Symmetric M-theory backgrounds

José Miguel Figueroa-O'Farrill

GELOGRA '11 Granada, 6 September 2011

MOTIVATION

Eleven-dimensional supergravity

(M, g, F)

 $(M^{11},g) \text{ lorentzian spin manifold}$ $F \in \Omega^4(M) \qquad dF = 0$ $d \star F = \frac{1}{2}F \wedge F$ $\operatorname{Ric}(X,Y) = \frac{1}{2} \langle \iota_X F, \iota_Y F \rangle - \frac{1}{6} |F|^2 g(X,Y)$

Not unlike Einstein-Maxwell theory

One line of research: finding solutions!

Particularly interesting are the **supersymmetric** solutions; i.e., those admitting **Killing spinors**:

$$\nabla_X \varepsilon + \frac{1}{6} \imath_X F \cdot \varepsilon + \frac{1}{12} X \wedge F \cdot \varepsilon = 0$$

dim{Killing spinors} = 32ν

known $\nu \in \left\{0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, 1\right\}$

ruled out $\nu \in \left\{\frac{30}{32}, \frac{31}{32}\right\}$

Fact: all known solutions with $\nu > \frac{1}{2}$ are (locally) **homogeneous!**

(A Lie group acts locally transitively by isometries and preserving **F**.)

Theorem (JMF + Meessen + Philip, 2004) $\nu > \frac{3}{4} \implies \text{locally homogeneous}$

Homogeneity Conjecture

 $\nu > \frac{1}{2} \implies$ locally homogeneous

Classification of homogeneous backgrounds?

Presumably involves classifying 11-dimensional homogeneous lorentzian manifolds

Probably **hard**, except for special cases: semisimple isometry group,...

First step: classify the symmetric backgrounds.

Field equations simplify:

$$\nabla F = 0 \implies d \star F = 0$$

We are left with:

$$F \wedge F = 0$$

Ric(X,Y) = $\frac{1}{2} \langle \iota_X F, \iota_Y F \rangle - \frac{1}{6} |F|^2 g(X,Y)$

The field equations are invariant under a **homothety**:

$g \mapsto t^2 g \qquad F \mapsto t^3 F$

(This is true in general, not just for symmetric backgrounds.)

Therefore moduli spaces are naturally cones.

LORENTZIAN SYMETRIC SPACES

A lorentzian (locally) symmetric space is locally isometric to

 $M_0 \times M_1 \times \cdots \times M_k$

M_0 lorentzian indecomposable

$M_{i>0}$ riemannian irreducible

Question: "How many" I I-dimensional LSS?

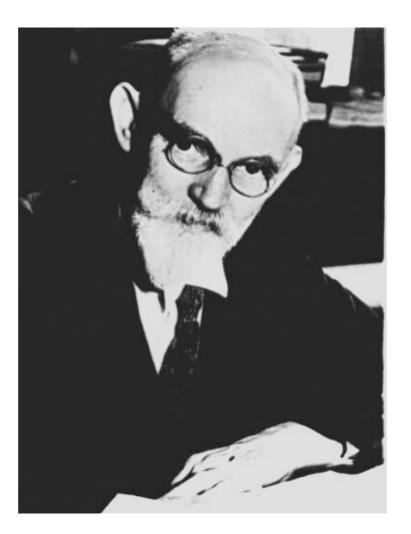
Indecomposable LSS

Theorem (Cahen + Wallach, 1970) **Proof** (Cahen + Parker, 1977)

A simply-connected, indecomposable lorentzian symmetric space is isometric to one of:

$$\mathbb{R}$$
 with metric $-dt^2$

the universal cover of **de Sitter** spacetime

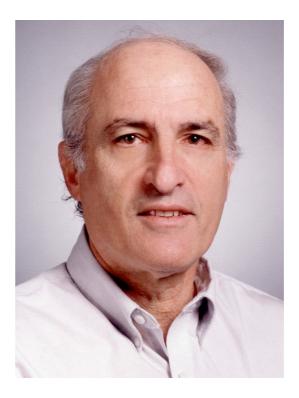


 $-x_0^2 + x_1^2 + \cdots x_n^2 = 1/\kappa^2 \qquad \subset \mathbb{R}^{n,1}$

or of anti de Sitter spacetime

$$-x_0^2 + x_1^2 + \cdots + x_{n-1}^2 - x_n^2 = -1/\kappa^2 \qquad \subset \mathbb{R}^{n-1,2}$$

or a **Cahen-Wallach** pp-wave



$$u_1^2 + u_2^2 = 1$$
 $2u_1v_1 + 2u_2v_2 = \sum_{i=1}^{n-2} A_{ij}x_ix_j$ $\subset \mathbb{R}^{n,2}$

Irreducible RSS

Well-known list due to Élie Cartan.

They come in pairs: one compact and one not. In dimension ≤ 10 , we have the usual suspects: spheres, projective spaces, grassmannians,...

n	I	2	3	4	5	6	7	8	9	10
#	1	2	2	4	4	6	2	12	4	8

A gas of RSS

 i_n = number of irreducible *n*-dimensional RSS

 r_n = number of *n*-dimensional RSS

$$\prod_{n=1}^{\infty} \frac{1}{1 - i_n t^n} = \sum_{n=0}^{\infty} r_n t^n$$

n		2	3	4	5	6	7	8	9	10
۲'n	1	3	5	13	21	47	73	161	253	497

 ℓ_n = number of indecomposable *n*-dimensional LSS

$$\ell_n = \begin{cases} 1 & n = 1\\ 2 & n = 2\\ 3 & n > 2 \end{cases}$$

N = number of 11-dimensional LSS

$$N = \sum_{n=1}^{11} \ell_n r_{11-n}$$

And the answer is...

 ℓ_n = number of indecomposable *n*-dimensional LSS

$$\ell_n = \begin{cases} 1 & n = 1\\ 2 & n = 2\\ 3 & n > 2 \end{cases}$$

N = number of 11-dimensional LSS

$$N = \sum_{n=1}^{11} \ell_n r_{11-n}$$

And the answer is...

ТЛКІПС Л DEEP DREЛTH, ONE FIRST SETS OUT TO RULE OUT ЛS МЛПҮ CASES ЛS POSSIBLE...

There are only **two** kinds of possible geometries:

WITH RENEWED ENERGY, WE TACKLE THE REMAINING 568 CASES...

AdS₇ backgrounds are Freund-Rubin

$$\operatorname{AdS}_{7} \times \left\{ \begin{array}{l} S^{4} \\ \mathbb{CP}^{2} \\ S^{2} \times S^{2} \end{array} \right.$$

 $F = f\nu_4$ $\operatorname{Ric}_7 = -\frac{1}{6}f^2g_7$ $\operatorname{Ric}_4 = \frac{1}{3}f^2g_4$

There are no AdS₆ backgrounds

AdS₄ backgrounds are also Freund-Rubin

 $\mathrm{AdS}_4 imes egin{cases} S^7\ S^5 imes S^2\ \mathrm{SLAG}_3 imes S^2\ S^4 imes S^3\ \mathbb{CP}^2 imes S^3\ S^2 imes S^2 imes S^3\ S^2 imes S^2 imes S^3 \end{cases}$

 $\operatorname{AdS}_{4} \times H^{3} \times \begin{cases} S^{4} \\ \mathbb{CP}^{2} \\ S^{2} \times S^{2} \end{cases}$

 $F = f \nu_4$

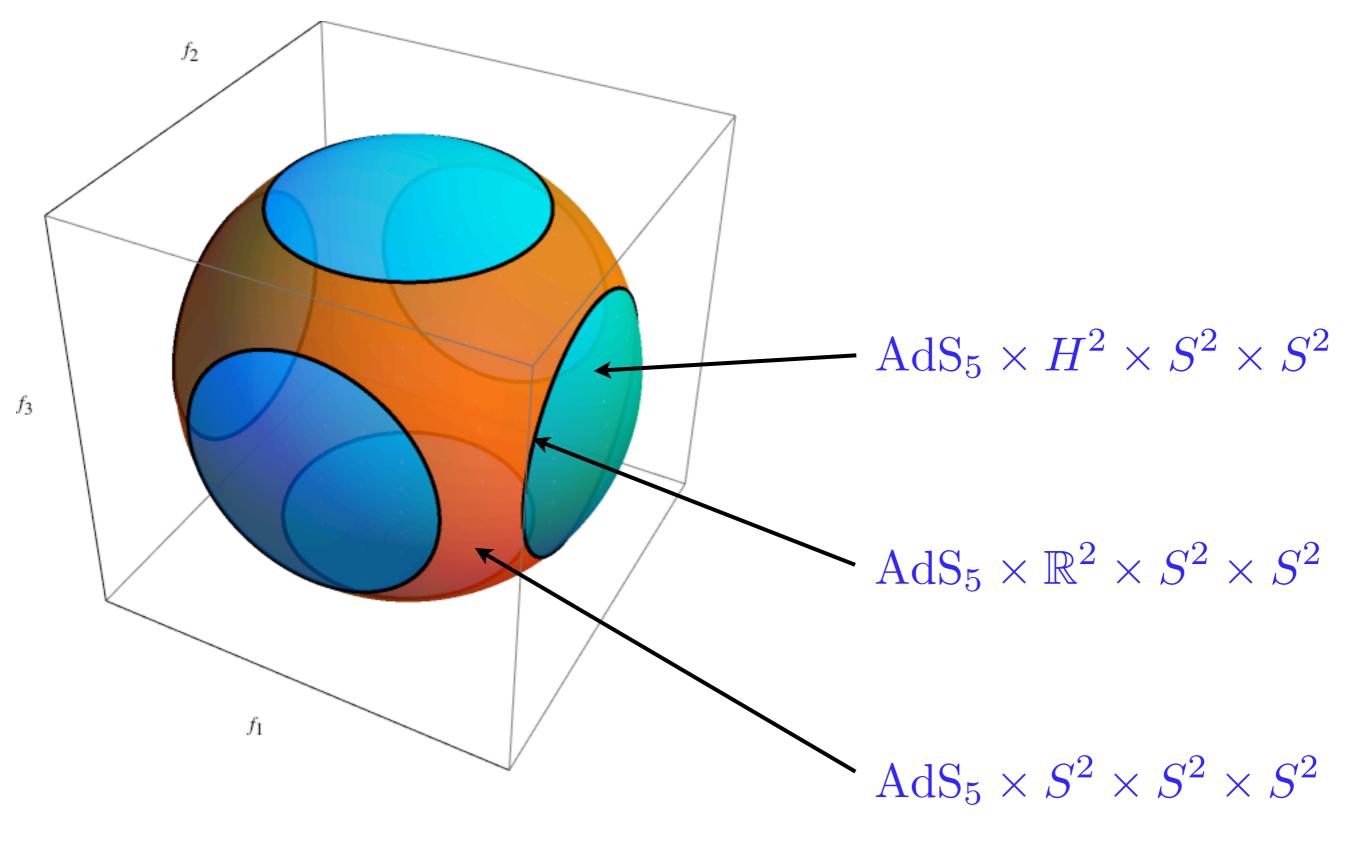
 $F = f\omega_4$

THINGS NOW START TO GET INTERESTING...

$$\operatorname{AdS}_{5} \times \begin{cases} \mathbb{CP}^{3} & F = \frac{1}{2}f\omega^{2} \\ \operatorname{Gr}_{\mathbb{R}}^{+}(2,5) & F = \frac{1}{2}f\omega^{2} \end{cases}$$
$$\operatorname{Ric}_{5} = -\frac{1}{2}f^{2}g_{5} & \operatorname{Ric}_{6} = \frac{1}{2}f^{2}g_{6} \end{cases}$$

$$\operatorname{AdS}_5 \times H^2 \times \begin{cases} \mathbb{CP}^2 \\ S^4 \end{cases} \quad F = f\nu_4 \end{cases}$$

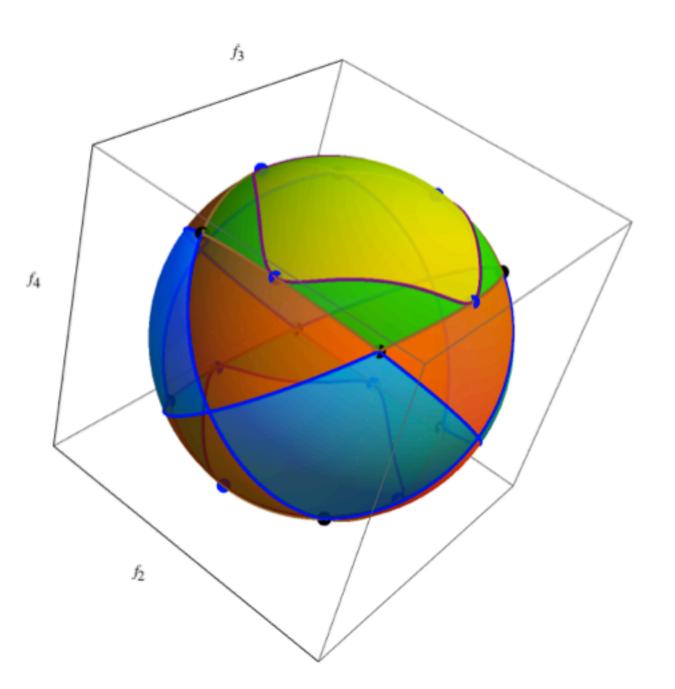
 $\operatorname{Ric}_5 = -\frac{1}{6}f^2g_5$ $\operatorname{Ric}_2 = -\frac{1}{6}f^2g_2$ $\operatorname{Ric}_4 = \frac{1}{3}f^2g_4$



 $F = f_1 \nu_1 \wedge \nu_2 + f_2 \nu_2 \wedge \nu_3 + f_3 \nu_1 \wedge \nu_3$

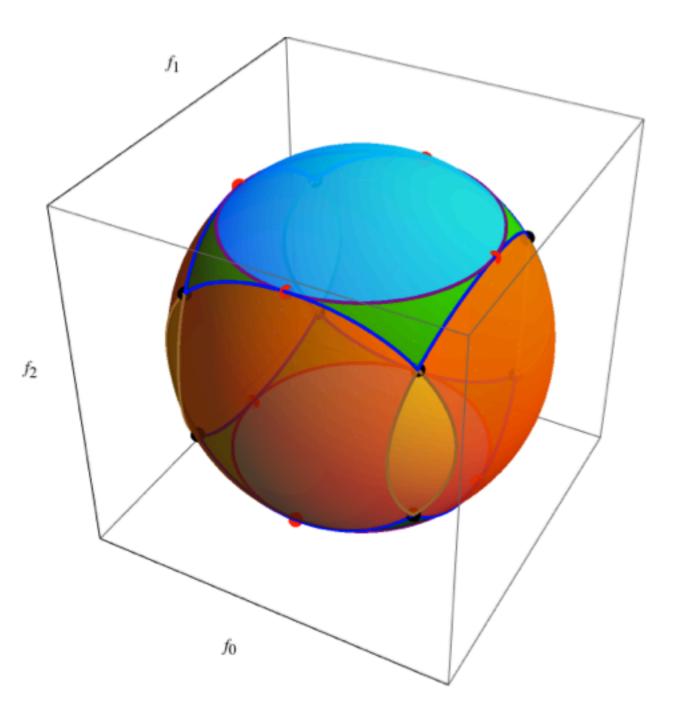
...AND EVEN MORE INTERESTING...

There are 24 AdS_3 geometries; e.g.,

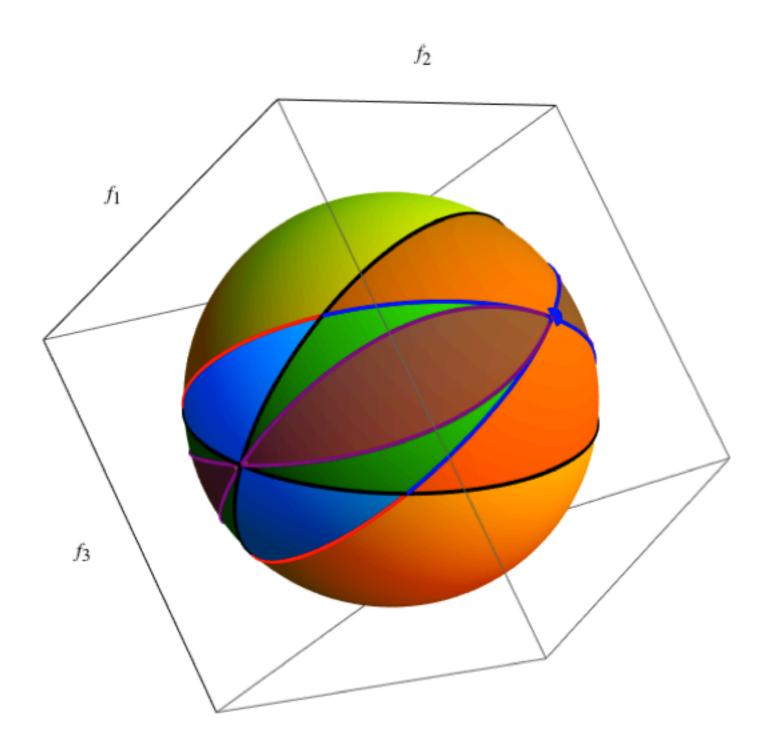


- $AdS_3 \times S^2 \times T^6$
- $AdS_3 \times \mathbb{C}P^2 \times T^4$
- $AdS_3 \times T^4 \times S^2 \times S^2$
- $AdS_3 \times \mathbb{C}P^2 \times S^2 \times T^2$
- $AdS_3 \times \mathbb{C}P^2 \times H^2 \times T^2$
- $AdS_3 \times \mathbb{C}P^2 \times H^2 \times H^2$
- $AdS_3 \times \mathbb{C}H^2 \times S^2 \times S^2$
- $AdS_3 \times \mathbb{C}P^2 \times S^2 \times H^2$
 - $AdS_3 \times \mathbb{C}P^2 \times S^2 \times S^2$

THERE'S NO END TO THE PRETTY PICTURES...



- $AdS_2 \times S^2 \times T^7$
- $AdS_2 \times S^5 \times T^4$
- $AdS_2 \times T^5 \times S^2 \times S^2$
- $AdS_2 \times S^5 \times H^2 \times T^2$
- $AdS_2 \times S^5 \times S^2 \times T^2$
- $AdS_2 \times H^5 \times S^2 \times S^2$
- $AdS_2 \times S^5 \times H^2 \times H^2$
- $AdS_2 \times S^5 \times S^2 \times H^2$
- $AdS_2 \times S^5 \times S^2 \times S^2$



- $AdS_2 \times S^3 \times T^6$
- $AdS_2 \times S^3 \times S^2 \times T^4$
- $AdS_2 \times \mathbb{C}P^2 \times H^3 \times T^2$
- $AdS_2 \times \mathbb{C}P^2 \times \mathbb{T}^5$
- $AdS_2 \times \mathbb{C}P^2 \times S^3 \times T^2$
 - $AdS_2 \times \mathbb{C}H^2 \times S^3 \times S^2$
 - $AdS_2 \times \mathbb{C}P^2 \times H^3 \times H^2$
- $AdS_2 \times \mathbb{C}P^2 \times H^3 \times S^2$
- $AdS_2 \times \mathbb{C}P^2 \times S^3 \times H^2$
- $AdS_2 \times \mathbb{C}P^2 \times S^3 \times S^2$

ΛΕΤΕΚ ΤΗΕ ΗΛΡΡΥ CONCLUSION, Λ LOOK ΛΗΕΛD...

Future work

- Supersymmetry
- Symmetric IIB backgrounds (with PG student Noel Hustler)
- More general homogeneous backgrounds? (e.g., G/H, with G=SO(3,2)xSO(N), together with UG student Mara Ungureanu)
- The homogeneity conjecture???

THE END