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Motivation

The gauge-theoretic apparatus

principal bundles
connections
Yang—Mills equations

makes sense in any dimension.

Why then the insistence in low (< 4) dimension? i.e. vortices,
monopoles, instantons

Our aim is to exhibit equally natural equations in d > 4



Conventions

(G compact Lie group with Lie algebra g
Tr an invariant scalar product on g
R™ denotes space; that is, with the 'dot’ product

A will always denote a gauge field: it only exists locally but the
notation shall not reflect it

Fa = dA+ [A, A] will denote the associated field-strength



Instantons on R?

Let 1, 9, T3, x4 be oriented coordinates for R*
Hodge % : Q?(R*) — Q?(R*)
*x* = id, whence

Q*(RY) = Q% & Q%

Ais if*FA::EFA



Bianchi identity d4F'4 = 0 implies the Yang—Mills equation
dA * FA =0
for (anti)self-dual A

(A)SD connections minimise the Yang—Mills functional

/TIFAA*FAZ '/TIFA/\FA

with equality < A is (A)SD



a first-order equation implies a second-order equation and
moreover the solutions of the first-order equation are “minimal”:
this is one the signatures of

can consider instantons on any manifold with an SO(4) structure;
that is, a riemannian orientable 4-manifold

but still seems very four-dimensional!



Quaternions

associative non-commutative division algebra
H=R(1,2,7,k) obeying

i’ =3’ =k’ =ijk= -1

H>q=x11+ x99 + 23k + 241, z; €R

*

q* = —x11 — 12 — x3k + x41



(g192)" = @54
ImH =R (3, 7, k), Rell = R1
<Q1,Q2> = Re (Qikfh): |Q\2 — <an>

192] = |aaflga] ( algebra)

Sp(1) = {q € Hj|q| = 1} = SU(2)



Quaternionic instantons

: (ImH); = ImH N Sp(1)
w € (ImMH)y, L, : H — H is skew-symmetric, w, € Q?(R?)
*Wy = —Way
a gauge field A is SD < Fy 1 w, for all u € (ImH),
enough to impose this for ©u = 2, 7, k, obtaining

Iho = Fsy I3 = —Foy Iy = Fos



The ASD equations are obtained using

multiplication R,,
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Octonions
non-associative non-commutative real division algebra
O=R{e,...,er,eg=1)

for 1 <i#j<T,
7
6? = —1 and €;,€; — Z Pijk€L
k=1

where ¢ € Q3(R7) is given by

= d$125 + dﬂ?lgG 4+ d$147 i d$237 + d$246 i d$345 4 d$567



LT 1 =1
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Octonionic instantons

u € (Im @), imaginary units
L : O — O skew-symmetric, w,, € Q%(R®)

Define a gauge field A to be an octonionic instanton if F'y 1 wy,
for all uw € (Im0),

(there is a similar notion of anti-instanton wusing right
multiplication)
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enough to impose this foru =¢;, 1 =1,....,7:

F1o — F34 — Fss + Fg7 =0
Fi3+ Fo4 — F57+ Fgg =0
F1g — Fo3+ F56 — Frs =0
Fi5 + Fog + F37 — Fye =0
Fi16 — For + F3g + Fys = 0
Fi7+ Foe — F35 + Fyg =0
Fig — Fos — b3 — Fy7 =0

just the right number of equations to have a chance at a finite-
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dimensional moduli space

these equations imply the Yang—Mills equation and also minimize
the Yang—Mills functional

they also allow for a moment-map interpretation
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Recap of first lecture

instantons on R* « H

“instantons” on R® «— O

moment map interpretation still holds

Octonionic instanton equations still seem rather “exceptional”

The aim of the second lecture is to place them in their natural
geometric context, which reveals the existence of other instanton-
like equations in any dimension
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Outline of second lecture

O instantons revisited
Generalised self-duality
Riemannian holonomy and parallel forms

Examples in dimensions 8, 7 and 6
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The Cayley form in R®

(= _% 727:1 We; N\ We,; € 94(R8)

equivalently, Q = x70 + © A d2®, Q0 = Q)
explicitly,

O — d$1234 . d$1267 £+ d$1357 i d$1456 4+ d$2356 + d$2457 4+ d$3467

i d5131258 i d$1368 i d$1478 o d$2378 i d$2468 . d$3458 i d$5678



() is left invariant by a subgroup Spin(7) C SO(8), which still
acts irreducibly on R®

dq @ Q*(R®) — Q%(R?®), defined by
da(F) =*x(QAF)
Is symmetric and traceless — can be diagonalised
0% + 2¢q = 3id, with eigenspace decomposition
Q(R®) = Q2 @ O3,

Under Spin(7), Q2 corresponds to the defining 7-dimensional
representation and Q3 is the adjoint representation
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O instantons revisited

FpisSD < Fj 1 w, forall u € (ImQO),
F'5 s SD «— ¢Q(FA):FA

- ASD is the other equation ¢ (F4) = —3Fy4, it is the
same equation relative to a different {2 obtained from the w using
right multiplication

Since df)2 = 0, if F'4 is SD, then

dA*FA:dA(Q/\FA):dQ/\FA—I—Q/\dAFA:O
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— A is Yang—Mills

Furthermore

/TIFA/\*FAZ/Q/\TIFA/\FA,

with equality <= A is SD
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Generalised self-duality

(M™, g) oriented, riemannian manifold

Q € QM) defines symmetric, traceless ¢q : Q*(M) — Q*(M)
by
bo(F) = (<2 A F)

Diagonalising ¢q,
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We say that A is A-selfdual if

Po(Fa) =AFa  IX#0

A is Yang-Mills if dx €2 =0
canonical example: {2 = dvol in four-dimensional manifold

second canonical example: €2 Cayley form in Spin(7)-holonomy
manifold
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Parallel 4-forms and riemannian holonomy groups

Parallel forms are in particular co-closed
The holonomy principle establishes a bijective correspondence
between

parallel differential forms on (M, g), and

Invariants in the exterior powers of the holonomy representation

(M, g) irreducible, simply-connected, complete, non-symmetric
riemannian manifold



Berger list of holonomy groups:

d| H CSO(d) Geometry Parallel forms
n SO(n) generic dvol
2n U(n) Kahler »
2n SU(n) Calabi—Yau w, AL
4n | Sp(n) - Sp(1) | Quaternionic Kahler | =4
4n Sp(n) Hyperkahler Wi, Wi, W;
7 Go P3, *P
8 Spin(7) Q4

Almost all have parallel 4-forms!
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Examples

Some famous examples:

d = 8: Spin(7) instanton equation
d = 7: Go instanton equations
d = 6: Kahler Yang—Mills equations
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(o instanton equations in d =7

The 4-form now is xp whose associated map on Q?(M) satisfies

(G +21)(Pup —1) =0
with eigenspace decomposition
O (M) = Q*_5(M) @ Q% (M)
with ranks 7 and 14, respectively

the last summand corresponds to the embedding go C s50(7)
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The 1-instanton equations are the G5 instanton equations

*Fa= @A\ Fy

The Levi-Civita connection on any manifold with G5 holonomy
furnishes an example of such a Gs instanton

28



29

Kahler—Yang—Mills equations in d =6

1

The 4-form now is 5w? whose associated map on Q*(/) satisfies

(¢_%w2 — 21)(¢_%w2 — 1)(¢_%w2 +1)=0
with eigenspace decomposition
O*(M) = Q%(M) & Q°_1(M) & Q*1(M)

with ranks 1, 8 and 6, respectively, where

QV25(M) are the multiples of the Kahler form w,
Q2 _1(M) are the forms F' + F*, for F' a (0,2)-form,
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Q21 (M) are the real primitive (1,1) forms

The first and last summand correspond to the embedding u(3) =
u(l) ® su(3) C s0(6)

—1-instantons obey the Kahler—Yang—Mills equations

Fg’QzO and Fp-w=0

The Donaldson—Uhlenbeck—Yau theorem relates them to stable
holomorphic bundles, whence it is possible in principle to construct
many examples



Outline for third and fourth lectures

supersymmetry

supersymmetric sigma models

supersymmetric Yang—Mills on R+

dimensional reductions and cohomological field theories

supersymmetric Yang—Mills on Spin(7)-holonomy manifolds and
octonionic instantons

octonionic instantons and “aholomorphic” curves

31



hep-th/9705161
hep-th/9707118
hep-th/9709178
hep-th/9710082
hep-th/9710168

hep-th/9806040

References

32



