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Outline of first lecture

• Motivation

• Instantons on R4

• H reformulation

• O extension

• Moment map interpretation of O instantons
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Motivation

• The gauge-theoretic apparatus

∗ principal bundles

∗ connections

∗ Yang–Mills equations

makes sense in any dimension.

• Why then the insistence in low (≤ 4) dimension? i.e. vortices,

monopoles, instantons

• Our aim is to exhibit equally natural equations in d > 4
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Conventions

• G compact Lie group with Lie algebra g

• Tr an invariant scalar product on g

• Rn denotes euclidean space; that is, with the ’dot’ product

• A will always denote a gauge field: it only exists locally but the

notation shall not reflect it

• FA = dA + 1
2[A,A] will denote the associated field-strength
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Instantons on R4

• Let x1, x2, x3, x4 be oriented coordinates for R4

• Hodge ? : Ω2(R4) → Ω2(R4)

• ?2 = id, whence

Ω2(R4) = Ω2
+ ⊕ Ω2

−

• A is (anti)self-dual if ?FA = ±FA
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• Bianchi identity dAFA = 0 implies the Yang–Mills equation

dA ? FA = 0

for (anti)self-dual A

• (A)SD connections minimise the Yang–Mills functional∫
TrFA ∧ ?FA ≥

∣∣∣∣∫ TrFA ∧ FA

∣∣∣∣
with equality ⇐⇒ A is (A)SD
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• a first-order equation implies a second-order equation and

moreover the solutions of the first-order equation are “minimal”:

this is one the signatures of supersymmetry

• can consider instantons on any manifold with an SO(4) structure;

that is, a riemannian orientable 4-manifold

• but still seems very four-dimensional!
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Quaternions

• associative non-commutative division algebra

• H = R 〈1, i, j,k〉 obeying

i2 = j2 = k2 = ijk = −1

• H 3 q = x1i + x2j + x3k + x41, xi ∈ R

• q∗ = −x1i− x2j − x3k + x41
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• (q1q2)
∗ = q∗2q

∗
1

• Im H = R 〈i, j,k〉, Re H = R1

• 〈q1, q2〉 = Re (q∗1q2), |q|2 = 〈q, q〉

• |q1q2| = |q1||q2| (normed algebra)

• Sp(1) = {q ∈ H||q| = 1} ∼= SU(2)



9

Quaternionic instantons

• imaginary units: (Im H)1 = Im H ∩ Sp(1)

• u ∈ (Im H)1, Lu : H → H is skew-symmetric, ωu ∈ Ω2(R4)

• ?ωu = −ωu

• a gauge field A is SD ⇐⇒ FA ⊥ ωu for all u ∈ (Im H)1

• enough to impose this for u = i, j,k, obtaining

F12 = F34 F13 = −F24 F14 = F23
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• The ASD equations are obtained using right multiplication Ru
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Octonions

• non-associative non-commutative real division algebra

• O = R 〈e1, . . . , e7, e8 = 1〉

• for 1 ≤ i 6= j ≤ 7,

e2
i = −1 and eiej =

7∑
k=1

ϕijkek ,

where ϕ ∈ Ω3(R7) is given by

ϕ = dx125 + dx136 + dx147 − dx237 + dx246 − dx345 + dx567
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• e∗i = −ei, for i = 1, . . . , 7, 1∗ = 1

• (o1o2)
∗ = o∗2o

∗
1

• 〈o1,o2〉 = Re (o∗1o2)

• |o1o2| = |o1||o2|
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Octonionic instantons

• u ∈ (Im O)1 imaginary units

• Lu : O → O skew-symmetric, ωu ∈ Ω2(R8)

• Define a gauge field A to be an octonionic instanton if FA ⊥ ωu

for all u ∈ (Im O)1

• (there is a similar notion of anti-instanton using right

multiplication)
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• enough to impose this for u = ei, i = 1, . . . , 7:

F12 − F34 − F58 + F67 = 0

F13 + F24 − F57 + F68 = 0

F14 − F23 + F56 − F78 = 0

F15 + F28 + F37 − F46 = 0

F16 − F27 + F38 + F45 = 0

F17 + F26 − F35 + F48 = 0

F18 − F25 − F36 − F47 = 0

• just the right number of equations to have a chance at a finite-
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dimensional moduli space

• these equations imply the Yang–Mills equation and also minimize

the Yang–Mills functional

• they also allow for a moment-map interpretation
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Recap of first lecture

• instantons on R4 ↔ H

• “instantons” on R8 ↔ O

• moment map interpretation still holds

• Octonionic instanton equations still seem rather “exceptional”

• The aim of the second lecture is to place them in their natural

geometric context, which reveals the existence of other instanton-

like equations in any dimension
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Outline of second lecture

• O instantons revisited

• Generalised self-duality

• Riemannian holonomy and parallel forms

• Examples in dimensions 8, 7 and 6
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The Cayley form in R8

• Ω = −1
6

∑7
i=1 ωei

∧ ωei
∈ Ω4(R8)

• equivalently, Ω = ?7ϕ + ϕ ∧ dx8, ?Ω = Ω

• explicitly,

Ω = dx1234 − dx1267 + dx1357 − dx1456 + dx2356 + dx2457 + dx3467

+ dx1258 + dx1368 + dx1478 − dx2378 + dx2468 − dx3458 + dx5678
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• Ω is left invariant by a subgroup Spin(7) ⊂ SO(8), which still

acts irreducibly on R8

• φΩ : Ω2(R8) → Ω2(R8), defined by

φΩ(F ) = ?(Ω ∧ F ) ,

is symmetric and traceless =⇒ can be diagonalised

• φ2
Ω + 2φΩ = 3 id, with eigenspace decomposition

Ω(R8) = Ω2
7 ⊕ Ω2

21

Under Spin(7), Ω2
7 corresponds to the defining 7-dimensional

representation and Ω2
21 is the adjoint representation



20

O instantons revisited

• FA is SD ⇐⇒ FA ⊥ ωu for all u ∈ (Im O)1

• FA is SD ⇐⇒ φΩ(FA) = FA

• Note: ASD is not the other equation φΩ(FA) = −3FA, it is the

same equation relative to a different Ω obtained from the ω using

right multiplication

• Since dΩ = 0, if FA is SD, then

dA ? FA = dA(Ω ∧ FA) = dΩ ∧ FA + Ω ∧ dAFA = 0
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=⇒ A is Yang–Mills

• Furthermore ∫
TrFA ∧ ?FA ≥

∫
Ω ∧ TrFA ∧ FA ,

with equality ⇐⇒ A is SD
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Generalised self-duality

• (Mn, g) oriented, riemannian manifold

• Ω ∈ Ω4(M) defines symmetric, traceless φΩ : Ω2(M) → Ω2(M)
by

φΩ(F ) = ?(?Ω ∧ F )

• Diagonalising φΩ,

Ω2(M) =
⊕

λ

Ω2
λ
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• We say that A is λ-selfdual if

φΩ(FA) = λFA ∃λ 6= 0

• A is Yang-Mills if d ? Ω = 0

• canonical example: Ω = dvol in four-dimensional manifold

• second canonical example: Ω Cayley form in Spin(7)-holonomy

manifold
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Parallel 4-forms and riemannian holonomy groups

• Parallel forms are in particular co-closed

• The holonomy principle establishes a bijective correspondence

between

∗ parallel differential forms on (M, g), and

∗ invariants in the exterior powers of the holonomy representation

• (M, g) irreducible, simply-connected, complete, non-symmetric

riemannian manifold
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• Berger list of holonomy groups:

d H ⊂ SO(d) Geometry Parallel forms

n SO(n) generic dvol
2n U(n) Kähler ω

2n SU(n) Calabi–Yau ω, ΛC
n

4n Sp(n) · Sp(1) Quaternionic Kähler Ξ4

4n Sp(n) Hyperkähler ωi, ωj, ωj

7 G2 ϕ3, ?ϕ

8 Spin(7) Ω4

• Almost all have parallel 4-forms!
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Examples

• Some famous examples:

∗ d = 8: Spin(7) instanton equation

∗ d = 7: G2 instanton equations

∗ d = 6: Kähler Yang–Mills equations
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G2 instanton equations in d = 7

• The 4-form now is ?ϕ whose associated map on Ω2(M) satisfies

(φ?ϕ + 21)(φ?ϕ − 1) = 0

with eigenspace decomposition

Ω2(M) = Ω2
−2(M)⊕ Ω2

1(M)

with ranks 7 and 14, respectively

• the last summand corresponds to the embedding g2 ⊂ so(7)
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• The 1-instanton equations are the G2 instanton equations

?FA = ϕ ∧ FA

• The Levi-Cività connection on any manifold with G2 holonomy

furnishes an example of such a G2 instanton
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Kähler–Yang–Mills equations in d = 6

• The 4-form now is 1
2ω

2 whose associated map on Ω2(M) satisfies

(φ−1
2ω2 − 21)(φ−1

2ω2 − 1)(φ−1
2ω2 + 1) = 0

with eigenspace decomposition

Ω2(M) = Ω2
2(M)⊕ Ω2

−1(M)⊕ Ω2
1(M)

with ranks 1, 8 and 6, respectively, where

∗ Ω2
2(M) are the multiples of the Kähler form ω,

∗ Ω2
−1(M) are the forms F + F ∗, for F a (0, 2)-form,
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∗ Ω2
1(M) are the real primitive (1, 1) forms

• The first and last summand correspond to the embedding u(3) =
u(1)⊕ su(3) ⊂ so(6)

• −1-instantons obey the Kähler–Yang–Mills equations

F 0,2
A = 0 and FA · ω = 0

• The Donaldson–Uhlenbeck–Yau theorem relates them to stable

holomorphic bundles, whence it is possible in principle to construct

many examples
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Outline for third and fourth lectures

• supersymmetry

• supersymmetric sigma models

• supersymmetric Yang–Mills on R9,1

• dimensional reductions and cohomological field theories

• supersymmetric Yang–Mills on Spin(7)-holonomy manifolds and

octonionic instantons

• octonionic instantons and “aholomorphic” curves
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