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Abstract
One can associate a Lie superalgebra with every solution 
of the bosonic field equations of a supergravity theory 
which preserves some supersymmetry. 

This Killing superalgebra is a very useful invariant of the 
solution.  It has a very concrete algebraic structure which 
lends itself to a systematic attempt at classification. 

I wil l explain the algebraic structure of Kil l ing 
superalgebras, some of the recent results we have 
obtained from this point of view and some of the questions 
we are working on.
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• A geometric analogy 
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• Killing spinor equations 

• Further results and outlook
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A geometric analogy
where I introduce the basic ideas in the (hopefully) more 

familiar context of riemannian geometry
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Isometries
(pseudo-) riemannian manifold

Lie group of isometries

Lie algebra of isometries

What kind of Lie algebra is g?
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The euclidean case
euclidean inner product

isometries 
fixing the origin

translations
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The flat model
real vector space with symmetric inner product

(pseudo-) euclidean Lie algebra
0 -2

graded
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The round sphere

Fix

stabiliser

curvature!
not graded but filtered!
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Filtered Lie (super)algebras

associated graded algebra
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Filtered deformations
-graded

A filtered deformation g of a is a filtered algebra whose 
associated graded algebra ≈ a

The Lie brackets of g are obtained by adding to those 
of a terms with positive degree.
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• The Lie algebra g of isometries of a 
(pseudo-)riemannian manifold is filtered 

• Its associated graded Lie algebra is isomorphic to 
a Lie subalgebra of the (pseudo-) euclidean Lie 
algebra e

General result

“g is a filtered subdeformation of e”

i.e., a filtered deformation of a graded subalgebra of e
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Killing transport
[Kostant (1955), Geroch (1969)]
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Localisation

}

filtered deformation of
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Supergravity
where I argue that every supergravity theory provides a 
“super-ization” of the previous construction and illustrate 

this with eleven-dimensional supergravity
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Geometric data
lorentzian manifold with additional data

spinor bundle of modules over 

bundle of 
Clifford 
algebras

connection on 

(Possibly also additional endomorphisms of $ depending on the additional data)
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Example: d=11 SUGRA

Why the name?

real, rank 32, symplectic

Killing spinors
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Killing vectors
Dirac current

is either timelike or null
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Killing superalgebra
[JMF+Meessen+Philip (2004)]

k is a Lie superalgebra

spinorial Lie derivative
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Homogeneity theorem
[JMF+Hustler (2012)]

This proves (a local version of) a conjecture of Patrick Meessen's (2004)

is locally homogeneous

“background is >½-BPS”
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Quo vadimus?

• The Lie algebra of isometries of a riemannian 
manifold is a filtered subdeformation of the 
euclidean Lie algebra (i.e., Lie algebra of isometries of the 
flat model) 

• In complete analogy, the Killing superalgebra of a 
supergravity background is a filtered 
subdeformation of the Poincaré superalgebra (i.e., 
Killing superalgebra of the flat model)
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The flat model
Minkowski spacetime (d=11)

k  is the (d=11) Poincaré superalgebra

irreducible Clifford module of

Poincaré algebra

Z-graded
-2 -1 0
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Killing super-transport

24



Localisation

Poincaré superalgebra
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A filtered Lie superalgebra

“k is a filtered subdeformation of p”

1. k is a filtered Lie superalgebra, and 
2. its associated graded algebra is isomorphic 

to a Lie subalgebra of p.

Theorem [JMF+Santi (2016)]
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A geometric interlude
where I try to convince you that the “super-ization” is 

actually not all that exotic
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Geometric Killing spinors

Squaring geometric Killing spinors yields (conformal) 
Killing vectors.

The Lie derivative of a Killing spinor along a Killing 
vector is again a Killing spinor.

(geometric) Killing spinor
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Killing ¾-Lie algebras

Jacobi identities?
✓
✓
✓
?

spinorial Lie derivative

Dirac current

Lie bracket

Brackets
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Some Killing Lie algebras

(octonion) Hopf fibration

[JMF (2007)]

There are similar constructions for 
all simple Lie algebras and even 
some simple Lie superalgebras.

[de Medeiros (2014)]
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Killing spinor 
equations

where I present a systematic approach to determining 
those geometries on which we can define rigidly 

supersymmetric theories
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Deformations
• Deformations of algebraic structures are typically 

governed by a cohomology theory. 

• Lie (super)algebra deformations are governed by 
Chevalley—Eilenberg cohomology. 

• Filtered deformations are governed by generalised 
Spencer cohomology: a bigraded refinement of 
Chevalley—Eilenberg cohomology.
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(Generalised) 
Spencer cohomology

The terms of smallest positive degree in a filtered 
deformation g of a define a cocycle in bidegree (2,2) 
of a generalised Spencer cohomology theory 
associated to a.
In our applications, a is a graded subalgebra of the 
Poincaré superalgebra p
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The relevant cohomology group is

The first step in the calculation is to determine

and this yields the (differential) Killing spinor equations!
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Killing spinor equations
One component of the Spencer cocycle gives a 
linear map

defining

and hence a spinor connection
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Killing superalgebras
And in many cases, the Killing spinors

generate a Lie superalgebra.

(This is analogous to integrating an infinitesimal deformation.)
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Examples
p = 11-dimensional Poincaré superalgebra

(as so(V) reps)

(The existence of the Killing superalgebra (seems to) require that dF=0.)

the 4-form! the gravitino connection!
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p = 4-dimensional N=1 Poincaré superalgebra

(The Killing superalgebra exists without any differential constraints on A,B,C.)

“old” off-shell formulation of d=4 N=1 supergravity!
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Summary
• We may make the provocative claim to have derived 

eleven-dimensional supergravity from generalised 
Spencer cohomology! 

• Okay, at least we recover the information necessary to 
define supersymmetric bosonic supergravity 
backgrounds: 

Bosonic field equations are encoded in the Clifford trace 
of the gravitino connection 

The gravitino connection defines the Killing spinors of 
the supergravity background
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Further results and 
outlook

where I summarise some of our ongoing work in this area 
and which questions we hope to address in the near future
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What is this good for?
• We can attack the classification of supersymmetric 

supergravity backgrounds by classifying their 
Killing superalgebras, whose algebraic structure is 
now very much under control 

• We can determine the equations satisfied by Killing 
spinors in geometries admitting rigid 
supersymmetry by computing the relevant 
generalised Spencer cohomology groups
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Maximal supersymmetry
The filtered deformations of graded subalgebras of 
the d=11 Poincaré superalgebra of the form

correspond precisely to the Killing superalgebras of 
the maximally supersymmetric backgrounds of d=11 
supergravity:

42



4-dimensional rigid 
supersymmetry

The filtered deformations of graded subalgebras of 
the N=1 d=4 Poincaré superalgebra of the form

correspond to the Killing superalgebras of the 
following geometries:
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Supersymmetry and 
field equations

The Jacobi identity of the Killing superalgebra of an 
11-dimensional supergravity background is 
intimately related to the bosonic field equations.

Einstein equation 
& 

Maxwell equation

(Known to fail for ½-BPS backgrounds)
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Open questions
• Are all filtered Lie superalgebras which look like 

Killing superalgebras actually the Killing 
superalgebras of a supergravity background? 

• How do algebraic Killing spinor equations coming 
from the variations of the dilatino, gaugino,… arise 
in this approach? 

• What about the “odd” part of the Spencer 
cohomology?
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In progress
• d=11 filtered deformations with 16 < dim S’ < 32  

• d=10 Type I filtered deformations: they seem to 
yield the (differential) Killing spinor equations 
associated to the d=10 conformal supermultiplet 
we studied recently                   [de Medeiros-JMF (2015)] 

• d=4 with R-symmetry, in order to recover the “new” 
minimal off-shell formulation of d=4  N=1 
supergravity
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In utero

• Other dimensions: 5, 6, 10 

• Extended supersymmetries 

• Superconformal symmetries 

• A possible supergeometrical approach
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Recap
• The Killing superalgebra continues to be useful. 

• It is gratifying to see old friends (supersymmetric 
supergravity backgrounds) in a new guise (filtered 
subdeformations of the Poincaré superalgebra). 

• Especially when this suggests new approaches to old 
problems (classification of supersymmetric supergravity 
backgrounds). 

• It is even more gratifying when the new techniques 
(Spencer cohomology) shed light on a different problem: 
determination of geometries admitting rigid supersymmetry.
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