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A geometric motivation

Which are the maximally symmetric (pseudo-) riemannian

manifolds?

Infinitesimal isometries of (M, g) are given by Killing vectors ξ:

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0 for all X, Y

Equivalently, they are parallel sections of the bundle

E(M) = TM ⊕ so(TM)



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector and A = ∇ξ.



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector and A = ∇ξ.

E(M) has rank n(n + 1)/2 for an n-dimensional M .



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector and A = ∇ξ.

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector and A = ∇ξ.

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat



3

relative to the connection

DX

(
ξ

A

)
=
(
∇Xξ −A(X)
∇XA−R(X, ξ)

)

Indeed, a section (ξ,A) of E(M) is parallel if and only if ξ is a

Killing vector and A = ∇ξ.

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat

=⇒ M has constant sectional curvature κ.
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In the riemannian case (and up to local isometry):

• κ = 0: euclidean space En

• κ > 0: sphere

Sn ⊂ En+1 : x2
1 + x2

2 + · · ·+ x2
n+1 =

1
κ2

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2



5

In lorentzian geometry (and up to local isometry)



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2
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Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.

This is the Clifford–Klein space form problem, first posed by Killing

in 1891 and reformulated in these terms by Hopf in 1925.

The flat and spherical cases are solved (culminating in the work of

Wolf in the 1970s), but the hyperbolic and lorentzian cases remain

largely open despite many partial results.
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Supersymmetry is a nontrivial extension of the notion of symmetry,

and the analogue of maximal symmetry (in gravity) is maximal

supersymmetry in supergravity.

This leads to the natural question

Which are the maximally supersymmetric backgrounds of

supergravity theories?

In this talk I will report on the solution of the local problem in

several supergravity theories.

Note: A maximally supersymmetric supergravity background will

be abbreviated vacuum.
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Gravity...

Classical gravity is described by the Einstein–Hilbert action:∫
M

sg dvolg

where (M, g) is a oriented lorentzian manifold, sg the scalar

curvature, and dvolg the volume form.

Extremals of this action—namely, Ricci-flat manifolds—are called

spacetimes.
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Adding a cosmological constant λ:∫
M

(sg + λ) dvolg

we obtain spacetimes which are Einstein manifolds.

The maximally symmetric solutions are the lorentzian space forms:

smooth discrete quotients of Minkowski space and (the universal

covers of) de Sitter and anti de Sitter spaces, depending on the

sign of λ.
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... and Supergravity

Let (M, g, S) be a spin lorentzian manifold, where S is a real

spinor bundle. Let Ψ be the gravitino, a section of T ∗M ⊗ S. Let

(−,−) denote the invariant inner product on S.

Supergravity is defined by the action∫
M

sg dvolg +
∫

M

(Ψ,∇Ψ)dvolg

where we have added the Rarita–Schwinger term.

What is so interesting about this action?
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It is invariant under supersymmetry transformations: derivations δε

parametrised by sections ε of S acting on the fields (g,Ψ) as

follows:
(δεg)(X, Y ) = (ε, X ·Ψ(Y ) + Y ·Ψ(X))

(δεΨ)(X) = ∇Xε

The small print: S should really be ΠS.

Also this really only works as written in four dimensions. In other

dimensions supergravity theories might have other fields and both

the action and supersymmetry transformations become more

complicated. But supergravity theories are uniquely determined by

representation theory (of relevant superalgebras).
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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Kaluza–Klein



13

Any theory in the table can be dimensionally reduced down its

column ∴ symmetric backgrounds can be reduced à la
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Any theory in the table can be dimensionally reduced down its

column ∴ symmetric backgrounds can be reduced à la

Kaluza–Klein, but some supersymmetry is often sacrificed.

Backgrounds can be oxidised up the column without losing

supersymmetry (indeed often gaining) =⇒ vacua oxidise to vacua.

To classify vacua, one can therefore

• classify vacua of theories at the top of each column, and

• investigate their possible Kaluza–Klein reductions.
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Strategy

Let (M, g,Φ, S) be a supergravity background:

• (M, g) a lorentzian spin manifold

• Φ denotes collectively the other bosonic fields

• fermions (e.g., gravitino,...) have been put to zero

• S a real vector bundle of spinors (associated to the Clifford bundle

C`(TM))
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(M, g,Φ, S) is supersymmetric if it admits Killing spinors; that is,

sections ε of S such that

Dε = 0

where D is the connection on S

D = ∇+ Ω(g,Φ)

defined by the supersymmetry variation of the gravitino:

δεΨ = Dε

(putting all fermions to zero)
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There are possibly also algebraic equations

A(g,Φ)ε = 0

where A is a section of End(S) defined by the supersymmetric

variation of any other fermionic fields (dilatinos, gauginos,...)

δεχ = Aε

Maximal supersymmetry =⇒ D is flat and A = 0.

Typically A = 0 sets some fields to zero, and the flatness of D

constrains the geometry and any remaining fields. The strategy is

therefore to study the flatness equations for D.
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Classifications of supergravity vacua

In the table we have highlighted the “top” theories whose vacua

are known already:

• D = 4 N = 1 [Tod (1984)]

• D = 6 (1, 0), (2, 0) [Chamseddine–FO–Sabra]

• D = 10 IIB and I [FO–Papadopoulos]

• D = 11 M [FO–Papadopoulos]
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Vacua of (1, 0) D = 6 supergravity

• bosonic fields:

? metric g

? anti-selfdual closed 3-form F

• fermionic fields:

? gravitino Ψ, a section of T ∗M ⊗ S, where

S = [∆+ ⊗ σ]

is a real 8-dimensional representation of Spin(1, 5)× Sp(1).
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• The gravitino variation yields the connection

DX = ∇X + 1
4ιXF

The connection D is actually induced from a metric connection

with torsion; i.e., Dg = 0 and

T (X, Y ) = DXY −DY X − [X, Y ]

is such that

g(T (X, Y ), Z) = F (X, Y, Z)
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Maximal supersymmetry =⇒ D is flat.

Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with torsion is locally isometric to a Lie group with bi-invariant
metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with

six-dimensional Lie algebras with an invariant lorentzian metric and

with anti-selfdual structure constants.

The solution to this problem is known.
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Lorentzian Lie algebras

Which Lie algebras have an invariant metric?

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing

But there is a more general construction.
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The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → Λ2g
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whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g, so it defines

a class [ω] ∈ H2(g, h∗)

• we build the corresponding central extension g×ω h∗

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)
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• the double extension admits an invariant metric


g h h∗

g 〈−,−〉g 0 0
h 0 B id
h∗ 0 id 0


where

? 〈−,−〉g is the invariant metric on g,

? id stands for the dual pairing between h and h∗, and

? B is any invariant symmetric bilinear form on h (not necessarily

nondegenerate)

This construction is due to Medina and Revoy.
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The structure theorem of Medina and Revoy

A metric Lie algebra is indecomposable if it is not the direct sum of

two orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Six-dimensional lorentzian Lie algebras

It is now easy to list all six-dimensional lorentzian Lie algebras.

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p + r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.

(Any semisimple factors in a factor out of the double extension.

[FO–Stanciu hep-th/9402035])
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Six-dimensional lorentzian Lie algebras:

• R5,1

• so(3)⊕ R2,1

• so(2, 1)⊕ R3

• so(2, 1)⊕ so(3)

• d(R4, R), actually a family of Lie algebras parametrised by

homomorphisms

R → Λ2R4 ∼= so(4)
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Antiselfduality of the structure constants narrows the list down to

• R5,1

• so(2, 1)⊕ so(3) with “commensurate” metrics, and

• d(R4, R) with the image of R → Λ2R4 self-dual

The first case corresponds to the flat vacuum. The second case

corresponds to AdS3×S3 with equal radii of curvature and

F ∝ dvol(AdS3)− dvol(S3)

The third case is a six-dimensional version of the Nappi-Witten

spacetime, NW6, discovered by Meessen. [Meessen hep-th/0111031]
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The vacua are related by group contractions (à la Inönü–Wigner):

AdS3×S3
�
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NW6
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flat
?

[Stanciu–FO hep-th/0303212]

[Back]
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Vacua of eleven-dimensional supergravity

• bosonic fields:

? metric g, and

? closed 4-form F

• fermionic fields:

? gravitino Ψ, a section of T ∗M ⊗ S, where S is an irreducible

real 32-dimensional representation of C`(1, 10).
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• the gravitino variation defines the connection

DX = ∇X + 1
6ιXF − 1

12X
[ ∧ F

For fixed X, Y , the curvature

RX,Y = DXDY −DY DX −D[X,Y ]

is a section of End(S), which we can lift to a section of

C`(T ∗M) ∼= ΛT ∗M .

The flatness of D results in a number of equations, corresponding

to the different independent components of RX,Y .
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Summarising the results:

• F is parallel: ∇F = 0

• the Riemann curvature tensor Riem(g) is determined algebraically:

Riem(g) = T (F, g)

with T quadratic in F =⇒ (M, g) is locally symmetric

• F obeys the Plücker relations

ιXιY ιZF ∧ F = 0 for all X, Y, Z
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so that F is decomposable:

F = θ1 ∧ θ2 ∧ θ3 ∧ θ4

We can restrict to the tangent space at any one point in the

spacetime: the metric g defines a lorentzian inner product and F is

either zero or defines a 4-plane: the plane spanned by the θi.

If F is zero, then the solution is flat. Otherwise we have three

cases, depending on whether the plane is euclidean, lorentzian, or

null.
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Knowing F we can determine Riem(g) and hence g, and one finds

the following vacua:

• F euclidean: a one parameter R > 0 family of vacua

AdS7(−7R)× S4(8R) F =
√

6R dvol(S4)

• F lorentzian: a one parameter R < 0 family of vacua

AdS4(8R)× S7(−7R) F =
√
−6R dvol(AdS4)
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• F null: a one parameter µ ∈ R family of symmetric plane waves

or indecomposable lorentzian symmetric spaces with solvable

transvection group

[Cahen–Wallach (1970)]

g = 2dx+dx− − 1
36µ

2

(
4

3∑
i=1

(xi)2 +
9∑

i=4

(xi)2
)

(dx−)2 +
9∑

i=1

(dxi)2

F = µdx− ∧ dx1 ∧ dx2 ∧ dx3

Notice that for µ = 0 we recover the flat space solution; whereas

for µ 6= 0 all solutions are equivalent and coincide with the

eleven-dimensional vacuum discovered by Kowalski-Glikman in

1984.
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All vacua embed isometrically in E2,11 as the intersections of two

quadrics (cf. the sphere and anti de Sitter space.). Indeed

2dx+dx− −Q(x)(dx−)2 +
n∑

i=1

(dxi)2

is isometric to the intersection of the two quadrics

U2
1 + U2

2 = 4 and U1V1 + U2V2 = Q(X)

in E2,n+2 with the flat metric

dU1dV1 + dU2dV2 + (dX1)2 + · · ·+ (dXn)2
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Vacua of D = 10 IIB supergravity

• bosonic fields:

? metric g,

? section τ of a fibre bundle T → M with fibre SL(2, R)/U(1),
? closed complex 3-form H, and

? closed selfdual 5-form F

• fermionic fields:

? a gravitino Ψ, a section of T ∗M ⊗ S

? a dilatino λ, a section of S
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where S = ∆+ ⊕∆+, with ∆+ the real 16-dimensional positive-

chirality spinor representation of Spin(1, 9)

• the dilatino variation gives rise to an algebraic Killing spinor

equation

Maximal supersymmetry =⇒ τ is parallel and H = 0

• the gravitino variation defines the connection

(with H = 0 and τ fixed)

DX = ∇X + iα(τ)ιXF

where i is a complex structure on S, so that S ∼= ∆+ ⊗ C
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The flatness of D is equivalent to the following conditions:

• F is parallel: ∇F = 0

• the Riemann curvature tensor is again determined algebraically in

terms of F and g:

Riem(g) = T (F, g)
with T quadratic in F =⇒ (M, g) is locally symmetric

• F obeys a quadratic identity:∑
i

ιei
F ∧ ιeiF = 0

where {ei} is a pseudo-orthonormal frame
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Again we can work in the tangent space at a point, where g gives

rise to a lorentzian innner product and F defines a self-dual 5-form

obeying a quadratic equation.

This equation defines a generalisation of a Lie algebra known as a

4-Lie algebra (with an invariant metric). [Filippov (1985)]

n-Lie algebras also appear naturally in the context of Nambu

dynamics. [Nambu (1973)]

(Unfortunate notation: a 2-Lie algebra is a Lie algebra.)
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n-Lie algebras

A Lie algebra is a vector space g together with an antisymmetric

bilinear map

[ ] : Λ2g → g

satisfying the condition: for all X ∈ g the map

adX : g → g defined by adX Y = [X, Y ]

is a derivation over [ ]; that is,

adX[Y, Z] = [adX Y, Z] + [Y, adX Z]
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An n-Lie algebra is a vector space n together with an

antisymmetric n-linear map

[ ] : Λnn → n

satisfying the condition: for all X1, . . . , Xn−1 ∈ n, the map

adX1,...,Xn−1 : n → n

defined by

adX1,...,Xn−1 Y = [X1, . . . , Xn−1, Y ]
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is a derivation over [ ]; that is,

[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]

If 〈−,−〉 is a metric on n, we can define F by

F (X1, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉

If F is totally antisymmetric then 〈−,−〉 is an invariant metric.
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Ten-dimensional lorentzian 4-Lie algebras

In this language, IIB vacua are in one-to-one correspondence with

ten-dimensional selfdual lorentzian 4-Lie algebras; but this is not

particularly helpful since the theory of n-Lie algebras is still largely

undeveloped.

One is forced to solve the equations. After a lot of work, we

found that a selfdual 5-form obeys the equation if and only if

F = G + ?G where G = θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5

[FO–Papadopoulos math.AG/0211170]
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In other words, G is decomposable; whence, if nonzero, it defines a

5-plane, and hence F defines two orthogonal planes.

If F = 0 we recover the flat vacuum. Otherwise there are two

possibilities: either one plane is lorentzian and the other euclidean,

or both planes are null.

Knowing F we can determine Riem(g) and hence g, and one finds

the following vacua (up to local isometry):

• F non-degenerate case: a one-parameter (R > 0) family of vacua

AdS5(−R)× S5(R) F =

√
4R

5
(
dvol(AdS5) + dvol(S5)

)
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• F degenerate: a one-parameter (µ ∈ R) family of waves:

g = 2dx+dx− − 1
4µ

2
8∑

i=1

(xi)2(dx−)2 +
8∑

i=1

(dxi)2

F = 1
2µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
µ = 0 =⇒ flat vacuum

µ 6= 0 =⇒ isometric to same plane wave

[Blau–FO–Hull–Papadopoulos hep-th/0110242]

The wave is isometric to a solvable lorentzian Lie group

[Stanciu–FO hep-th/0303212]
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Other theories we have investigated:

• In D = 10: I, heterotic, IIA only have the flat vacuum. The

same is true for any theory lower in the corresponding columns.

(Roman’s massive supergravity has not vacua at all.)

• D = 6 (2, 0) supergravity: all (1, 0) vacua are also vacua of (2, 0)
and early indications show that there are no others. (1, 0) vacua

do have reductions preserving all supersymmetry.

[Gauntlett–Gutowsky–Hull–Pakis–Reall hep-th/0209114]

[Lozano-Tellechea–Meessen–Ort́ın hep-th/0206200]
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Thank you.


