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Motivation

• fluxbrane backgrounds in type II string theory

• string theory in

? time-dependent backgrounds, and

? causally singular backgrounds

• supersymmetric Clifford–Klein space form problem
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• (M, g, F, ...) a supergravity background

• symmetry group G— not just isometries, but also preserving F, ...

• determine all quotient supergravity backgrounds M/Γ, where

Γ ⊂ G is a one-parameter subgroup, paying close attention to:

? smoothness,

? causal regularity,

? spin structure,

? supersymmetry,...
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One-parameter subgroups

• (M, g, F, ...)

• symmetries

f : M
∼=−→ M f∗g = g f∗F = F . . .

define a Lie group G, with Lie algebra g

• X ∈ g defines a one-parameter subgroup

Γ = {exp(tX) | t ∈ R}
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• X ∈ g also defines a Killing vector ξX:

LξX
g = 0 LξX

F = 0 . . .

whose integral curves are the orbits of Γ

• two possible topologies:

? Γ ∼= S1, if and only if ∃T > 0 such that exp(TX) = 1
? Γ ∼= R, otherwise

• we are interested in the orbit space M/Γ
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• Γ ∼= S1: M/Γ is standard Kaluza–Klein reduction

• Γ ∼= R: quotient performed in two steps:

? discrete quotient M/ΓL, where L > 0 and

ΓL = {exp(nLX) | n ∈ Z} ∼= Z
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• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry
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Classifying quotients

• (M, g, F, ...) with symmetry group G, Lie algebra g

• X, X ′ ∈ g generate one-parameter subgroups

Γ = {exp(tX) | t ∈ R} Γ′ = {exp(tX ′) | t ∈ R}

• if X ′ = λX, λ 6= 0, then Γ′ = Γ

• if X ′ = gXg−1, then Γ′ = gΓg−1, and moreover M/Γ ∼= M/Γ′
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• enough to classify normal forms of X ∈ g under

X ∼ λgXg−1 g ∈ G λ ∈ R
×

i.e., projectivised adjoint orbits of g
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Flat quotients

• (R1,9, F = 0) has symmetry O(1, 9) n R
1,9 ⊂ GL(11,R):(

A v

0 1

)
A ∈ O(1, 9) v ∈ R

1,9

• Γ ⊂ O(1, 9) n R
1,9, generated by

X = XL + XT ∈ so(1, 9)⊕ R
1,9 ,

which we need to put in normal form.
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Normal forms for orthogonal transformations

• X ∈ so(p, q) ⇐⇒ X : Rp+q → R
p+q linear, skew-symmetric

relative to 〈−,−〉 of signature (p, q)

• X =
∑

i Xi relative to an orthogonal decomposition

R
p+q =

⊕
i

Vi with Vi indecomposable

• for each indecomposable block, if λ is an eigenvalue, then so are

−λ, λ∗, and −λ∗
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• possible minimal polynomials:

? λ = 0 µ(x) = xn

? λ = β ∈ R,

µ(x) = (x2 − β2)n

? λ = iϕ ∈ iR,

µ(x) = (x2 + ϕ2)n

? λ = β + iϕ, βϕ 6= 0,

µ(x) =
((

x2 + β2 + ϕ2
)2 − 4β2x2

)n



13

Strategy



13

Strategy

• for each µ(x)



13

Strategy

• for each µ(x), write down X in (real) Jordan form



13

Strategy

• for each µ(x), write down X in (real) Jordan form

• determine metric making X skew-symmetric



13

Strategy

• for each µ(x), write down X in (real) Jordan form

• determine metric making X skew-symmetric, using automorphism

of Jordan form if necessary to bring the metric to standard form



13

Strategy

• for each µ(x), write down X in (real) Jordan form

• determine metric making X skew-symmetric, using automorphism

of Jordan form if necessary to bring the metric to standard form

• keep only those blocks with appropriate signature



13

Strategy

• for each µ(x), write down X in (real) Jordan form

• determine metric making X skew-symmetric, using automorphism

of Jordan form if necessary to bring the metric to standard form

• keep only those blocks with appropriate signature



14

Elementary lorentzian blocks



14

Elementary lorentzian blocks

Signature Minimal polynomial Type



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1)



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2)



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0)



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1)



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost

(1, 2)



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost

(1, 2) x3



14

Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost

(1, 2) x3 null rotation
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Play with the elementary blocks!

In signature (1, 9):

• R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

• B02(β) + R34(ϕ1) + R56(ϕ2) + R78(ϕ3)

• N+2 + R34(ϕ1) + R56(ϕ2) + R78(ϕ3)

where β > 0, ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕk−1 ≥ ϕk ≥ 0
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• λ + τ ∈ so(1, 9)⊕ R
1,9



16

Normal forms for the Poincaré algebra
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Normal forms for the Poincaré algebra

• λ + τ ∈ so(1, 9)⊕ R
1,9

• conjugate by O(1, 9) to bring λ to normal form

• conjugate by R1,9:

λ + τ 7→ λ + τ − [λ, τ ′]

to get rid of component of τ in the image of [λ,−]
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• the subgroups with everywhere spacelike orbits are generated by

either

? ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4); or

? ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4),

where ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ 0

• both are ∼= R

• the former gives rise to fluxbranes and the latter to nullbranes
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Adapted coordinates

• start with metric in flat coordinates y, z

ds2 = 2|dy|2 + dz2

• “undress” the Killing vector

ξ = ∂z + λ = U ∂z U−1 with U = exp(−zλ)



19

• introduce new coordinates



19

• introduce new coordinates

x = U y



19

• introduce new coordinates

x = U y = exp(−zB)y



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x:

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x:

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

where

? Λ = 1 + |Bx|2



19

• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x:

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

where

? Λ = 1 + |Bx|2
? A = Λ−1 Bx · dx
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• the only data is the matrix

B =



−u

0 −ϕ1 − u

−u ϕ1 + u 0

0 −ϕ2

ϕ2 0

0 −ϕ3

ϕ3 0

0 −ϕ4

ϕ4 0


where either

? u = 0 (generalised fluxbranes); or

? u = 1 and ϕ1 = 0 (generalised nullbranes)
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Discrete quotients

• start with the metric in adapted coordinates

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

and identify z ∼ z + L; e.g., u = 1, ϕi = 0 in B

Λ = 1 + x2
+ and A =

1
1 + x2

+

(x−dx1 − x1dx−)

=⇒ half-BPS ten-dimensional nullbrane



22

• the nullbrane is



22

• the nullbrane is

? time-dependent



22

• the nullbrane is

? time-dependent

? smooth



22

• the nullbrane is

? time-dependent

? smooth

? stable



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space, and has

been studied [Liu–Moore–Seiberg, hep-th/0206182]



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space, and has

been studied [Liu–Moore–Seiberg, hep-th/0206182]

• some arithmetic issues remain
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Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε = ∇ξε + 1
8∇aξbΓabε = 0

In string/M-theory this cannot be the end of the story.
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“Supersymmetry without supersymmetry”

• T-duality relates backgrounds with different amount of

“supergravitational supersymmetry”

• dramatic example: [Duff–Lü–Pope, hep-th/9704186,9803061]

AdS5×S5

((QQQQQQQQQQQQQ

oo // AdS5×CP2 × S1

uukkkkkkkkkkkkkkk

AdS5×CP2

CP
2 is not even spin!
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Spin structures in quotients

• (M, g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

• if Γ ∼= R, then M/Γ is always spin

• if Γ ∼= S1 then M/Γ is spin if and only if the action of Γ lifts to

the spin bundle

• equivalently, the action of ξ = ξX on spinors has integral weights
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Supersymmetry of supergravity quotients

• (M, g, F, ...) supersymmetric

• Γ one-parameter group of symmetries, generated by ξ

• Killing spinors of M/Γ ⇐⇒ Γ-invariant Killing spinors of M

• it suffices to determine zero weights of Lξ on Killing spinors

• e.g., (R1,9): Killing spinors are parallel, whence

Lξε = 1
8∇aξbΓabε
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• e.g., fluxbranes

ξ = ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2(ϕ1Γ12 + ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)
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• for generic ϕi, there are no invariant Killing spinors; but there

are hyperplanes (and their intersections) on which Lξ has zero

eigenvalues:

? ϕ1 − ϕ2 − ϕ3 ± ϕ4 = 0 =⇒ ν = 1
8

? ϕ1 = ϕ2, ϕ3 = ϕ4 =⇒ ν = 1
4

? ϕ1 − ϕ2 − ϕ3 = 0 = ϕ4 =⇒ ν = 1
4

? ϕ1 = ϕ2 = ϕ3 = ϕ4 =⇒ ν = 3
8

? ϕ1 = ϕ2, ϕ3 = ϕ4 = 0 =⇒ ν = 1
2

? ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 =⇒ ν = 1
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ξ = ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2Γ+2 + 1
2(ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)

• N+2 is nilpotent, whereas 1
2(ϕ2Γ34+ϕ3Γ56+ϕ4Γ78) is semisimple

and commutes with it; whence invariant spinors are annihilated

by both

• ker N+2 = ker Γ+, and this simply halves the number of

supersymmetries
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• for generic ϕi, no supersymmetry is preserved, but there are

hyperplanes (and their intersections) on which Lξ has zero

eigenvalues:

? ϕ2 − ϕ3 − ϕ4 = 0 =⇒ ν = 1
8

? ϕ2 = ϕ3, ϕ4 = 0 =⇒ ν = 1
4

? ϕ2 = ϕ3 = ϕ4 = 0 =⇒ ν = 1
2
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(M ×N, g ⊕ h) and F ∝ dvolg

• field equations ⇐⇒ (M, g) and (N,h) are Einstein

• supersymmetry ⇐⇒ (M, g) and (N,h) admit geometric Killing

spinors:

∇Xε = λX · ε where λ ∈ R
×
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M̂ = R
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• (M, g) admits geometric Killing spinors ⇐⇒ the cone (M̂, ĝ),

M̂ = R
+ ×M and ĝ = dr2 + 4λ2r2g ,

admits parallel spinors: ∇ε̂ = 0
[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)
[hep-th/9902066]
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• (M, g) riemannian =⇒ (M̂, ĝ) riemannian

• (M1,n−1, g) lorentzian =⇒ (M̂, ĝ) has signature (2, n− 1)

• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS1+p×Sq

the cones of each factor are flat:

? cone of Sq is Rq+1

? cone of AdS1+p is (a domain in) R2,p

• again the problem reduces to one of flat spaces!
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Isometries of AdS1+p

• AdS1+p is simply-connected; it is the universal cover of a quadric

Q1+p ⊂ R
2,p, given by

−x2
1 − x2

2 + x2
3 + · · ·+ x2

p+2 = −R2

• For p > 2, π1Q1+p
∼= Z, generated by (topological) CTCs

x1(t) + ix2(t) = reit with r2 = R2 + x2
3 + · · ·+ x2

p+2
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• SO(2, p) is not the (orientation-preserving) isometry group of

AdS1+p. Why? Because

? SO(2, p) has maximal compact subgroup SO(2)× SO(p)
? the orbits of SO(2) are the CTCs above

? these curves are not closed in AdS1+p

? in AdS1+p, x1∂2 − x2∂1 does not generate SO(2) but R

• the (orientation-preserving) isometry group of AdS1+p is an

infinite cover S̃O(2, p), a central extension of SO(2, p) by Z
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• the central element is the generator of π1Q1+p

• The bad news: S̃O(2, p) is not a matrix group; it has no finite-

dimensional matrix representations

• The good news:

? the Lie algebra of S̃O(2, p) is still so(2, p); and

? adjoint group is again SO(2, p)

whence

• one-parameter subgroups↔ projectivised adjoint orbits of so(2, p)
under SO(2, p)
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Normal forms for so(2, p)

We play again but with a bigger set!

We can still use the lorentzian elementary blocks:

• (0, 2) and also (2, 0), µ(x) = x2 + ϕ2, rotation

B(0,2)(ϕ) = B(2,0)(ϕ) =
[

0 ϕ

−ϕ 0

]
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• (1, 1), µ(x) = x2 − β2, boost

B(1,1)(β) =
[
0 −β

β 0

]

• (1, 2) and also (2, 1), µ(x) = x3, null rotation

B(1,2) = B(2,1) =

0 −1 0
1 0 −1
0 1 0
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But there are also new ones:

• (2, 2), µ(x) = x2, “rotation” in a totally null plane

B
(2,2)
± =


0 ∓1 1 0
±1 0 0 ∓1
−1 0 0 1
0 ±1 −1 0
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• (2, 2), µ(x) = (x2−β2)2, deformation of B
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• (2, 2), µ(x) = (x2−β2)2, deformation of B
(2,2)
± by a (anti)selfdual

boost

B
(2,2)
± (β > 0) =


0 ∓1 1 −β

±1 0 ±β ∓1
−1 ∓β 0 1
β ±1 −1 0



The associated discrete quotient of AdS3 yields the extremal

BTZ black hole; the non-extremal black hole is obtained from

B(1,1)(β1)⊕B(1,1)(β2), for |β1| 6= |β2|
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• (2, 2), µ(x) = (x2 + ϕ2)2, deformation of B
(2,2)
± by a (anti)self-

dual rotation

B
(2,2)
± (ϕ) =


0 ∓1± ϕ 1 0

±1∓ ϕ 0 0 ∓1
−1 0 0 1 + ϕ

0 ±1 −1− ϕ 0
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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2, self-dual boost + antiself-

dual rotation

B
(2,2)
± (β > 0, ϕ > 0) =


0 ±ϕ 0 −β

∓ϕ 0 ±β 0
0 ∓β 0 −ϕ

β 0 ϕ 0
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• (2, 3), µ(x) = x5, deformation of B
(2,2)
+ by a null rotation in a

perpendicular direction

B(2,3) =


0 1 −1 0 −1
−1 0 0 1 0
1 0 0 −1 0
0 −1 1 0 −1
1 0 0 1 0
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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0
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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0



• and that’s all!
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Causal properties

• Killing vectors on AdS1+p×Sq decompose

ξ = ξA + ξS

whose norms add

‖ξ‖2 = ‖ξA‖2 + ‖ξS‖2
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• Sq is compact =⇒

R2M2 ≥ ‖ξS‖2 ≥ R2m2

and if q is odd, m2 can be > 0

• ξ can be everywhere spacelike on AdS1+p×S2k+1, even if ξA is

not spacelike everywhere, provided that ‖ξA‖2 is bounded below

and ξS has no zeroes

• it is convenient to distinguish Killing vectors according to norm
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• everywhere non-negative norm:

? ⊕iB
(0,2)(ϕi)

? B(1,1)(β1)⊕B(1,1)(β2)⊕i B(0,2)(ϕi), if |β1| = |β2|
? B(1,2) ⊕i B(0,2)(ϕi)
? B(1,2) ⊕B(1,2) ⊕i B(0,2)(ϕi)
? B

(2,2)
± ⊕i B(0,2)(ϕi)

• norm bounded below:

? B(2,0)(ϕ)⊕i B(0,2)(ϕi), if p is even and |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), if |ϕi| ≥ |ϕ| ≥ 0 for all i

• arbitrarily negative norm: the rest!
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(2,2)
± (ϕ)⊕i B(0,2)(ϕi), unless |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (β, ϕ)⊕i B(0,2)(ϕi)

? B(2,3) ⊕i B(0,2)(ϕi)
? B

(2,4)
± (ϕ)⊕i B(0,2)(ϕi)

Some of these give rise to higher-dimensional BTZ-like black

holes: quotient only a part of AdS and check that the boundary

thus introduced lies behind a horizon.
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Discrete quotients with CTCs

• ξ = ξA + ξS a Killing vector in AdS1+p×S2k+1, with ‖ξ‖2 > 0
but ‖ξA‖ not everywhere spacelike

• the corresponding one-parameter subgroup Γ ∼= R

• pick L > 0 and consider the cyclic subgroup ΓL
∼= Z generated

by

γ = exp(LX)
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‖ċ‖2



52

? c is uniquely determined by its projections cA onto AdS1+p and

cS onto S2k+1

? cA is the integral curve of ξA

? cS is a length-minimising geodesic between xS and γN · xS,

whose arclength

∫ NL

0
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which is negative for N � 1 where ‖ξA‖2 < 0

• the same argument applies to any Freund–Rubin background

M ×N , where M is lorentzian admitting such isometries and N

is complete:

? N is Einstein with positive cosmological constant

? Bonnet-Myers Theorem =⇒ N has bounded diameter
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• yields Freund–Rubin background of IIB

AdS3×S3 ×X4

• equations of motion =⇒ X Ricci-flat

• supersymmetry =⇒ X admits parallel spinors

=⇒ X flat or hyperkähler
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• for X = R
4, Killing spinors are isomorphic to(

∆2,2
+ ⊗

[
∆4,0

+ ⊗∆0,4
+

])
⊕

(
∆2,2
− ⊗

[
∆4,0
− ⊗∆0,4

+

])
as a representation of Spin(2, 2)× Spin(4)× Spin(4)

• here [R] means the underlying real representation of a complex

representation of real type; that is,

R = [R]⊗ C
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Regular one-parameter subgroups

• only consider actions on AdS3×S3

• ξ = ξA + ξS, with

? ξ spacelike

? smooth quotients

? supersymmetric quotients

• there are two classes: having 8 or 4 supersymmetries
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• ξ = e12 + ϕe34 + θ1R12 + θ2R34, where 1 ≥ |ϕ|, θ1 ≥ |θ2| > |ϕ|,
and 1∓ ϕ = θ1 ∓ θ2

• associated discrete quotients are cyclic orbifolds (ZN or Z) of a

WZW model with group S̃L(2,R)× SU(2)

• most are time-dependent, and many have closed timelike curves
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Thank you.


