
Time-dependent string backgrounds via
quotients
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Motivation

• fluxbrane backgrounds in type II string theory

• string theory in

? time-dependent backgrounds, and

? causally singular backgrounds

• supersymmetric Clifford–Klein space form problem
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• (M, g, F, ...) a supergravity background

• symmetry group G— not just isometries, but also preserving F, ...

• determine all quotient supergravity backgrounds M/Γ, where

Γ ⊂ G is a one-parameter subgroup, paying close attention to:

? smoothness,

? causal regularity,

? spin structure,

? supersymmetry,...
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One-parameter subgroups

• (M, g, F, ...)

• symmetries

f : M
∼=−→ M f∗g = g f∗F = F . . .

define a Lie group G, with Lie algebra g

• X ∈ g defines a one-parameter subgroup

Γ = {exp(tX) | t ∈ R}
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• X ∈ g also defines a Killing vector ξX:

LξX
g = 0 LξX

F = 0 . . .

whose integral curves are the orbits of Γ

• two possible topologies:

? Γ ∼= S1, if and only if ∃T > 0 such that exp(TX) = 1
? Γ ∼= R, otherwise

• we are interested in the orbit space M/Γ
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• Γ ∼= S1: M/Γ is standard Kaluza–Klein reduction

• Γ ∼= R: quotient performed in two steps:

? discrete quotient M/ΓL, where L > 0 and

ΓL = {exp(nLX) | n ∈ Z} ∼= Z
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• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry
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Classifying quotients

• (M, g, F, ...) with symmetry group G, Lie algebra g

• X, X ′ ∈ g generate one-parameter subgroups

Γ = {exp(tX) | t ∈ R} Γ′ = {exp(tX ′) | t ∈ R}

• if X ′ = λX, λ 6= 0, then Γ′ = Γ

• if X ′ = gXg−1, then Γ′ = gΓg−1, and moreover M/Γ ∼= M/Γ′
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• enough to classify normal forms of X ∈ g under

X ∼ λgXg−1 g ∈ G λ ∈ R
×

i.e., projectivised adjoint orbits of g
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Flat quotients

• (R1,9, F = 0) has symmetry O(1, 9) n R
1,9 ⊂ GL(11,R):(

A v

0 1

)
A ∈ O(1, 9) v ∈ R

1,9

• Γ ⊂ O(1, 9) n R
1,9, generated by

X = XL + XT ∈ so(1, 9)⊕ R
1,9 ,

which we need to put in normal form.
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Normal forms for orthogonal transformations

• X ∈ so(p, q) ⇐⇒ X : Rp+q → R
p+q linear, skew-symmetric

relative to 〈−,−〉 of signature (p, q)

• X =
∑

i Xi relative to an orthogonal decomposition

R
p+q =

⊕
i

Vi with Vi indecomposable

• for each indecomposable block, if λ is an eigenvalue, then so are

−λ, λ∗, and −λ∗
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• possible minimal polynomials:

? λ = 0 µ(x) = xn

? λ = β ∈ R,

µ(x) = (x2 − β2)n

? λ = iϕ ∈ iR,

µ(x) = (x2 + ϕ2)n

? λ = β + iϕ, βϕ 6= 0,

µ(x) =
((

x2 + β2 + ϕ2
)2 − 4β2x2

)n
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Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost

(1, 2) x3 null rotation
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Play with the elementary blocks!

In signature (1, 9):

• R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

• B02(β) + R34(ϕ1) + R56(ϕ2) + R78(ϕ3)

• N+2 + R34(ϕ1) + R56(ϕ2) + R78(ϕ3)

where β > 0, ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕk−1 ≥ ϕk ≥ 0



16

Normal forms for the Poincaré algebra
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Normal forms for the Poincaré algebra

• λ + τ ∈ so(1, 9)⊕ R
1,9

• conjugate by O(1, 9) to bring λ to normal form

• conjugate by R1,9:

λ + τ 7→ λ + τ − [λ, τ ′]

to get rid of component of τ in the image of [λ,−]
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• the subgroups with everywhere spacelike orbits are generated by

either

? ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4); or

? ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4),

where ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ 0

• both are ∼= R

• the former gives rise to fluxbranes and the latter to nullbranes
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Adapted coordinates

• start with metric in flat coordinates y, z

ds2 = 2|dy|2 + dz2

• “undress” the Killing vector

ξ = ∂z + λ = U ∂z U−1 with U = exp(−zλ)
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• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x:

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

where

? Λ = 1 + |Bx|2
? A = Λ−1 Bx · dx
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• the only data is the matrix

B =



−u

0 −ϕ1 − u

−u ϕ1 + u 0

0 −ϕ2

ϕ2 0

0 −ϕ3

ϕ3 0

0 −ϕ4

ϕ4 0


where either

? u = 0 (generalised fluxbranes); or

? u = 1 and ϕ1 = 0 (generalised nullbranes)
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Discrete quotients

• start with the metric in adapted coordinates

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

and identify z ∼ z + L; e.g., u = 1, ϕi = 0 in B

Λ = 1 + x2
+ and A =

1
1 + x2

+

(x−dx1 − x1dx−)

=⇒ half-BPS ten-dimensional nullbrane



22

• the nullbrane is



22

• the nullbrane is

? time-dependent



22

• the nullbrane is

? time-dependent

? smooth



22

• the nullbrane is

? time-dependent

? smooth

? stable



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space, and has

been studied [Liu–Moore–Seiberg, hep-th/0206182]



22

• the nullbrane is

? time-dependent

? smooth

? stable

? a smooth transition between Big Crunch and Big Bang

? a resolution of parabolic orbifold [Horowitz–Steif (1991)]

• its conformal field theory is a Z-orbifold of flat space, and has

been studied [Liu–Moore–Seiberg, hep-th/0206182]

• some arithmetic issues remain
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Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε = ∇ξε + 1
8∇aξbΓabε = 0

In string/M-theory this cannot be the end of the story.
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• dramatic example: [Duff–Lü–Pope, hep-th/9704186,9803061]

AdS5×S5

((QQQQQQQQQQQQQ

oo // AdS5×CP2 × S1

uukkkkkkkkkkkkkkk

AdS5×CP2



24

“Supersymmetry without supersymmetry”

• T-duality relates backgrounds with different amount of

“supergravitational supersymmetry”

• dramatic example: [Duff–Lü–Pope, hep-th/9704186,9803061]

AdS5×S5

((QQQQQQQQQQQQQ

oo // AdS5×CP2 × S1

uukkkkkkkkkkkkkkk

AdS5×CP2

CP
2 is not even spin!
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Spin structures in quotients

• (M, g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

• if Γ ∼= R, then M/Γ is always spin

• if Γ ∼= S1 then M/Γ is spin if and only if the action of Γ lifts to

the spin bundle

• equivalently, the action of ξ = ξX on spinors has integral weights
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Supersymmetry of supergravity quotients

• (M, g, F, ...) supersymmetric

• Γ one-parameter group of symmetries, generated by ξ

• Killing spinors of M/Γ ⇐⇒ Γ-invariant Killing spinors of M

• it suffices to determine zero weights of Lξ on Killing spinors

• e.g., (R1,9): Killing spinors are parallel, whence

Lξε = 1
8∇aξbΓabε
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• e.g., fluxbranes

ξ = ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2(ϕ1Γ12 + ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)
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? ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 =⇒ ν = 1
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• e.g., nullbranes

ξ = ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2Γ+2 + 1
2(ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)

• N+2 is nilpotent, whereas 1
2(ϕ2Γ34+ϕ3Γ56+ϕ4Γ78) is semisimple

and commutes with it; whence invariant spinors are annihilated

by both

• ker N+2 = ker Γ+, and this simply halves the number of

supersymmetries
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• for generic ϕi, no supersymmetry is preserved, but there are

hyperplanes (and their intersections) on which Lξ has zero

eigenvalues:

? ϕ2 − ϕ3 − ϕ4 = 0 =⇒ ν = 1
8

? ϕ2 = ϕ3, ϕ4 = 0 =⇒ ν = 1
4

? ϕ2 = ϕ3 = ϕ4 = 0 =⇒ ν = 1
2
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(M ×N, g ⊕ h) and F ∝ dvolg

• field equations ⇐⇒ (M, g) and (N,h) are Einstein

• supersymmetry ⇐⇒ (M, g) and (N,h) admit geometric Killing

spinors:

∇Xε = λX · ε where λ ∈ R
×
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33

• (M, g) admits geometric Killing spinors ⇐⇒ the cone (M̂, ĝ),
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M̂ = R
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• (M, g) admits geometric Killing spinors ⇐⇒ the cone (M̂, ĝ),

M̂ = R
+ ×M and ĝ = dr2 + 4λ2r2g ,

admits parallel spinors: ∇ε̂ = 0
[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)
[hep-th/9902066]
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• (M, g) riemannian =⇒ (M̂, ĝ) riemannian

• (M1,n−1, g) lorentzian =⇒ (M̂, ĝ) has signature (2, n− 1)

• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS1+p×Sq

the cones of each factor are flat:

? cone of Sq is Rq+1

? cone of AdS1+p is (a domain in) R2,p

• again the problem reduces to one of flat spaces!
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Isometries of AdS1+p

• AdS1+p is simply-connected; it is the universal cover of a quadric

Q1+p ⊂ R
2,p, given by

−x2
1 − x2

2 + x2
3 + · · ·+ x2

p+2 = −R2

• For p > 2, π1Q1+p
∼= Z, generated by (topological) CTCs

x1(t) + ix2(t) = reit with r2 = R2 + x2
3 + · · ·+ x2

p+2
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• SO(2, p) is not the (orientation-preserving) isometry group of

AdS1+p. Why? Because

? SO(2, p) has maximal compact subgroup SO(2)× SO(p)
? the orbits of SO(2) are the CTCs above

? these curves are not closed in AdS1+p

? in AdS1+p, x1∂2 − x2∂1 does not generate SO(2) but R

• the (orientation-preserving) isometry group of AdS1+p is an

infinite cover S̃O(2, p), a central extension of SO(2, p) by Z
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• the central element is the generator of π1Q1+p

• The bad news: S̃O(2, p) is not a matrix group; it has no finite-

dimensional matrix representations

• The good news:

? the Lie algebra of S̃O(2, p) is still so(2, p); and

? adjoint group is again SO(2, p)

whence

• one-parameter subgroups↔ projectivised adjoint orbits of so(2, p)
under SO(2, p)
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Normal forms for so(2, p)

We play again but with a bigger set!

We can still use the lorentzian elementary blocks:

• (0, 2) and also (2, 0), µ(x) = x2 + ϕ2, rotation

B(0,2)(ϕ) = B(2,0)(ϕ) =
[

0 ϕ

−ϕ 0

]
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• (1, 1), µ(x) = x2 − β2, boost

B(1,1)(β) =
[
0 −β

β 0

]

• (1, 2) and also (2, 1), µ(x) = x3, null rotation

B(1,2) = B(2,1) =

0 −1 0
1 0 −1
0 1 0


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But there are also new ones:

• (2, 2), µ(x) = x2, “rotation” in a totally null plane

B
(2,2)
± =


0 ∓1 1 0
±1 0 0 ∓1
−1 0 0 1
0 ±1 −1 0


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• (2, 2), µ(x) = (x2−β2)2, deformation of B
(2,2)
± by a (anti)selfdual

boost

B
(2,2)
± (β > 0) =


0 ∓1 1 −β

±1 0 ±β ∓1
−1 ∓β 0 1
β ±1 −1 0



The associated discrete quotient of AdS3 yields the extremal

BTZ black hole; the non-extremal black hole is obtained from

B(1,1)(β1)⊕B(1,1)(β2), for |β1| 6= |β2|
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• (2, 2), µ(x) = (x2 + ϕ2)2



42

• (2, 2), µ(x) = (x2 + ϕ2)2, deformation of B
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• (2, 2), µ(x) = (x2 + ϕ2)2, deformation of B
(2,2)
± by a (anti)self-

dual rotation

B
(2,2)
± (ϕ) =


0 ∓1± ϕ 1 0

±1∓ ϕ 0 0 ∓1
−1 0 0 1 + ϕ

0 ±1 −1− ϕ 0


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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2
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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2, self-dual boost + antiself-

dual rotation

B
(2,2)
± (β > 0, ϕ > 0)
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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2, self-dual boost + antiself-

dual rotation

B
(2,2)
± (β > 0, ϕ > 0) =


0 ±ϕ 0 −β

∓ϕ 0 ±β 0
0 ∓β 0 −ϕ

β 0 ϕ 0


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• (2, 3)
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• (2, 3), µ(x) = x5
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• (2, 3), µ(x) = x5, deformation of B
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• (2, 3), µ(x) = x5, deformation of B
(2,2)
+ by a null rotation in a

perpendicular direction

B(2,3) =


0 1 −1 0 −1
−1 0 0 1 0
1 0 0 −1 0
0 −1 1 0 −1
1 0 0 1 0


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• (2, 4)
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• (2, 4), µ(x) = (x2 + ϕ2)3
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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0


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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0



• and that’s all!
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Causal properties

• Killing vectors on AdS1+p×Sq decompose

ξ = ξA + ξS

whose norms add

‖ξ‖2 = ‖ξA‖2 + ‖ξS‖2
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• Sq is compact =⇒

R2M2 ≥ ‖ξS‖2 ≥ R2m2

and if q is odd, m2 can be > 0

• ξ can be everywhere spacelike on AdS1+p×S2k+1, even if ξA is

not spacelike everywhere, provided that ‖ξA‖2 is bounded below

and ξS has no zeroes

• it is convenient to distinguish Killing vectors according to norm
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• everywhere non-negative norm:
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? B

(2,2)
± ⊕i B(0,2)(ϕi)

• norm bounded below:

? B(2,0)(ϕ)⊕i B(0,2)(ϕi), if p is even and |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), if |ϕi| ≥ |ϕ| ≥ 0 for all i

• arbitrarily negative norm: the rest!
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? B(2,3) ⊕i B(0,2)(ϕi)
? B

(2,4)
± (ϕ)⊕i B(0,2)(ϕi)

Some of these give rise to higher-dimensional BTZ-like black

holes: quotient only a part of AdS and check that the boundary

thus introduced lies behind a horizon.
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Discrete quotients with CTCs

• ξ = ξA + ξS a Killing vector in AdS1+p×S2k+1, with ‖ξ‖2 > 0
but ‖ξA‖ not everywhere spacelike

• the corresponding one-parameter subgroup Γ ∼= R

• pick L > 0 and consider the cyclic subgroup ΓL
∼= Z generated

by

γ = exp(LX)
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• idea of the proof: find a timelike curve which connects a point x

to its image γNx for N � 1

• e.g., a Z-quotient of a lorentzian cylinder

• general case:

? let x = (xA, xS) be a point and γN · x = (γN · xA, γN · xS) its

image under γN

? we will construct a timelike curve c(t) between c(0) = x and
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‖ċS(t)‖dt = NL‖ċS‖ ≤ D
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‖ċS(t)‖dt = NL‖ċS‖ ≤ D
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? therefore ‖ċS‖ ≤ D/NL, and

‖ċ‖2
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? therefore ‖ċS‖ ≤ D/NL, and
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which is negative for N � 1 where ‖ξA‖2 < 0

• the same argument applies to any Freund–Rubin background

M ×N , where M is lorentzian admitting such isometries and N

is complete:

? N is Einstein with positive cosmological constant

? Bonnet-Myers Theorem =⇒ N has bounded diameter
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• for X = R
4, Killing spinors are isomorphic to(

∆2,2
+ ⊗

[
∆4,0

+ ⊗∆0,4
+

])
⊕

(
∆2,2
− ⊗

[
∆4,0
− ⊗∆0,4

+

])
as a representation of Spin(2, 2)× Spin(4)× Spin(4)

• here [R] means the underlying real representation of a complex

representation of real type; that is,

R = [R]⊗ C
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Regular one-parameter subgroups

• only consider actions on AdS3×S3

• ξ = ξA + ξS, with

? ξ spacelike

? smooth quotients

? supersymmetric quotients

• there are two classes: having 8 or 4 supersymmetries
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• ξ = e12 + ϕe34 + θ1R12 + θ2R34, where 1 ≥ |ϕ|, θ1 ≥ |θ2| > |ϕ|,
and 1∓ ϕ = θ1 ∓ θ2

• associated discrete quotients are cyclic orbifolds (ZN or Z) of a

WZW model with group S̃L(2,R)× SU(2)

• most are time-dependent, and many have closed timelike curves
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Thank you.


