Supersymmetric supergravity backgrounds via Lie superalgebras

José Miguel Figueroa-O'Farrill 29 April 60HE

1983-84 (26HE)

3 lectures of CMH @ MIT

Physics	Relativity Group	Geometry
Newtonian	Galilean	$\mathbb{A}^3\times\mathbb{A}^1$
Special Relativity	Poincaré	$\mathbb{A}^{3,1}$
General Relativity	Diffeomorphisms	(M,g)

The lesson

Symmetry dictates the geometry.

In this talk we will describe another example of this philosophy.

"From graded to filtered"

Poincaré algebra is graded

$$\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_{-2} = \mathfrak{so}(V) \oplus V$$

$$[A, B] = AB - BA$$
$$[A, v] = Av$$
$$[v, w] = 0$$

 $A, B \in \mathfrak{so}(V) \quad v, w \in V$

Isometry algebra is **filtered**

 $\mathfrak{a} = \mathfrak{a}_0 \oplus \mathfrak{a}_{-2} = \mathfrak{h} \oplus V'$

$$\begin{split} & [A,B] = AB - BA \\ & [A,v] = Av + \lambda(A,v) \\ & [v,w] = 0 + \alpha(v,w) + \rho(v,w) \\ & A,B \in \mathfrak{h} \quad v,w \in V' \end{split}$$

curvature

d=11 SUGRA backgrounds

```
[Nahm ('79)]
[Cremmer+Julia+Scherk ('79)]
```

- (M,g) lorentzian, spin, 11-dimensional
- $\$ \to M$ spinor bundle, real, rank 32, symplectic
- $F \in \Omega^4(M) \quad dF = 0$

$$d \star F = -\frac{1}{2}F \wedge F$$
 (bosonic)
Ric $-\frac{1}{2}Rg = T(g, F)$ field equations

Supersymmetric backgrounds

A connection on spinors

$$D_X = \nabla_X - \frac{1}{24} (X \cdot F - 3F \cdot X)$$

A supersymmetric background admits Killing spinors

$$D\varepsilon = 0$$

$$\nu := \frac{\dim\{\varepsilon \in \$ \mid D\varepsilon = 0\}}{\operatorname{rank} \$} \in \{0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \dots, \frac{31}{32}, 1\}$$

Can we classify them?

Gap phenomenon

Geometric analogy

What is the "submaximal" dimension?

$$\frac{n(n-1)}{2} + 1$$

Kaluza-Klein supergravity

Lots of work in the early-to-mid 1980s, on backgrounds which are metrically a product.

The main tools are homogeneous geometry and *riemannian* holonomy.

Closely related to the classification of homogeneous Einstein manifolds.

[Freund+Rubin ('80)] [Englert ('82)] [Pope+Warner ('85)] [Castellani+Pope+Warner ('85)] : [Duff+Nilsson+Pope ('86)]

Holonomy (of D)

Trivial holonomy \Rightarrow classification for $\nu = 1$

[JMF+Papadopoulos ('02)]

Generic holonomy is $SL(32, \mathbb{R})$

[Hull ('03)]

"Berger" table (if any) huge.

[Duff+Liu ('03)] [Papadopoulos+Tsimpis ('03)] [Batrachenko+Duff+Liu+Wen ('03)]

What replaces the torsion-free condition?

Spinorial geometry

General Ansätze for $\nu = \frac{1}{32}$

[Gauntlett+Pakis ('02)] [Gauntlett+Gutowski+Pakis ('03)]

Rules out $\nu = \frac{31}{32}, \frac{30}{32}$

[Gran+Gutowski+Papadopoulos+Roest ('06)] [JMF+Gadhia ('07)] [Gran+Gutowski+Papadopoulos ('10)]

Generalised geometry

Flux compactifications, warped products,... $(\nu \leq \frac{1}{2})$

[Hull ('07)] [Pacheco+Waldram ('08)] [Coimbra+Strickland-Constable+Waldram ('11,'14,'16)] [Coimbra+Strickland-Constable ('16)]

Based on earlier work on type II:

[Graña+Minasian+Petrini+Tomasiello ('04,'05,'06)]

Homogeneity

 $\nu > \frac{1}{2}$ backgrounds are (conjecturally) **homogeneous**

[Meessen ('04)]

 $\nu > rac{1}{2}$ backgrounds are (locally) homogeneous [JMF+Hustler ('12)]

Sharp: 3 ½-BPS backgrounds which are **not** locally homogeneous

[Hull ('84)] [Duff+Stelle ('91)]

Killing superalgebra

Lie superalgebra generated by the Killing spinors

 $\mathfrak{k} = \mathfrak{k}_{\overline{0}} \oplus \mathfrak{k}_{\overline{1}}$

$$\mathfrak{k}_{\bar{0}} = \{\xi \in TM \mid \mathcal{L}_{\xi}g = \mathcal{L}_{\xi}F = 0\}$$

 $\mathfrak{k}_{\overline{1}} = \{ \varepsilon \in \mathfrak{s} \mid D\varepsilon = 0 \}$

[Acharya+JMF+Hull+Spence ('98)] [Gauntlett+Myers+Townsend ('98)] [Townsend ('98)] [JMF ('99)]

[JMF+Meessen+Philip ('04)]

What kind of Lie superalgebra is it?

The Killing superalgebra is a *filtered* Lie superalgebra.

It is a *filtered deformation* of a graded subalgebra of the Poincaré superalgebra.

[JMF+Santi ('16)]

(*cf.* the isometry algebra is a filtered deformation of a graded subalgebra of the Poincaré algebra.

Poincaré superalgebra is graded

$$[\mathfrak{p}_i,\mathfrak{p}_j]=\mathfrak{p}_{i+j}$$

 $\mathfrak{a} = \mathfrak{a}_0 \oplus \mathfrak{a}_{-1} \oplus \mathfrak{a}_{-2}$ graded subalgebra of \mathfrak{p}

$$\mathfrak{a}_0 \subset \mathfrak{so}(V) \qquad \mathfrak{a}_{-1} \subset S \qquad \mathfrak{a}_{-2} \subset V$$

Modify the Lie brackets by terms of positive degree:

$$[\mathfrak{a}_{0},\mathfrak{a}_{0}] \subset \mathfrak{a}_{0}$$
$$[\mathfrak{a}_{0},\mathfrak{a}_{-1}] \subset \mathfrak{a}_{-1}$$
$$[\mathfrak{a}_{0},\mathfrak{a}_{-2}] \subset \mathfrak{a}_{-2} \oplus \mathfrak{a}_{0}$$
$$[\mathfrak{a}_{-1},\mathfrak{a}_{-1}] \subset \mathfrak{a}_{-2} \oplus \mathfrak{a}_{0}$$
$$[\mathfrak{a}_{-1},\mathfrak{a}_{-2}] \subset \mathfrak{a}_{-1}$$
$$[\mathfrak{a}_{-2},\mathfrak{a}_{-2}] \subset \mathfrak{a}_{0} \oplus \mathfrak{a}_{-2}$$

The Killing superalgebra is **filtered**

Spencer Cohomology

Deformations of algebraic structures are typically governed by a cohomology theory.

e.g., Lie algebra deformations are governed by Chevalley-Eilenberg cohomology.

Filtered deformations of graded Lie superalgebras are governed by generalised Spencer cohomology.

This is a bigraded refinement of Chevalley-Eilenberg cohomology.

Infinitesimal deformations

Infinitesimal deformations of a Lie (super)algebra are classified by the second Chevalley-Eilenberg cohomology:

 $H^2(\mathfrak{g},\mathfrak{g})$

Infinitesimal *filtered* deformations of a *graded* Lie (super)algebra are classified by the generalised Spencer cohomology:

$$H^{2,2}(\mathfrak{g}_{-},\mathfrak{g})$$

[Cheng+Kac ('98)]

Some calculations

d=11 Poincaré superalgebra

[JMF+Santi ('16)]

 $H^{2,2}(\mathfrak{p}_{-},\mathfrak{p}) = \Lambda^4 V$

We find the supergravity 4-form!

 $\beta(v,s) = \frac{1}{24}(v \cdot F - 3F \cdot v) \cdot s$

We find the gravitino variation!

d=4 Poincaré superalgebra

[de Medeiros+JMF+Santi ('16)]

$$H^{2,2}(\mathfrak{p}_{-},\mathfrak{p}) = \Lambda^0 V \oplus \Lambda^1 V \oplus \Lambda^4 V$$

We find the "old" minimal off-shell formulation of supergravity!

(We also find the gravitino variation from the cocycle.)

Reconstruction

Every (geometrically) *realisable* filtered deformation of a graded subalgebra of the Poincaré superalgebra is (contained in) the Killing superalgebra of a $>\frac{1}{2}$ -BPS supergravity background.

>1/2-BPS backgrounds can be reconstructed (up to local isometry) from their Killing superalgebra!

In particular, $>\frac{1}{2}$ -BPS implies the field equations.

An Erlangen programme for supergravity?

Felix Klein (1849-1925)

"geometry via symmetry"

Equivalent classifications:

>¹/₂-BPS supergravity backgrounds

(up to local isometry)

&

"admissible" filtered deformations of graded subalgebras of the Poincaré superalgebra

(up to isomorphism)

Proofs of concept

(d=11) filtered deformations with 32 supercharges are *precisely* the Killing superalgebras of the maximally supersymmetric backgrounds (and nothing else).

[JMF+Santi ('15)]

(d=4) filtered deformations with 4 supercharges are *precisely* the Killing superalgebras of the Festuccia-Seiberg geometries (and nothing else).

[de Medeiros+JMF+Santi ('16)]

In progress...

- Six-dimensional (1,0) Poincaré: there seems to be ways other than supergravity to generate Lie superalgebras from spinors!
 [de Medeiros+JMF+Santi]
- Superconformal algebras in d=3 and d=4

[de Medeiros+JMF]

• N>1 d=4 Poincaré

[de Medeiros+JMF]

;Feliz cumpleaños, Chris!