Equivariant cohomology & the moment map
G convected, compact lie group, lie algebra
$$\mathcal{A}$$

 $M \xrightarrow{C^{\infty}} mgd$ and $G \xrightarrow{O} M \xrightarrow{\Rightarrow} g \xrightarrow{\rightarrow} \mathcal{X}(M)$ LAhom.
 $x \xrightarrow{I \rightarrow} \overset{E}{\to} x$
The de Phane complex $(\Omega'(M), d)$ admits g -action:
 $X \xrightarrow{E} g$
 $1_{X} \xrightarrow{:=} 2 \overset{E}{\to} x \xrightarrow{:} \Omega^{P}(M) \xrightarrow{\rightarrow} \Omega^{P}(M)$
and $d_{X} \xrightarrow{:=} d_{X} \xrightarrow{:} d_{X} + t_{X} d$
If G acts healy on M, we get a ppal G-bunda
 $G \xrightarrow{\sim} M \xrightarrow{=} M/G$ and π^{*} embeds $\Omega'(M/G)$ as the
subcomplex of $\Omega'(M)$ consisting of basic forms:
 $x \in \Omega^{P}(M)$ is basic $\Leftrightarrow \begin{cases} 1_{X} \propto = 0 & \forall X \in \mathcal{A} \\ (horizortal) \\ d_{X} \propto = 0 & \forall X \in \mathcal{A} \\ (invariant) \end{cases}$

What if the action is not fee? M/G need not be a manifold. How do we make sense of H'(M/G)? The idea is to modify M as table as possible but admitting a pee action. If G acts freely on E, it will act freely on E×M, and if in addition E is contracted E×M is nonnotopy equivalent to M. If so we may define the homotopy quotient $M_G := (E \times M)/G$, whose de Phase cohomology is the cohomology of the basic forms on E×M. OIT is called the G-equivariant cohomology of M and denoted $H'_G(M)$. If the G-action on M is free, $H_G(M) \cong H(M/G)$.

The problem with this idea is that E is an inductive
limit of manifolds & hence infinite-dimensional
eq:
$$G = U(1)$$
 E is an inductive limit of S^{n+1} as $n \rightarrow a$.
In quench, $E = EG \rightarrow BG$ is the total space of the
universal pool Growale oner the clanifying space BG, so
called because pool G-burdles once M are clamified by
[M, BG]. Not wanting to do analysis on E,
our strategy is to model $\Omega'(E)$ algebraically.
The Weil algebra $W(g) := \Lambda'g^* \otimes G'g^*$ is a
 g -DGA defined as follows. Let (la) be a basis
for $g \& (0^a)$ the canonical dual basis for g^* .
Let [ea, 26] = fob e_c . $g^* \cong \Lambda'g^*$ cends Θ^a to A^a
and $g^* \cong G'g^*$ cends Θ^a to F^a , we let
 $\deg A^a = -\frac{1}{2} f_{bc} \Lambda^b \Lambda' + F^a$ & $dF^a = f_{bc}^a F^b \Lambda^c$
and extending to $W(A)$ as a deg 1 odd derivation.
Exercise Show $d^2 = 0$ and that $H_d^a \cong \begin{cases} R = 0 \\ 0 = r^a \end{cases}$
 $and $\mathcal{L}_X = d\mathfrak{L}_X + \mathfrak{L}_X d$. This turns $W(A)$ into a g -DGA.
Remark $H_{meric}(W(A)) \cong (G'g^*)^A$.$

So W(g) & Ω'(M) are g-DGAs and hence so is W(g) & Ω'(M). The equivariant de Rham model for HG(M) is the basic subcomplex {W(g) @ Ω(M)}basic There is another algebraix model for HG(M) which is more convenient for calculations.

Let's define minimal coopling

$$K: \Omega'(M) \rightarrow \Lambda' q^{4} \otimes \Omega'(M)$$

 $dx^{i} \mapsto dx^{i} - \Lambda^{6} \xi_{a}^{i}$ where $\xi_{e_{a}} = \xi_{a}^{i} \frac{\partial}{\partial x_{i}}^{i}$
welative to local coordinates. It is well-defined.
Now let $\mathcal{E}: \Lambda' q^{4} \otimes \Omega'(M) \rightarrow \Omega'(M)$ be defined
by simply potting $\Lambda^{a} = 0$. Then $\mathcal{E} \circ K = id_{\Omega(M)}^{i}$
and hence $K \circ \mathcal{E}$ is idempotent. Since
 $t_{K}K(dx^{i}) = i_{k}(dx^{i} - \Lambda^{a} \xi_{a}^{i}) = \xi_{K}^{i} - \chi^{a} \xi_{a}^{i} = 0$
one shows that $K \circ \mathcal{E}$ is the projector onto
horizonal forms in $\Lambda' q^{4} \otimes \Omega'(M)$: we have isos
 $\Omega'(M) \stackrel{K}{\underset{\mathcal{E}}{\xleftarrow}} (\Lambda' q^{4} \otimes \Omega'(M))_{hors}^{i}$
Since f^{a} are horizontal, we get
 $G: q^{k} \otimes \Omega'(M) \stackrel{K}{\underset{\mathcal{E}}{\xleftarrow}} (W'(q) \otimes \Omega'(M))_{hors}^{i}$
and since \mathcal{E}, K are q -maps,
 $\Omega_{c}^{i} := (G' q^{4} \otimes \Omega'(M))^{a} \stackrel{K}{\underset{\mathcal{E}}{\xleftarrow}} (W'(q) \otimes \Omega'(M))_{hors}^{i}$
 $k = (M'(q) \otimes \Omega'(M))_{hors}^{i}$
 $d_{c}F^{a} = \mathcal{E}(dF^{a}) = 0$ $d_{c} \omega = \mathcal{E} d(\omega - \Lambda^{a} t_{a} \omega + \cdots)$
 $= \mathcal{E}(d\omega - F^{a} t_{a} \omega + \cdots)$
 $= d\omega - F^{a} t_{a} \omega$
 $(\Omega'c, dc)$ is the Cartan model for $H_{q}(M)$.

What about moment maps? Let
$$(M, \omega)$$
 be
symplectic and Gacts on M preserving ω :
 $\mathcal{L}_{x} \omega = 0 \Leftrightarrow d_{x} \omega = 0$ since $d\omega = 0$.
Let $1_{x}\omega = d\phi_{x}$ $\exists \phi_{x} \in \mathbb{C}^{\infty}(M)$. The functions ϕ_{x}
are defined up to constants. If these can be
mosen co that $\mathcal{L}_{x} \phi_{y} = \phi_{[x,y]}$ $\forall x,y \in g$
then $g \rightarrow \mathbb{C}^{\infty}(M)$ sending $\chi \mapsto \phi_{\chi}$ is a
lie algebra homomorphism and $\mu: M \rightarrow g^{\dagger}$
with $\mu(p)(\chi) = \phi_{\chi}(p)$ is a moment map.
The Gaction is said to be haw it formian.
Since ω is g-invariant, $\omega \in \Omega_{c}^{2}$. We say that
 ω admits an equivariant closed extension if
 $\exists \omega \in \Omega_{c}^{2}, d_{c} \omega = 0$ and $\hat{\omega}_{f} = \omega$.
Theorem (Attight-Bott)
A symplectic Graction on (M, ω) is haw it formian
if ω admits an equivariant closed extension.

Proof $\hat{\omega} \in \Omega_{c}^{2}$ $\hat{\omega}|_{F=0}^{2} = \omega \iff \hat{\omega} = \omega + \varphi_{a}F^{a} = \exists \varphi_{a} \in (\mathbb{C}(M))$ $\mathcal{L}_{b} \hat{\omega} = 0 \iff \mathcal{L}_{b} \varphi_{c} = f_{bc}^{a} \varphi_{a}$ $d_{c} \hat{\omega} = 0 \iff d \varphi_{a} = t_{a} \omega$ $\hat{\omega} = 0 \iff d \varphi_{a} = t_{a} \omega$ Exercise Show $H_{d}^{2}(W(q)) \cong \begin{cases} \mathbb{R}, n \ge 0 \\ 0, n > 0 \end{cases}$ Define $h: W^{p}(q) \rightarrow W^{p^{-1}}(q)$ by $k(A^{q}) = 0 \quad k(F^{q}) = A^{q}$ and extending as an antiderrotation. $(k d + d k)(A^{q}) = k (F^{q} - \frac{1}{2}f^{q}_{bc}A^{b}A^{c}) = A^{q}$ $(k d + d k)(F^{q}) = k (f^{q}_{bc}F^{b}A^{c}) + dA^{q}$ $= f^{q}_{bc}A^{b}A^{c} + dA^{q}$ $= F^{q} - \frac{1}{2}f^{q}_{bc}A^{b}A^{c}$

Filter W(g) by fdeg $F^{q}=1$, fdeg $A^{a}=0$. Let $m \ge i$ and $a \in W^{m}(g)$. Then $(dk+kd)a \in W^{n}(g)$ suppose fdeg $a = q \ge 0$ (and $a \ne 0$). The fdeg $\delta = q \ge 0$ (and $a \ne 0$). The fdeg $\delta = a - \frac{1}{m-q} (dka + kda)$ is $\le q-1$. If da=0, β is cohomologous to a bot has strictly smaller fdeg. Herating fluis, we arrive at 0 cohomologous to a. $A \in W^{m}(g) = \bigoplus Ag^{*} \otimes G^{s}g^{*}$ r+2s=m $k \le q \implies m-q \ge q$ $i = m-q=0 \iff q=0, m=0 \implies q$