Homogeneous Lorentzian Manifolds in Supergravity

José Miguel Figueroa O'Farrill

HelgaFest Greifswald, 18 March 2014

¡Feliz cumpleaños!

2

¡Feliz cumpleaños!

Liebe Helqa,

Alles Gute zum Geburtstag!

Outline

2

Outline

э

Outline

4/33

result of ongoing effort to marry GR and quantum theory

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino

くぼう くまう くまう

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975 FERRARA+FREEDMAN+VAN NIEUWENHUIZEN, DESER+ZUMINO
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11

э.

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11
 - some extra geometric data, e.g., differential forms F,...

э.

- result of ongoing effort to marry GR and quantum theory
- four-dimensional supergravity "discovered" in 1975
 Ferrara+Freedman+van Nieuwenhuizen, Deser+Zumino
- many more supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11
 - some extra geometric data, e.g., differential forms F,...
 - a connection $D = \nabla + \cdots$ on the spinor (actually Clifford) bundle S

イロト 不得 トイヨト イヨト

Poincaré supergravities

	32			24	20	16		12	8	4
11	м									
10	IIA	IIB								
9	N = 2					N = 1				
8	N = 2					N = 1				
7	N =					N = 2				
6	(2,2) (3,1) (4,0)		(2,1) (3,0)		(1,1) (2,0)			(1,0)		
5		N = 8		N = 6		N = 4			N = 2	
4	N = 8		N = 8	N = 6	N = 5	N = 4		N = 3	N = 2	N = 1

э

Poincaré supergravities

	32			24	20	16		12	8	4
11	М									
10	IIA	IIB				I				
9	N = 2				N = 1					
8	N = 2				N = 1					
7	N = 4		1	1		N = 2				
6	(2,	2)	(3,1) (4,0)	(2,1) (3,0)		(1,1) ((2,0)		(1,0)	
5	N = 8		N = 6	N =				N = 2		
4	N = 8		N = 6	N = 5	N = 4		N = 3	N = 2	N = 1	

э

Eleven-dimensional supergravity

• Unique supersymmetric theory in d = 11

NAHM (1979), CREMMER+JULIA+SCHERK (1980)

Eleven-dimensional supergravity

- Unique supersymmetric theory in d = 11
 - NAHM (1979), CREMMER+JULIA+SCHERK (1980)
- (bosonic) fields: lorentzian metric g, 3-form A

Eleven-dimensional supergravity

- Unique supersymmetric theory in d = 11
 - NAHM (1979), CREMMER+JULIA+SCHERK (1980)
- (bosonic) fields: lorentzian metric g, 3-form A
- Field equations from action (with F = dA)

$$\underbrace{\frac{1}{2}\int R \, d\text{vol}}_{\text{Einstein-Hilbert}} - \underbrace{\frac{1}{4}\int F \wedge \star F}_{\text{Maxwell}} + \underbrace{\frac{1}{12}\int F \wedge F \wedge A}_{\text{Chern-Simons}}$$

Eleven-dimensional supergravity

• Unique supersymmetric theory in d = 11

Nahm (1979), Cremmer+Julia+Scherk (1980)

- (bosonic) fields: lorentzian metric g, 3-form A
- Field equations from action (with F = dA)

$$\underbrace{\frac{1}{2}\int R\,d\text{vol}}_{\text{Einstein-Hilbert}} - \underbrace{\frac{1}{4}\int F\wedge \star F}_{\text{Maxwell}} + \underbrace{\frac{1}{12}\int F\wedge F\wedge A}_{\text{Chern-Simons}}$$

Explicitly,

$$\begin{split} d\star F &= \frac{1}{2}F \wedge F \\ \text{Ric}(X,Y) &= \frac{1}{2} \langle \iota_X F, \iota_Y F \rangle - \frac{1}{6} g(X,Y) |F|^2 \end{split}$$

together with dF = 0

くロン (雪) (ヨ) (ヨ)

A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:

< ロ > < 同 > < 三 > < 三 > -

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...

< ロ > < 同 > < 三 > < 三 > -

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - op-waves

< D > < (2) > < (2) > < (2) >

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - o pp-waves
 - branes: elementary, intersecting, overlapping, wrapped,...

くロン (雪) (ヨ) (ヨ)

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - o pp-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza–Klein monopoles,...

くロン (雪) (ヨ) (ヨ)

= nar

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - op-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza–Klein monopoles,...
 - ...

イロト 不得 トイヨト イヨト

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - op-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza–Klein monopoles,...
 - ...
- It is convenient to organise this information according to how much "supersymmetry" the background preserves.

イロト 不得 トイヨト イヨト

Eleven-dimensional supergravity has local supersymmetry

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32, \mathbb{R})$

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32, \mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32, \mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

• geometric analogies (riemannian):

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32, \mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

• geometric analogies (riemannian):

 $\bullet \ \nabla \epsilon = 0 \implies Ric = 0$

э.

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32, \mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

• geometric analogies (riemannian):

•
$$\nabla \epsilon = 0 \implies \text{Ric} = 0$$

•
$$\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$$
 Einstein

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32,\mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

• geometric analogies (riemannian):

•
$$\nabla \varepsilon = 0 \implies \operatorname{Ric} = 0$$

- $\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$ Einstein
- a background (M, g, F) is supersymmetric if there exists a nonzero spinor field ε satisfying Dε = 0

イロト 不得 トイヨト イヨト

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is **not** induced from a connection on the spin bundle: $hol(D) \subset \mathfrak{sl}(32,\mathbb{R})$
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = 0 \quad \text{in} \quad \Omega^{1}(M; \text{End } S)$$

• geometric analogies (riemannian):

•
$$\nabla \varepsilon = 0 \implies \text{Ric} = 0$$

- $\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$ Einstein
- a background (M, g, F) is supersymmetric if there exists a nonzero spinor field ε satisfying Dε = 0
- such spinor fields are called Killing spinors

 Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be **spin**

イロト イポト イヨト イヨト

э.

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be **spin**
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle

イロト イポト イヨト イヨト

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

$$D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = 0$$

which is a linear, first-order PDE:

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be **spin**
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

$$D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = 0$$

which is a linear, first-order PDE:

• linearity: solutions form a vector space

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

$$D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = 0$$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point

э.

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be **spin**
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

$$D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = 0$$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point
- the dimension of the space of Killing spinors is $0\leqslant n\leqslant 32$

э.

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be **spin**
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

$$D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = 0$$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point
- the dimension of the space of Killing spinors is $0\leqslant n\leqslant 32$
- a background is said to be $\nu\text{-}\text{BPS}$ if $n=32\nu$

(日)

Which values of v are known to appear?

• $\nu = 1$ backgrounds are classified

JMF+PAPADOPOULOS (2002)

Which values of v are known to appear?

• v = 1 backgrounds are classified

```
JMF+PAPADOPOULOS (2002)
```

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

Which values of v are known to appear?

• v = 1 backgrounds are classified

```
JMF+PAPADOPOULOS (2002)
```

イロト イポト イヨト イヨト

э.

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

• $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

Which values of v are known to appear?

• v = 1 backgrounds are classified

```
JMF+PAPADOPOULOS (2002)
```

(日)

э.

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

• $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

No other values of v have been ruled out

Which values of v are known to appear?

• v = 1 backgrounds are classified

```
JMF+PAPADOPOULOS (2002)
```

くロン (雪) (ヨ) (ヨ)

= nar

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

• $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

- No other values of v have been ruled out
- The following values are known to appear:

 $\begin{array}{c} 0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \dots, \frac{1}{4}, \dots, \frac{3}{8}, \dots, \frac{1}{2}, \\ \dots, \frac{9}{16}, \dots, \frac{5}{8}, \dots, \frac{11}{16}, \dots, \frac{3}{4}, \dots, \frac{13}{16}, \dots, 1 \end{array}$

Which values of v are known to appear?

• v = 1 backgrounds are classified

```
JMF+PAPADOPOULOS (2002)
```

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

• $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

- No other values of v have been ruled out
- The following values are known to appear:

 $\begin{array}{c} 0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \dots, \frac{1}{4}, \dots, \frac{3}{8}, \dots, \frac{1}{2}, \\ \dots, \frac{9}{16}, \dots, \frac{5}{8}, \dots, \frac{11}{16}, \dots, \frac{3}{4}, \dots, \frac{13}{16}, \dots, 1 \end{array}$

those in the 2nd row are now known to be homogeneous!

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\epsilon},X)=(\epsilon,X\cdot\epsilon)$

(日)

э.

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\epsilon},X)=(\epsilon,X\cdot\epsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

 $g(V_{\epsilon_1,\epsilon_2},X)=(\epsilon_1,X\cdot\epsilon_2)$

イロト 不得 トイヨト イヨト

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

 $g(V_{\epsilon_1,\epsilon_2},X)=(\epsilon_1,X\cdot\epsilon_2)$

• $V := V_{\epsilon}$ is causal: $g(V, V) \leq 0$

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

More generally, if ε₁, ε₂ are Killing spinors,

 $g(V_{\epsilon_1,\epsilon_2},X)=(\epsilon_1,X\cdot\epsilon_2)$

• $V := V_{\varepsilon}$ is **causal**: $g(V, V) \leq 0$ • V is Killing: $\mathscr{L}_V g = 0$

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

More generally, if ε₁, ε₂ are Killing spinors,

 $g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1,X\cdot\varepsilon_2)$

• $V := V_{\varepsilon}$ is causal: $g(V, V) \le 0$ • V is Killing: $\mathscr{L}_V g = 0$ • $\mathscr{L}_V F = 0$ GAUNTLETT+PAKIS (2002)

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

 $g(V_{\epsilon_1,\epsilon_2},X)=(\epsilon_1,X\cdot\epsilon_2)$

- $V := V_{\epsilon}$ is causal: $g(V, V) \leqslant 0$
- V is Killing: $\mathscr{L}_V g = 0$
- $\mathscr{L}_V F = 0$
- $\mathscr{L}_V D = \mathbf{0}$

GAUNTLETT+PAKIS (2002)

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\epsilon},X)=(\epsilon,X\cdot\epsilon)$

More generally, if ε₁, ε₂ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1,X\cdot\varepsilon_2)$$

- $V := V_{\epsilon}$ is causal: $g(V, V) \leqslant 0$
- V is Killing: $\mathscr{L}_V g = 0$
- $\mathscr{L}_V F = 0$ Gauntlett+Pakis (2002)
- $\mathscr{L}_V D = \mathbf{0}$
- ϵ' Killing spinor \implies so is $\mathscr{L}_V \epsilon' = \nabla_V \epsilon' \rho(\nabla V) \epsilon'$

Supersymmetries generate isometries

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

More generally, if ε₁, ε₂ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1,X\cdot\varepsilon_2)$$

- $V := V_{\epsilon}$ is causal: $g(V, V) \leqslant 0$
- V is Killing: $\mathscr{L}_V g = 0$
- $\mathscr{L}_V F = 0$

GAUNTLETT+PAKIS (2002)

• $\mathscr{L}_V D = \mathbf{0}$

• $\mathcal{L}_{\mathcal{V}\mathcal{E}} = \mathbf{0}$

- ϵ' Killing spinor \implies so is $\mathscr{L}_V \epsilon' = \nabla_V \epsilon' \rho(\nabla V) \epsilon'$
 - JMF+Meessen+Philip (2004)

The Killing superalgebra

 The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where

イロト イポト イヨト イヨト

- The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and

- The symmetry superalgebra of a supersymmetric background (M, g, F): $g = g_0 \oplus g_1$, where
 - go is the space of F-preserving Killing vector fields, and
 - g₁ is the space of Killing spinors

JMF+MEESSEN+PHILIP (2004)

- The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - \mathfrak{g}_1 is the space of Killing spinors

JMF+MEESSEN+PHILIP (2004)

э.

The ideal 𝔅 = [𝔅₁, 𝔅₁] ⊕ 𝔅₁ generated by 𝔅₁ is called the Killing superalgebra

- The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - \mathfrak{g}_1 is the space of Killing spinors

JMF+MEESSEN+PHILIP (2004)

(日)

- The ideal $\mathfrak{k} = [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ generated by \mathfrak{g}_1 is called the Killing superalgebra
- It behaves as expected: it deforms under geometric limits (e.g., Penrose) and it embeds under asymptotic limits.

- The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - $\bullet \ \mathfrak{g}_1$ is the space of Killing spinors

JMF+MEESSEN+PHILIP (2004)

くロン (雪) (ヨ) (ヨ)

- The ideal $\mathfrak{k} = [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ generated by \mathfrak{g}_1 is called the Killing superalgebra
- It behaves as expected: it deforms under geometric limits (e.g., Penrose) and it embeds under asymptotic limits.
- It is a very useful invariant of a supersymmetric supergravity background

- The symmetry superalgebra of a supersymmetric background (M, g, F): g = g₀ ⊕ g₁, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - $\bullet \ \mathfrak{g}_1$ is the space of Killing spinors

JMF+MEESSEN+PHILIP (2004)

くロン (雪) (ヨ) (ヨ)

- The ideal 𝔅 = [𝔅₁, 𝔅₁] ⊕ 𝔅₁ generated by 𝔅₁ is called the Killing superalgebra
- It behaves as expected: it deforms under geometric limits (e.g., Penrose) and it embeds under asymptotic limits.
- It is a very useful invariant of a supersymmetric supergravity background
- It "categorifies" the supersymmetry fraction $\boldsymbol{\nu}$

Geometric Killing spinors

• (M, g) a (pseudo-)riemannian spin manifold

イロト イポト イヨト イヨト

Geometric Killing spinors

- (M, g) a (pseudo-)riemannian spin manifold
- $S \rightarrow M$ the spinor bundle (really, Clifford modules)

イロト イポト イヨト イヨト

Geometric Killing spinors

- (M, g) a (pseudo-)riemannian spin manifold
- $S \rightarrow M$ the spinor bundle (really, Clifford modules)
- A spinor $\varepsilon \in \Gamma(S)$ is a (geometric) Killing spinor if for all $X \in \mathscr{X}(M)$

$$\nabla_X \varepsilon = \lambda X \cdot \varepsilon$$

for some $\lambda \in \mathbb{R} \cup i\mathbb{R}$

э.

Geometric Killing spinors

- (M, g) a (pseudo-)riemannian spin manifold
- $S \rightarrow M$ the spinor bundle (really, Clifford modules)
- A spinor $\varepsilon \in \Gamma(S)$ is a (geometric) Killing spinor if for all $X \in \mathscr{X}(M)$

$$\nabla_X \varepsilon = \lambda X \cdot \varepsilon$$

for some $\lambda \in \mathbb{R} \cup i\mathbb{R}$

• $\lambda \in \mathbb{R}$: real Killing spinors

< 口 > < 同 > < 回 > < 回 > .

Geometric Killing spinors

- (M, g) a (pseudo-)riemannian spin manifold
- $S \rightarrow M$ the spinor bundle (really, Clifford modules)
- A spinor $\varepsilon \in \Gamma(S)$ is a (geometric) Killing spinor if for all $X \in \mathscr{X}(M)$

$$\nabla_X \epsilon = \lambda X \cdot \epsilon$$

for some $\lambda \in \mathbb{R} \cup i\mathbb{R}$

- $\lambda \in \mathbb{R}$: real Killing spinors
- $\lambda \in i\mathbb{R}$: imaginary Killing spinors

< 口 > < 同 > < 回 > < 回 > .

Geometric Killing spinors

- (M, g) a (pseudo-)riemannian spin manifold
- $S \rightarrow M$ the spinor bundle (really, Clifford modules)
- A spinor $\varepsilon \in \Gamma(S)$ is a (geometric) Killing spinor if for all $X \in \mathscr{X}(M)$

$$\nabla_X \epsilon = \lambda X \cdot \epsilon$$

for some $\lambda \in \mathbb{R} \cup i\mathbb{R}$

- $\lambda \in \mathbb{R}$: real Killing spinors
- $\lambda \in i\mathbb{R}$: **imaginary** Killing spinors
- they are special types of twistor spinors

BAUM+FRIEDRICH+GRUNEWALD+KATH (1991)

(日)

Supergravity A geometrical interlude Homogeneity in Supergravity

Riemannian manifolds admitting Killing spinors

• (M, g) riemannian and spin

イロト イポト イヨト イヨト

- (M, g) riemannian and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2

- (M, g) riemannian and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2
 - $\lambda \in i\mathbb{R}$: negative curvature

イロト イポト イヨト イヨト

- (M, g) **riemannian** and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2
 - $\lambda \in i\mathbb{R}$: negative curvature
 - $\lambda \in \mathbb{R}$: positive curvature and compact

イロト イポト イヨト イヨト

- (M, g) riemannian and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2
 - $\lambda \in i\mathbb{R}$: negative curvature
 - $\lambda \in \mathbb{R}$: positive curvature and compact
- The smallest eigenvalue of the Dirac operator on a compact spin manifold is attained by Killing spinors

FRIEDRICH (1980)

- (M, g) **riemannian** and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2
 - $\lambda \in i\mathbb{R}$: negative curvature
 - $\lambda \in \mathbb{R}$: positive curvature and compact
- The smallest eigenvalue of the Dirac operator on a compact spin manifold is attained by Killing spinors

FRIEDRICH (1980)

э.

(日)

• $\lambda \in i\mathbb{R}$ case completely understood for complete manifolds BAUM (1989)

- (M, g) riemannian and spin
- \exists (nonzero) Killing spinors \implies Einstein with curvature proportional to λ^2
 - $\lambda \in i\mathbb{R}$: negative curvature
 - $\lambda \in \mathbb{R}$: positive curvature and compact
- The smallest eigenvalue of the Dirac operator on a compact spin manifold is attained by Killing spinors

FRIEDRICH (1980)

イロト 不得 トイヨト イヨト

- $\lambda \in i\mathbb{R}$ case completely understood for complete manifolds BAUM (1989)
- λ ∈ ℝ case reduces to a holonomy problem: which metric cones admit parallel spinors?

BÄR (1993), Alekseevesky+Cortés+Galaev+Leistner (2007)

• The pseudo-riemannian case is more complicated

(4 回) (ヨ) (ヨ)

- The pseudo-riemannian case is more complicated
- There are many partial results about the general pseudo-riemmanian case

Катн (1998-2000)

- The pseudo-riemannian case is more complicated
- There are many partial results about the general pseudo-riemmanian case

Катн (1998-2000)

くぼう くまう くまう

• The lorentzian case was given particular attention in work of the "Baumschule"

BAUM, BOHLE, KATH, LEITNER, LEISTNER

- The pseudo-riemannian case is more complicated
- There are many partial results about the general pseudo-riemmanian case

Катн (1998-2000)

э.

• The lorentzian case was given particular attention in work of the "Baumschule"

BAUM, BOHLE, KATH, LEITNER, LEISTNER

The cone construction may require the holonomy classification in signature (2, d - 2)

- The pseudo-riemannian case is more complicated
- There are many partial results about the general pseudo-riemmanian case

Катн (1998-2000)

• The lorentzian case was given particular attention in work of the "Baumschule"

BAUM, BOHLE, KATH, LEITNER, LEISTNER

- The cone construction may require the holonomy classification in signature (2, d 2)
- This is not yet solved, but partial progress has been made

GALAEV

- The pseudo-riemannian case is more complicated
- There are many partial results about the general pseudo-riemmanian case

Катн (1998-2000)

• The lorentzian case was given particular attention in work of the "Baumschule"

BAUM, BOHLE, KATH, LEITNER, LEISTNER

- The cone construction may require the holonomy classification in signature (2, d 2)
- This is not yet solved, but partial progress has been made

GALAEV

• This is the obstacle to a classification of supersymmetric Freund–Rubin backgrounds

JMF+Leitner+Simón (20??)

 The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - $\mathfrak{so}(9)$ for S^7

(4 回) (4 回) (4 回)

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - $\mathfrak{so}(9)$ for S^7
 - \mathfrak{f}_4 for S^8

(4 回) (4 回) (4 回)

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - so(9) for S⁷
 - \mathfrak{f}_4 for S^8
 - e_8 for S¹⁵

(4 回) (4 回) (4 回)

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - so(9) for S⁷
 - f_4 for S^8
 - e_8 for S^{15}
- One gets either the compact or split real forms of the algebras

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - so(9) for S⁷
 - f_4 for S^8
 - e_8 for S^{15}
- One gets either the compact or split real forms of the algebras
- This is the geometrization of Frank Adams's algebraic construction

JMF (2007)

э.

- The analogous construction to the Killing superalgebra applied to the real Killing spinors on the spheres S⁷, S⁸, S¹⁵ yields 2-graded Lie algebras:
 - so(9) for S⁷
 - f_4 for S^8
 - e_8 for S^{15}
- One gets either the compact or split real forms of the algebras
- This is the geometrization of Frank Adams's algebraic construction

JMF (2007)

(ロ) (同) (三) (三) (三) (○) (○)

 A similar construction exists for pseudo-riemannian manifolds admitting twistor spinors

DE MEDEIROS+HOLLANDS (2013)

• Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous

イロト イポト イヨト イヨト

- Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous
- if (M, g) admits Killing spinors, is it homogeneous?

イロト イポト イヨト イヨト

- Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous
- if (M, g) admits Killing spinors, is it homogeneous?
- First known counterexamples: S^5/Γ for $\Gamma <$ Spin(6) finite SULANKE (1980)

- Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous
- if (M, g) admits Killing spinors, is it homogeneous?
- First known counterexamples: S⁵/Γ for Γ < Spin(6) finite
 SULANKE (1980)
- Many counterexamples are now known (not space forms)

- Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous
- if (M, g) admits Killing spinors, is it homogeneous?
- First known counterexamples: S^5/Γ for $\Gamma <$ Spin(6) finite SULANKE (1980)
- Many counterexamples are now known (not space forms)
- Still, all known simply-connected 6-dimensional riemannian manifolds admitting real Killing spinors (nearly-Kähler 6-manifolds) are homogeneous; although there are non-homogeneous quotients

- Early examples of manifolds admitting Killing spinors: spheres, hyperbolic spaces,... are homogeneous
- if (M, g) admits Killing spinors, is it homogeneous?
- First known counterexamples: S^5/Γ for $\Gamma <$ Spin(6) finite SULANKE (1980)
- Many counterexamples are now known (not space forms)
- Still, all known simply-connected 6-dimensional riemannian manifolds admitting real Killing spinors (nearly-Kähler 6-manifolds) are homogeneous; although there are non-homogeneous quotients
- There is hope of constructing non-homogeneous examples via deformations

MOROIANU+SEMMELMANN+NAGY (2006)

くロン (雪) (ヨ) (ヨ)

э

 A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)

÷.

- A diffeomorphism $\phi: M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\phi^*g = g$ and $\phi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M

くロン (雪) (ヨ) (ヨ)

- A diffeomorphism $\varphi : M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\varphi^*g = g$ and $\varphi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be **homogeneous** if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$

イロト 不得 トイヨト イヨト

= nar

- A diffeomorphism $\varphi : M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\varphi^*g = g$ and $\varphi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$
- (M, g, F) homogeneous \implies the evaluation maps $ev_p : \mathfrak{g} \to T_pM$ are surjective for all p

イロト 不得 トイヨト イヨト

= nar

- A diffeomorphism $\varphi : M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\varphi^*g = g$ and $\varphi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$
- (M, g, F) homogeneous \implies the evaluation maps $ev_p : \mathfrak{g} \to T_pM$ are surjective for all p
- The converse is not true in general: if evp are surjective, then (M, g, F) is locally homogeneous

イロト 不得 トイヨト イヨト

= nar

Homogeneous supergravity backgrounds

- A diffeomorphism $\phi: M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\phi^*g = g$ and $\phi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be **homogeneous** if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$
- (M, g, F) homogeneous \implies the evaluation maps $ev_p : \mathfrak{g} \to T_pM$ are surjective for all p
- The converse is not true in general: if evp are surjective, then (M, g, F) is locally homogeneous
- This is the "right" working notion in supergravity

ヘロン 人間 とくほ とくほ とう

Supergravity A geometrical interlude Homogeneity in Supergravity

The homogeneity theorem

Empirical Fact

Every known v-BPS background with $v > \frac{1}{2}$ is homogeneous.

Supergravity A geometrical interlude Homogeneity in Supergravity

The homogeneity theorem

Homogeneity conjecture

Every *Whth* ν -BPS background with $\nu > \frac{1}{2}$ is homogeneous.

MEESSEN (2004)

The homogeneity theorem

Homogeneity conjecture

Every *Mhth* ν -BPS background with $\nu > \frac{1}{2}$ is homogeneous. MEESSEN (2004)

Theorem

Every v-BPS background of eleven-dimensional supergravity with $v > \frac{1}{2}$ is locally homogeneous.

JMF+MEESSEN+PHILIP (2004), JMF+HUSTLER (2012)

くロン (雪) (ヨ) (ヨ)

The homogeneity theorem

Homogeneity conjecture

Every *Whth* ν -BPS background with $\nu > \frac{1}{2}$ is homogeneous. MEESSEN (2004)

Theorem

Every v-BPS background of eleven-dimensional supergravity with $v > \frac{1}{2}$ is locally homogeneous. JMF+MEESSEN+PHILIP (2004), JMF+HUSTLER (2012)

The existence of non-homogeneous $v = \frac{1}{2}$ backgrounds shows that the theorem is sharp. But, why $\frac{1}{2}$?

ヘロト 人間 とくほ とくほ とう

э.

Generalisations

Theorem

Every v-BPS background of type IIB supergravity with $v > \frac{1}{2}$ is locally homogeneous.

Every v-BPS background of type I and heterotic supergravities with $v > \frac{1}{2}$ is locally homogeneous.

JMF+Hackett-Jones+Moutsopoulos (2007)

JMF+HUSTLER (2012)

Every v-BPS background of six-dimensional (1,0) and (2,0) supergravities with $v > \frac{1}{2}$ is locally homogeneous.

JMF + HUSTLER (2013)

э.

Generalisations

Theorem

Every v-BPS background of type IIB supergravity with $v > \frac{1}{2}$ is locally homogeneous.

Every v-BPS background of type I and heterotic supergravities with $v > \frac{1}{2}$ is locally homogeneous.

JMF+Hackett-Jones+Moutsopoulos (2007)

```
JMF+HUSTLER (2012)
```

Every v-BPS background of six-dimensional (1,0) and (2,0) supergravities with $v > \frac{1}{2}$ is locally homogeneous.

```
JMF + HUSTLER (2013)
```

The theorems actually prove the strong version of the conjecture: that the symmetries which are generated from the supersymmetries already act (locally) transitively.

Supergravity A geometrical interlude Homogeneity in Supergravity

Poincaré supergravities again

	32			24	20	16	12	8	4
11	м								
10	IIA	IIB							
10	IIA					· · ·			
9	N = 2					N = 1			
8	N	= 2				N = 1			
7	N	= 4				N = 2			
6	(2,	(2)	(3,1) (4,0)	(2,1) (3,0)		(1,1) (2,0)		(1,0)	
5	N = 8			N = 6		N = 4		N = 2	
4	N = 8		N = 6	N = 5	N = 4	N = 3	N = 2	N = 1	

Supergravity A geometrical interlude Homogeneity in Supergravity

Idea of proof

The proof consists of two steps:

Idea of proof

The proof consists of two steps:

0 One shows the existence of the Killing superalgebra $\mathfrak{k}=\mathfrak{k}_0\oplus\mathfrak{k}_1$

イロト イポト イヨト イヨト

Idea of proof

The proof consists of two steps:

- One shows the existence of the Killing superalgebra $\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$
- 2 One shows that for all $p \in M$, $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective whenever dim $\mathfrak{k}_1 > \frac{1}{2} \operatorname{rank} S$

э.

Idea of proof

The proof consists of two steps:

- One shows the existence of the Killing superalgebra $\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$
- 2 One shows that for all $p \in M$, $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective whenever dim $\mathfrak{k}_1 > \frac{1}{2} \operatorname{rank} S$

This actually only shows local homogeneity.

(日)

э.

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies v-BPS backgrounds for $\gamma > \frac{1}{2}$.

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies ν -BPS backgrounds for $\nu>\frac{1}{2}.$

This is good because

 the supergravity field equations for homogeneous backgrounds are algebraic and hence simpler to solve than PDEs

(日)

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies ν -BPS backgrounds for $\nu>\frac{1}{2}.$

This is good because

- the supergravity field equations for homogeneous backgrounds are algebraic and hence simpler to solve than PDEs
- we have learnt **a lot** (about string theory) from supersymmetric supergravity backgrounds, so their classification could teach us even more

(日)

э.

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

• $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$

(日)

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m
- ϕ is an h-invariant 4-form $\phi \in \Lambda^4 \mathfrak{m}$

(日)

э.

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m
- ϕ is an h-invariant 4-form $\phi \in \Lambda^4 \mathfrak{m}$

subject to some algebraic equations which are given purely in terms of the structure constants of g (and \mathfrak{h}).

くロン (雪) (ヨ) (ヨ)

= nar

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

イロト イポト イヨト イヨト

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

Classify the desired homogeneous geometries

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- Por each such geometry parametrise the space of invariant lorentzian metrics and invariant closed 4-forms

くぼう くまう くまう

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- Por each such geometry parametrise the space of invariant lorentzian metrics and invariant closed 4-forms
- Plug them into the supergravity field equations to get (nonlinear) algebraic equations for the parameters

イロト イポト イヨト イヨト

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- Por each such geometry parametrise the space of invariant lorentzian metrics and invariant closed 4-forms
- Plug them into the supergravity field equations to get (nonlinear) algebraic equations for the parameters
- Solve the equations!

Supergravity A geometrical interlude Homogeneity in Supergravity

Homogeneous lorentzian manifolds I

Their classification can seem daunting!

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, q) homogeneous under a Lie group G.

くぼう くまう くまう

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.

< 回 > < 三 > < 三 >

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with

A (10) A (10)

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d

く 同 ト く ヨ ト く ヨ ト -

э

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups

く 伺 とう きょう とう とう

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$
- Hopeless except in low dimension or if G is semisimple

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$
- Hopeless except in low dimension or if G is semisimple

Definition

The action of G on M is **proper** if the map $G \times M \to M \times M$, $(\gamma, m) \mapsto (\gamma \cdot m, m)$ is proper (i.e., inverse image of compact is compact). In particular, proper actions have compact stabilisers. Supergravity A geometrical interlude Homogeneity in Supergravity

Homogeneous lorentzian manifolds II

What if the action is not proper?

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

- 4 同 5 - 4 目 5 - 4 目 5 - -

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)

If a semisimple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to the product of (anti) de Sitter spacetime and a riemannian homogeneous space.

э.

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)

If a semisimple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to the product of (anti) de Sitter spacetime and a riemannian homogeneous space.

This means that we need only classify Lie subalgebras corresponding to *compact* Lie subgroups!

Supergravity A geometrical interlude Homogeneity in Supergravity

Some recent classification results

 Symmetric eleven-dimensional supergravity backgrounds JMF (2011)

イロト イポト イヨト イヨト

Some recent classification results

- Symmetric eleven-dimensional supergravity backgrounds JMF (2011)
- Symmetric type IIB supergravity backgrounds JMF+Hustler (2012)

Some recent classification results

- Symmetric eleven-dimensional supergravity backgrounds JMF (2011)
- Symmetric type IIB supergravity backgrounds

JMF+HUSTLER (2012)

(日)

э.

• Homogeneous M2-duals: $\mathfrak{g} = \mathfrak{so}(3,2) \oplus \mathfrak{so}(N)$ for N > 4JMF+Ungureanu (in preparation)

Outlook

 With patience and optimism, some classes of homogeneous backgrounds can be classified

Outlook

- With patience and optimism, some classes of homogeneous backgrounds can be classified
- In particular, we can "dial up" a semisimple G and hope to solve the homogeneous supergravity equations with symmetry G

イロト イポト イヨト イヨト

Outlook

- With patience and optimism, some classes of homogeneous backgrounds can be classified
- In particular, we can "dial up" a semisimple G and hope to solve the homogeneous supergravity equations with symmetry G
- Checking supersymmetry is an additional problem, but there is an efficient algorithm which has already discarded many of the symmetric eleven-dimensional backgrounds. LISCHEWSKI (2014), HUSTLER+LISCHEWSKI (IN PROGRESS)

(日)

э.