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Killing spinors
in supergravity



Why supergravity?

★ Incorporation of gravity in field theory

★ Natural limit of string theories

★ Rich structure not yet fully elucidated



Generic supergravity fields:

Bosons Fermions

lorentzian metric gravitinos

gauge fields gauginos

p-forms, scalars dilatinos



• local lorentzian metric g

• possibly extra bosonic fields Φ

• real spinor bundle S

• a connection D on S, depending on g and Φ

Supergravity backgrounds

subject to equations of motion, generalising 
Einstein and Maxwell equations.



Killing spinors

δεψ = ∇ε + · · · = Dε = 0

δελ = Pε = 0

Killing spinors are D-parallel sections of 
the subbundle of S defined by P.

K={Killing spinors} dim K ≤ rank S



d=11 supergravity

Field equations

Killing spinors

Spinors are real and have 32 components

Fields g F ∈ Ω4 dF = 0

d ! F = − 1
2F ∧ FRicci(g) = T (g, F )

Clifford product

DXε = ∇Xε− 1
6 ıXF · ε + 1

12X ∧ F · ε = 0



d=10 heterotic supergravity

Field equations follow from (string frame) lagrangian

Killing spinors

Spinors are real, chiral and have 16 components

Fields g φ H ∈ Ω3 dH = 0 F ∈ Ω2(g)

e−2φ
(
R + 4|dφ|2 − 1

2 |H|2 − 1
2 |F |2

)

Dε = 0 dφ · ε + 1
2H · ε = 0 F · ε = 0

spin connection with torsion H



Superalgebras
from

Killing spinors



Killing superalgebra

k = k0 ⊕ k1

Killing spinors{ }k1 =

k0 = [k1, k1]

〈[ε1, ε2], V 〉 = (ε1, V · ε2)



For example, the Killing superalgebra of the flat 
vacuum is the translation ideal of the Poincaré 
superalgebra:

     consists of infinitesimal automorphisms 
of the background: Killing vectors which preserve 
the bosonic fields, hence the connection D

g0

[Q,Q] = P

The KSA has been shown to be a Lie 
superalgebra in all cases.



A background may have more automorphisms than 
those generated by the Killing spinors.
e.g. Minkowski space is also invariant under Lorentz 
transformations.
Taking all infinitesimal automorphisms into account, 
one obtains the symmetry superalgebra of the 
background.

s = s0 ⊕ s1

s0 =

s1 = {Killing spinors}

{infinitesimal autos}

Symmetry superalgebra



s1 = k1

The KSA is the canonical ideal of the SSA.

The SSA of the Minkowski vacuum is the Poincaré 
superalgebra.

s0 > [s1, s1] = k0



The KSA of the Minkowski vacuum admits a 
maximal central extension:

[Q,Q] = P + Z

where Z can be identified with brane charges.

Geometrically, Z are all the parallel forms 
constructed from the Killing spinors.

Townsend calls this the M-algebra.

Maximal superalgebra



Is M the M of M-theory? or the M of Minkowski?

Let’s explore the second possibility.

Is there a “maximal extension” of the Killing 
superalgebra of a background? 

Let’s try to make this notion precise.



g = g0 ⊕ g1

[−,−] : S2g1 → g0

a Lie superalgebra

is in general neither injective or surjective.

If surjective we say that g is odd-generated.

e.g., the KSA is odd-generated.

If injective, we say that g is full.

If both we say that it is minimally full.



The translation ideal of the Poincaré superalgebra 
is odd-generated.

The Poincaré superalgebra itself is not.

The M-algebra is both odd-generated and full, so it 
is minimally full.

Adding the Lorentz generators to the M-algebra 
yields a full algebra, but not minimally so.



We tentatively define the maximal 
superalgebra (MSA) of a supergravity 
background to be a minimally full extension of 
its Killing superalgebra.

The M-algebra is the MSA of the Minkowski 
background.

The extra bosonic generators in the MSA need 
not be central, in general.



m = m0 ⊕m1

m1 =

m0 = [m1,m1] ∼= S2m1

{Killing spinors} } minimally full

But it is also an extension:

k0 < m0

[−,−]m : m0 ⊗m1 → m1

m1 = k1

[−,−]k : k0 ⊗m1 → m1

restricts to



Minimally full Lie superalgebras have a very 
simple structure:

[Qa, Qb] = Zab

[Zab, Qc] = ωbcQa + ωacQb

[Zab, Zcd] = ωbcZad + ωbdZac + ωacZac + ωadZbc

for some ω ∈
(
Λ2m∗

1

)m0

This is the result of a calculation of Kamimura 
and Sakaguchi.



For the M-algebra, ω = 0

The only invariant of ω is its rank, which is even.

If ω is nondegenerate, this superalgebra is 
orthosymplectic.

All cases can be obtained from the 
orthosymplectic case by contractions.



Imposing in addition that it be an extension of 
the Killing superalgebra, it is often possible to

• determine the algebra uniquely, assuming it 
exists;

• or in some cases to prove that it does not 
exist.



Examples



The KSA of Minkowski space was already seen to 
be the supertranslation ideal.

The same is true for the half-BPS branes: the KSA 
is the supertranslation ideal on the brane 
worldvolume.

The KSA for the half-BPS plane wave is

[Q,Q] = P+

parallel null vector



The SSA of Minkowski spacetime is the Poincaré 
superalgebra.

For the half-BPS branes, the SSA includes also the 
Lorentz transformations on the worldvolume and 
any isometries of the transverse space.

For a flat euclidean transverse space and in the 
case of coincident branes, this is the transverse 
rotation algebra; but for non-coincident branes or 
branes at conical singularities, the rotational 
symmetry is broken down.



For the maximally supersymmetric Freund-Rubin 
backgrounds, the KSA coincides with the SSA:

AdS4 × S7 osp(8|2)

AdS7 × S4 osp(6, 2|2)

AdS5 × S5 su(2, 2|4)

For the near-horizon limits of branes at conical 
singularities, one obtains subalgebras of the above, 
in agreement with the expectation from AdS/CFT.



The MSA of the maximally supersymmetric 
Freund-Rubin backgrounds of eleven-dimensional 
and IIB supergravities is osp(1|32).

k0

dim
(
Λ2m1

∗)k0 = 1

is not abelian
{

The extra bosonic generators Z are constructed 
geometrically, as are the brackets, in terms of 
(special) Killing forms.

and ω is symplectic



The maximally supersymmetric plane waves 
do not admit a maximal superalgebra.

m⊥1 = {Q ∈ m1|ω(Q,−) = 0}

m⊥1 ⊂ (m1)
k0

but for the plane waves,

(m1)
k0 = 0andm⊥1 != 0



But what about the Penrose limit of the 
orthosymplectic superalgebra?

It is not full!

S2m1 !∼= [m1,m1]

This answers (finally! but negatively) a question 
posed by Abou Zeid in 2003, during the 
Kyoto strings conference.

It remains to elucidate the superalgebra 
which encodes the information of the BPS 
branes on the maximally supersymmetric 
waves.



At its most basic, a supergravity background is a 
geometry with a privileged notion of spinor.

Round spheres too are such geometries, possessing 
geometric Killing spinors:

∇Xε = λX · ε

Is there an associated KSA?

Some geometrical examples



In general we do not expect a Lie 
superalgebra, just a       -graded Lie algebra:

[ε1, ε2] = −[ε2, ε1]

Also, in general, only 3/4 of the Jacobi identity 
is satisfied.

Nevertheless...

Z/2



Killing “superalgebra”
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Uses of Killing 
superalgebras



Early uses

Test of AdS/CFT correspondence, by checking 
the symmetries across the correspondence for 
general AdS backgrounds.

Geometric construction of KSAs for AdS 
brackgrounds arising as near-horizon 
geometries of branes at conical singularities on 
manifolds of exceptional holonomy agree 
(correcting a couple of errors in the mathematical literature!) 
with the conformal superalgebras of the dual 
CFT.



The Penrose limit interpretation of maximally 

supersymmetric waves arose as an attempt to 

understand their Killing superalgebras, which are 

contractions of the KSAs of AdSxS.

The contractions were later described explicitly 
by Hatsuda, Kamimura and Sakaguchi.



Homogeneity conjecture

All known supergravity backgrounds preserving 
more than half of the supersymmetry are (locally) 
homogeneous.

The homogeneity conjecture states that all such 
backgrounds are (locally) homogeneous.

This has been proved for type I/heterotic 
backgrounds, as a corollary of the classification of 
parallelisable backgrounds, arrived at in 
collaboration with Kawano and Yamaguchi.



Using the Killing superalgebra one can show 
that eleven-dimensional and ten-dimensional 
type II backgrounds preserving > 3/4 of the 
supersymmetry are (locally) homogeneous.

I believe the conjecture is true, but a proof 
probably requires a better understanding of 
the holonomy of the superconnection D than 
the one we have at present.



Further 
directions



Using the maximal superalgebra, one can now 
begin to study the possible supersymmetric 
backgrounds asymptotic to one with such a 
maximal superalgebra.

The fact that the maximal superalgebra is not in 
general a central extension means the extra 
generators can no longer be interpreted simply as 
charges.

BPS objects in curved backgrounds



Furthermore, the relationship between the 
maximally superalgebra and the BPS states is a 
subtle one.

Not every BPS state compatible with the MSA 
actually exists; e.g., supergravity preons.

Even if the state exists, the construction is far from 
trivial.



It is a generalised belief in string theory that 

supergravity backgrounds can be deformed 
continuously to solutions of the field equations 

with quantum or α’ corrections.

This belief justifies, from a string theory point of 
view, much of the research into supergravity.

We shall not question it today.

Quantum/stringy corrections



Natural question:

What happens to Killing superalgebras 
under quantum/stringy or α’ corrections?

Possible answers:

★ The notion does not persist
✓ The notion persists:

★ not as a Lie superalgebra
✓ as a Lie superalgebra:

★ of different dimension, or
✓ of the same dimension



Let us make the assumption that it deforms as a Lie 
superalgebra of the same dimension.

This is a well-known mathematical problem, which 
can be analysed using techniques of Lie (super)algebra 
cohomology.

We have analysed the deformations of the SSAs 
associated to the simplest ten- and eleven-
dimensional backgrounds.



The eleven-dimensional Poincaré superalgebra 
admits no deformations: it is rigid.  (This contrasts 
sharply with four dimensions, where the Poincaré superalgebra 
deforms to the de Sitter superalgebras.)

This agrees with the fact that the Minkowski 
vacuum admits no quantum corrections.

Similarly the SSAs of the M5-brane and of the 
Freund-Rubin vacua are also rigid.



On the other hand, the M2-brane SSA admits a 
deformation, whose bosonic subalgebra contains the 
isometry algebra of anti-de Sitter space.  This suggests 
that under quantum corrections, the worldvolume of 
the M2-brane gets curved.

Of course, the deformation could be due to a classical 
solution which has escaped notice.  We have not ruled 
this out yet!



Similarly, the half-BPS M-wave and Kaluza-Klein 

monopole admit a unique deformation.  This latter one 

does not seem to be realisable in supergravity.

The center of the U(2) isometry of Taub-NUT acts 

trivially on the Minkowski factor of the Kaluza-Klein 

monopole.  Upon deformation, it acts by homotheties, 

reminiscent of a nongeometric background.



Nevertheless, the deformations seem to be 
consistent with Kaluza-Klein reduction, strongly 
suggesting a geometric origin.  The question 
remains whether it is the geometry of 
supergravity that these deformations are probing.  
The MKK result would seem to indicate 
otherwise.

In summary, the Killing superalgebras seem to 
encode also information beyond supergravity.

Decoding this information is work in progress.


