \mathbb{R}$

 the subgroups with everywhere spacelike orbits are generated by either

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

- both are $\cong \mathbb{R}$
- the former gives rise to fluxbranes

 the subgroups with everywhere spacelike orbits are generated by either

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

- both are $\cong \mathbb{R}$
- the former gives rise to fluxbranes and the latter to nullbranes

• start with metric in flat coordinates y, z

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda = U \,\partial_z \, U^{-1}$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda = U \, \partial_z \, U^{-1}$$
 with $U = \exp(-z\lambda)$

x = U y

$$\boldsymbol{x} = U \boldsymbol{y} = \exp(-zB)\boldsymbol{y}$$

$$oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$$
 where $\lambda oldsymbol{y} = Boldsymbol{y}$

$$\boldsymbol{x} = U \, \boldsymbol{y} = \exp(-zB) \boldsymbol{y}$$
 where $\lambda \boldsymbol{y} = B \boldsymbol{y}$

whence $\xi x = 0$

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of \boldsymbol{x}

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of \boldsymbol{x} :

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of *x*:

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

where

 $\star \Lambda = 1 + |B\boldsymbol{x}|^2$

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of *x*:

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

where

 $\star \Lambda = 1 + |B\boldsymbol{x}|^2$ $\star A = \Lambda^{-1} B\boldsymbol{x} \cdot d\boldsymbol{x}$

$$B=egin{pmatrix} & -u & & & & \ 0 & -arphi_1-u & & & \ -u & arphi_1+u & 0 & & & \ & & & 0 & -arphi_2 & & & \ & & & & arphi_2 & 0 & & & \ & & & & & arphi_2 & 0 & & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & arphi_4 & 0 \end{pmatrix}$$

$$B=egin{pmatrix} & -u & & & & \ 0 & -arphi_1-u & & & \ -u & arphi_1+u & 0 & & & \ & & & 0 & -arphi_2 & & & \ & & & & arphi_2 & 0 & & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & arphi_4 & 0 \end{pmatrix}$$

where

$$B=egin{pmatrix} & -u & & & & \ 0 & -arphi_1-u & & & \ -u & arphi_1+u & 0 & & & \ & & & 0 & -arphi_2 & & & \ & & & & arphi_2 & 0 & & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & 0 \end{pmatrix}$$

where either

 $\star u = 0$

$$B=egin{pmatrix} & -u & & & & \ 0 & -arphi_1-u & & & \ -u & arphi_1+u & 0 & & & \ & & 0 & -arphi_2 & & & \ & & & 0 & -arphi_2 & & \ & & & & arphi_2 & 0 & & & \ & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & arphi_4 & 0 \end{pmatrix}$$

where either

 $\star u = 0$ (generalised fluxbranes)

$$B=egin{pmatrix} & -u & & & & & \ 0 & -arphi_1-u & & & & \ -u & arphi_1+u & 0 & & & & \ & & & 0 & -arphi_2 & & & \ & & & & arphi_2 & 0 & & & \ & & & & & arphi_2 & 0 & & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & 0 \end{pmatrix}$$

where either

* u = 0 (generalised fluxbranes); or * u = 1 and $\varphi_1 = 0$

$$B=egin{pmatrix} & -u & & & & & \ 0 & -arphi_1-u & & & & \ -u & arphi_1+u & 0 & & & & \ & & & 0 & -arphi_2 & & & \ & & & & arphi_2 & 0 & & & \ & & & & & arphi_2 & 0 & & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_3 & 0 & & \ & & & & & arphi_4 & arphi_4 & 0 \end{pmatrix}$$

where either

★ u = 0 (generalised fluxbranes); or ★ u = 1 and $\varphi_1 = 0$ (generalised nullbranes)

• start with the metric in adapted coordinates

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z\sim z+L$; e.g., u=1, $arphi_i=0$ in B
Discrete quotients

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $arphi_i = 0$ in B

$$\Lambda = 1 + x_+^2$$

Discrete quotients

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z\sim z+L$; e.g., u=1, $arphi_i=0$ in B

$$\Lambda = 1 + x_{+}^{2} \qquad \text{and} \qquad A = \frac{1}{1 + x_{+}^{2}} (x^{-} dx^{1} - x^{1} dx^{-})$$

Discrete quotients

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z\sim z+L$; e.g., u=1, $arphi_i=0$ in B

$$\Lambda = 1 + x_{+}^{2} \qquad \text{and} \qquad A = \frac{1}{1 + x_{+}^{2}} (x^{-} dx^{1} - x^{1} dx^{-})$$

→ half-BPS ten-dimensional nullbrane

- the nullbrane is
 - ★ time-dependent

- the nullbrane is
 - ★ time-dependent
 - \star smooth

- the nullbrane is
 - ★ time-dependent
 - ★ smooth
 - \star stable

- ★ time-dependent
- \star smooth
- \star stable
- * a smooth transition between Big Crunch and Big Bang

- ★ time-dependent
- \star smooth
- \star stable
- * a smooth transition between Big Crunch and Big Bang
- * a resolution of parabolic orbifold

[Horowitz–Steif (1991)]

- ★ time-dependent
- \star smooth
- \star stable
- * a smooth transition between Big Crunch and Big Bang
- * a resolution of parabolic orbifold [Horowitz–Steif (1991)]
- its conformal field theory is a \mathbb{Z} -orbifold of flat space

- * time-dependent
- \star smooth
- \star stable
- * a smooth transition between Big Crunch and Big Bang
- * a resolution of parabolic orbifold [Horowitz–Steif (1991)]
- its conformal field theory is a Z-orbifold of flat space, and has been studied [Liu-Moore-Seiberg, hep-th/0206182]

- ★ time-dependent
- ★ smooth
- ★ stable
- * a smooth transition between Big Crunch and Big Bang
- * a resolution of parabolic orbifold [Horowitz–Steif (1991)]
- its conformal field theory is a Z-orbifold of flat space, and has been studied [Liu-Moore-Seiberg, hep-th/0206182]
- some arithmetic issues remain

• (M, g, F, ...) a supersymmetric background

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ How much supersymmetry will the quotient M/Γ preserve?

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon$$

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

In string/M-theory

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

In string/M-theory this cannot be the end of the story.

 T-duality relates backgrounds with different amount of "supergravitational supersymmetry"

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example: [Duff-Lü-Pope, hep-th/9704186,9803061]

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example: [Duff-Lü-Pope, hep-th/9704186,9803061]

 $\mathrm{AdS}_5 \times S^5$

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example: [Duff-Lü-Pope, hep-th/9704186,9803061]

 $\operatorname{AdS}_5 \times S^5 \longrightarrow \operatorname{AdS}_5 \times \mathbb{CP}^2 \times S^1$

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example: [Duff-Lü-Pope, hep-th/9704186,9803061]

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example: [Duff-Lü-Pope, hep-th/9704186,9803061]

 \mathbb{CP}^2 is not even spin!

• (M,g) spin

• (M,g) spin, Γ a one-parameter subgroup of isometries

• (M,g) spin, Γ a one-parameter subgroup of isometries ls M/Γ spin?
• (M,g) spin, Γ a one-parameter subgroup of isometries $\label{eq:main} \ln M/\Gamma \mbox{ spin}?$

• if $\Gamma \cong \mathbb{R}$

• (M,g) spin, Γ a one-parameter subgroup of isometries $\label{eq:main} \ln M/\Gamma \mbox{ spin}?$

• if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin

• (M,g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- if $\Gamma \cong S^1$

• (M,g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- if $\Gamma \cong S^1$ then M/Γ is spin if and only if the action of Γ lifts to the spin bundle

• (M,g) spin, Γ a one-parameter subgroup of isometries

ls M/Γ spin?

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- if $\Gamma \cong S^1$ then M/Γ is spin if and only if the action of Γ lifts to the spin bundle
- equivalently, the action of $\xi = \xi_X$ on spinors has integral weights

• (M, g, F, ...) supersymmetric

• (M, g, F, ...) supersymmetric

• Γ one-parameter group of symmetries

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of M/Γ

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors

• e.g., $(\mathbb{R}^{1,9})$

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors
- e.g., $(\mathbb{R}^{1,9})$: Killing spinors are parallel

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors
- e.g., $(\mathbb{R}^{1,9})$: Killing spinors are parallel, whence

$$\mathcal{L}_{\xi}\varepsilon = \frac{1}{8}\nabla_a \xi_b \Gamma^{ab}\varepsilon$$

• e.g., fluxbranes

• e.g., fluxbranes

 $\xi = \partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

• e.g., fluxbranes

$$\begin{split} \xi &= \partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) \\ \implies \\ \mathcal{L}_{\xi} &= \frac{1}{2}(\varphi_1 \Gamma_{12} + \varphi_2 \Gamma_{34} + \varphi_3 \Gamma_{56} + \varphi_4 \Gamma_{78}) \end{split}$$

• for generic φ_i , there are no invariant Killing spinors

 $\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0$

$$\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\star \varphi_1 = \varphi_2, \quad \varphi_2 = \varphi_4$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \end{array}$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \end{array}$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \end{array}$$

• e.g., nullbranes

 $\xi = \partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

• e.g., nullbranes

• N_{+2} is nilpotent
e.g., nullbranes

$$\begin{split} \xi &= \partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) \\ \implies \\ \mathcal{L}_{\xi} &= \frac{1}{2}\Gamma_{+2} + \frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78}) \end{split}$$

• N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34}+\varphi_3\Gamma_{56}+\varphi_4\Gamma_{78})$ is semisimple and commutes with it

• e.g., nullbranes

• N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both

e.g., nullbranes

- N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both
- $\ker N_{+2} = \ker \Gamma_+$

• e.g., nullbranes

- N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both
- $\ker N_{+2} = \ker \Gamma_+$, and this simply halves the number of supersymmetries

• for generic φ_i , no supersymmetry is preserved

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0$$

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0$$

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\star \varphi_2 = \varphi_3, \ \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{4}$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0 \implies \nu = \frac{1}{4}$$

$$\varphi_2 = \varphi_3 = \varphi_4 = 0$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0 \implies \nu = \frac{1}{4}$$

$$\varphi_2 = \varphi_3 = \varphi_4 = 0 \implies \nu = \frac{1}{2}$$

End of first part.

purely geometric backgrounds

purely geometric backgrounds, with product geometry

 $(M imes N,g\oplus h)$

purely geometric backgrounds, with product geometry

 $(M imes N, g \oplus h)$ and $F \propto \operatorname{dvol}_g$

• purely geometric backgrounds, with product geometry $(M imes N, g \oplus h)$ and $F \propto \operatorname{dvol}_g$

• field equations

• purely geometric backgrounds, with product geometry $(M imes N,g\oplus h)$ and $F\propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• purely geometric backgrounds, with product geometry $(M imes N,g\oplus h)$ and $F\propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• supersymmetry

• purely geometric backgrounds, with product geometry $(M imes N,g\oplus h)$ and $F\propto {
m dvol}_q$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors

• purely geometric backgrounds, with product geometry $(M imes N,g\oplus h)$ and $F\propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

$$abla_X arepsilon = \lambda X \cdot arepsilon$$

• purely geometric backgrounds, with product geometry $(M imes N,g\oplus h)$ and $F\propto {
m dvol}_q$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

$$abla_Xarepsilon=\lambda X\cdotarepsilon\qquad ext{where}\ \lambda\in\mathbb{R}^ imes$$

• (M,g) admits geometric Killing spinors

 $\widehat{M} = \mathbb{R}^+ \times M$

 $\widehat{M} = \mathbb{R}^+ imes M$ and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors

 $\widehat{M} = \mathbb{R}^+ imes M$ and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

 $\widehat{M} = \mathbb{R}^+ \times M$ and $\widehat{g} = \overline{dr^2 + 4\lambda^2 r^2}g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)[hep-th/9902066]

• (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds
- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

the cones of each factor are flat

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

the cones of each factor are flat: \star cone of S^q is \mathbb{R}^{q+1}

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

- the cones of each factor are flat:
- \star cone of S^q is \mathbb{R}^{q+1}
- \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

- the cones of each factor are flat:
- \star cone of S^q is \mathbb{R}^{q+1}
- \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$
- again the problem reduces to one of flat spaces!

• AdS_{1+p} is simply-connected

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p>2, $\pi_1Q_{1+p}\cong\mathbb{Z}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2, $\pi_1 Q_{1+p} \cong \mathbb{Z}$, generated by (topological) CTCs

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For $p>2, \ \pi_1 Q_{1+p}\cong \mathbb{Z}$, generated by (topological) CTCs $x_1(t)+ix_2(t)=re^{it}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2, $\pi_1 Q_{1+p} \cong \mathbb{Z}$, generated by (topological) CTCs $x_1(t) + ix_2(t) = re^{it}$ with $r^2 = R^2 + x_3^2 + \dots + x_{p+2}^2$

• (orientation-preserving) isometries of Q_{1+p} : $SO(2,p) \subset GL(p+2,\mathbb{R})$

- (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$
- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}

• (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$

• SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why?

• (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$

• SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because

- (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$
- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because
 - * SO(2, p) has maximal compact subgroup $SO(2) \times SO(p)$

 $\mathrm{SO}(2,p) \subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above

 $\mathrm{SO}(2,p)\subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}

 $\mathrm{SO}(2,p)\subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$

 $\mathrm{SO}(2,p)\subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of ${\rm AdS}_{1+p}$ is an infinite cover $\widetilde{{
 m SO}}(2,p)$

 $\mathrm{SO}(2,p) \subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of AdS_{1+p} is an infinite cover $\widetilde{SO}(2,p)$, a central extension of SO(2,p)

 $\mathrm{SO}(2,p) \subset GL(p+2,\mathbb{R})$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why? Because
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of AdS_{1+p} is an infinite cover $\widetilde{SO}(2,p)$, a central extension of SO(2,p) by \mathbb{Z}

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news

• The bad news: $\widetilde{SO}(2,p)$ is <u>not</u> a matrix group

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations
- The good news

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations
- The good news:
 - \star the Lie algebra of $\widetilde{\mathrm{SO}}(2,p)$ is still $\mathfrak{so}(2,p)$

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

• The good news:

- \star the Lie algebra of SO(2,p) is still $\mathfrak{so}(2,p)$; and
- \star adjoint group is again $\mathrm{SO}(2,p)$

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- The good news:
 - \star the Lie algebra of SO(2, p) is still $\mathfrak{so}(2, p)$; and
 - \star adjoint group is again $\mathrm{SO}(2,p)$

whence

one-parameter subgroups

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- The good news:
 - \star the Lie algebra of SO(2,p) is still $\mathfrak{so}(2,p)$; and
 - \star adjoint group is again $\mathrm{SO}(2,p)$

whence

• one-parameter subgroups \leftrightarrow projectivised adjoint orbits of $\mathfrak{so}(2,p)$ under SO(2,p)

We can still use the lorentzian elementary blocks

We can still use the lorentzian elementary blocks:

• (0,2)

We can still use the lorentzian elementary blocks:

• (0,2) and also (2,0)

• (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$

 $B^{(0,2)}(\varphi)$

We play again but with a bigger set! We can still use the lorentzian elementary blocks: • (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$, rotation

 $B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi)$

We play again but with a bigger set! We can still use the lorentzian elementary blocks: • (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$, rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

• (1,1)

39

• (1,1),
$$\mu(x) = x^2 - \beta^2$$

• (1,1),
$$\mu(x)=x^2-\beta^2$$
, boost

•
$$(1,1)$$
, $\mu(x) = x^2 - \beta^2$, boost

 $B^{(1,1)}(eta)$

•
$$(1,1)$$
, $\mu(x)=x^2-eta^2$, boost

$$B^{(1,1)}(eta) = egin{bmatrix} 0 & -eta\ eta & 0 \end{bmatrix}$$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost

$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2)

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost

$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1)

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

 β

•
$$(1,2)$$
 and also $(2,1)$, $\mu(x)=x^3$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x) = x^3$, null rotation

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x) = x^3$, null rotation

 $B^{(1,2)}$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$, null rotation

$$B^{(1,2)} = B^{(2,1)}$$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)}(\beta) = \begin{bmatrix} 0\\ \beta \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$, null rotation

$$B^{(1,2)} = B^{(2,1)} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

 $-\beta$

•
$$(2,2)$$
, $\mu(x) = x^2$

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

 $B_{\pm}^{(2,2)}$

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

$$B_{\pm}^{(2,2)} = \begin{bmatrix} 0 & \mp 1 & 1 & 0 \\ \pm 1 & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 \\ 0 & \pm 1 & -1 & 0 \end{bmatrix}$$

• (2,2),
$$\mu(x)=(x^2\!-\!\beta^2)^2$$

• (2, 2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B_{\pm}^{(2,2)}$ by a (anti)selfdual boost

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B_{\pm}^{(2,2)}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0)$$

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3

• (2, 2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B_{\pm}^{(2,2)}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{vmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{vmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{vmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{vmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole
• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$, for $|\beta_1| \neq |\beta_2|$

• (2,2),
$$\mu(x) = (x^2 + \varphi^2)^2$$

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

$$B^{(2,2)}_{\pm}(arphi)$$

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

$$B_{\pm}^{(2,2)}(\varphi) = \begin{bmatrix} 0 & \mp 1 \pm \varphi & 1 & 0 \\ \pm 1 \mp \varphi & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 + \varphi \\ 0 & \pm 1 & -1 - \varphi & 0 \end{bmatrix}$$

• (2,2),
$$\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$$

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0)$$

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0) = \begin{bmatrix} 0 & \pm \varphi & 0 & -\beta \\ \mp \varphi & 0 & \pm \beta & 0 \\ 0 & \mp \beta & 0 & -\varphi \\ \beta & 0 & \varphi & 0 \end{bmatrix}$$

•
$$(2,3)$$
, $\mu(x) = x^{\mathrm{s}}$

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

 $B^{(2,3)}$

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

$$B^{(2,3)} = \begin{bmatrix} 0 & 1 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

•
$$(2,4)$$
, $\mu(x) = (x^2 + \varphi^2)^3$

 $B^{(2,4)}_{\pm}(arphi)$

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp\varphi & 0 & 0 & -1 & 0 \\ \pm\varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp\varphi & 0 & 0 & -1 & 0 \\ \pm\varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

• and that's all!

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

whose norms add

 $\|\xi\|^2 = \|\xi_A\|^2 + \|\xi_S\|^2$

$R^2 M^2 \ge \|\xi_S\|^2$

•
$$S^q$$
 is compact \Longrightarrow

 $R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

•
$$S^q$$
 is compact \Longrightarrow

$$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$$

and if q is odd

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $\mathrm{AdS}_{1+p} imes S^{2k+1}$

• S^q is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere

• S^q is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u>

• S^q is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $\operatorname{AdS}_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is bounded below and ξ_S has no zeroes
• S^q is compact \Longrightarrow

 $R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

- ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u> and ξ_S has no zeroes
- it is convenient to distinguish Killing vectors according to norm

everywhere non-negative norm

• everywhere non-negative norm:

 $\star \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
 - $\begin{array}{c} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}) \end{array}$

 $\begin{array}{l} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}), \text{ if } |\beta_{1}| = |\beta_{2}| \end{array}$

• everywhere non-negative norm:

48

- everywhere non-negative norm:

- everywhere non-negative norm:
 - $\star \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,1)}(eta_1) \oplus B^{(1,1)}(eta_2) \oplus_i B^{(0,2)}(arphi_i)$, if $|eta_1| = |eta_2|$
 - $\star B^{(1,2)} \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,2)} \oplus \overline{B^{(1,2)} \oplus_i B^{(0,2)}}(\varphi_i)$

- everywhere non-negative norm:

• everywhere non-negative norm:

norm bounded below

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(arphi) \oplus_i B^{(0,2)}(arphi_i)$, if p is even

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ if } p \text{ is even and } |\varphi_i| \ge \varphi > 0 \text{ for all } i \\ \star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
 - $\begin{array}{l} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}), \text{ if } |\beta_{1}| = |\beta_{2}| \\ \star B^{(1,2)} \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,2)} \oplus B^{(1,2)} \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(2,2)}_{\pm} \oplus_{i} B^{(0,2)}(\varphi_{i}) \end{array}$
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i
- arbitrarily negative norm

- everywhere non-negative norm:
- norm bounded below:
 - $\begin{array}{l} \star \ B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\overline{\varphi_i}), \text{ if } p \text{ is even and } |\varphi_i| \geq \overline{\varphi} > 0 \text{ for all } i \\ \star \ B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ if } |\varphi_i| \geq |\varphi| \geq 0 \text{ for all } i \end{array}$
- arbitrarily negative norm: the rest!

 $\star B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$

 $\star B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$

 $\begin{array}{c} \star \ B^{(1,1)}(\beta_1) \oplus \overline{B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)}, \text{ unless } |\beta_1| = |\beta_2| > 0 \\ \star \ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i

 $* B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $* B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$

 $\begin{array}{c} \star \ B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } p \text{ is even and } |\varphi_i| \geq |\varphi| \text{ for all } i \\ \star \ B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i
- $\star \begin{array}{c} B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,2)}_+(\beta) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i
- $\star B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\overline{\beta}) \oplus_i \overline{B^{(0,2)}(\overline{\varphi_i})}$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\overline{\varphi_i})$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i)$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i)$ $\star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(\overline{0,2})}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $\overline{B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)}$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i \overline{B^{(0,2)}}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS and check that the boundary thus introduced lies behind a horizon.

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup Γ

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup Γ_L

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup $\Gamma_L \cong \mathbb{Z}$

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L>0 and consider the cyclic subgroup $\Gamma_L\cong\mathbb{Z}$ generated by

 $\gamma = \exp(LX)$

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs

• idea of the proof

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:

$$\star$$
 let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t)

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - * let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t) between c(0) = x

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder

• general case:

- \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N
- \star we will construct a timelike curve c(t) between c(0)=x and $c(NL)=\gamma^N\cdot x$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t) between c(0)=x and $c(NL)=\gamma^N\cdot x$ for $N\gg 1$

 $\star c$ is uniquely determined by its projections c_A onto AdS_{1+p}

 $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star \ c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\|$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

 $\|\dot{c}\|^2$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2 \le \|\xi_A\|^2 + \frac{D^2}{N^2 L^2}$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2 \le \|\xi_A\|^2 + \frac{D^2}{N^2 L^2}$$

which is negative for $N \gg 1$

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

- the same argument applies to any Freund–Rubin background $M \times N$

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

• the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries
which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

• the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant
 - \star Bonnet-Myers Theorem $\implies N$ has bounded diameter

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

• yields Freund–Rubin background of IIB

 $\operatorname{AdS}_3 \times S^3 \times X^4$

equations of motion

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

supersymmetry

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

- equations of motion $\implies X$ Ricci-flat
- supersymmetry $\implies X$ admits parallel spinors

yields Freund–Rubin background of IIB

 $\overline{\mathrm{AdS}_3} \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

• supersymmetry $\implies X$ admits parallel spinors $\implies X$ flat or hyperkähler

yields Freund–Rubin background of IIB

 $\overline{\mathrm{AdS}_3} \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

• supersymmetry $\implies X$ admits parallel spinors $\implies X$ flat or hyperkähler

• for
$$X = \mathbb{R}^4$$

$$\left(\Delta_{+}^{2,2} \otimes \left[\Delta_{+}^{4,0} \otimes \Delta_{+}^{0,4}\right]\right) \oplus \left(\Delta_{-}^{2,2} \otimes \left[\Delta_{-}^{4,0} \otimes \Delta_{+}^{0,4}\right]\right)$$

$$\left(\Delta_{+}^{2,2}\otimes\left[\Delta_{+}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)\oplus\left(\Delta_{-}^{2,2}\otimes\left[\Delta_{-}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)$$

as a representation of $Spin(2,2) \times Spin(4) \times Spin(4)$

$$\left(\Delta_{+}^{2,2}\otimes\left[\Delta_{+}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)\oplus\left(\Delta_{-}^{2,2}\otimes\left[\Delta_{-}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)$$

as a representation of $\text{Spin}(2,2) \times \text{Spin}(4) \times \text{Spin}(4)$

 here [R] means the underlying real representation of a complex representation of real type

$$\left(\Delta_{+}^{2,2}\otimes\left[\Delta_{+}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)\oplus\left(\Delta_{-}^{2,2}\otimes\left[\Delta_{-}^{4,0}\otimes\Delta_{+}^{0,4}\right]\right)$$

as a representation of $\text{Spin}(2,2) \times \text{Spin}(4) \times \text{Spin}(4)$

 here [R] means the underlying real representation of a complex representation of real type; that is,

 $R = [R] \otimes \mathbb{C}$

• only consider actions on $AdS_3 \times S^3$

- only consider actions on $AdS_3 imes S^3$
- $\xi = \xi_A + \xi_S$

- only consider actions on $AdS_3 \times S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike

- only consider actions on $AdS_3 \times S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ★ smooth quotients

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ***** smooth quotients
 - ★ supersymmetric quotients

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ***** smooth quotients
 - ★ supersymmetric quotients
- there are two classes

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ★ smooth quotients
 - ★ supersymmetric quotients
- there are two classes: having 8 or 4 supersymmetries

•
$$\xi = \xi_S = R_{12} \pm R_{34}$$

•
$$\xi = \xi_S = R_{12} \pm R_{34}$$

•
$$\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$, $\theta > 0$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$, $\theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \pm e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \pm e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$
- $e_{13} \pm e_{34} + \theta(R_{12} \pm R_{34})$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \pm e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$
- $e_{13} \pm e_{34} + \theta (R_{12} \pm R_{34})$, $\theta \ge 0$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

•
$$\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34})$$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

• $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

• $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$
• $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34})$

 $\boldsymbol{\zeta}$

+

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} \pm \theta(R_{12} \pm R_{34}), \ \theta > 0$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34})$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \theta > \varphi$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \theta > \varphi$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34}$
$\frac{1}{8}$ -BPS quotients

- $\xi = 2e_{34} + R_{12} \pm R_{34}$
- $\overline{\xi} = e_{12} e_{13} e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$
- $\overline{\xi} = \pm e_{12} e_{13} \pm e_{24} + e_{34} + \theta (R_{12} \pm R_{34}), \ \theta > 0$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \ \theta > \varphi$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34},$ $\theta_1 > -\theta_2 > 0$

$\frac{1}{8}$ -BPS quotients

- $\xi = 2e_{34} + R_{12} \pm R_{34}$
- $\overline{\xi} = e_{12} e_{13} e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$
- $\overline{\xi} = \pm e_{12} e_{13} \pm e_{24} + e_{34} + \theta (R_{12} \pm R_{34}), \ \theta > 0$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \ \theta > \varphi$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34},$ $\theta_1 > -\theta_2 > 0$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$

• associated discrete quotients are cyclic orbifolds

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$

• associated discrete quotients are cyclic orbifolds $(\mathbb{Z}_N \text{ or } \mathbb{Z})$

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$

• most are time-dependent

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$
- most are time-dependent, and many have closed timelike curves

Thank you.