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The traditional large N limit

Recall: [’t Hooft (1974)]

• four-dimensional SU(N) Yang–Mills theory at coupling gYM

• in the limit N → ∞, keeping λ := g2
YMN fixed, amplitudes are

described by a genus expansion

∞∑
g=0

N2−2gfg(λ)
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• planar diagrams dominate in the limit

• reminiscent of string perturbation theory at

gs ∼
1
N

but...

Which string theory?

2



A concrete proposal

A stack of N D3-branes in IIB string theory:



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint

in the low energy limit decouples into

IIB supergravity in bulk



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint

in the low energy limit decouples into

IIB supergravity in bulk + SYM on brane



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint

in the low energy limit decouples into

IIB supergravity in bulk + SYM on brane

The same physics from IIB supergravity at low-energies:



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint

in the low energy limit decouples into

IIB supergravity in bulk + SYM on brane

The same physics from IIB supergravity at low-energies:

IIB supergravity in bulk



A concrete proposal

A stack of N D3-branes in IIB string theory:

Sbulk + Sbrane + Sint

in the low energy limit decouples into

IIB supergravity in bulk + SYM on brane

The same physics from IIB supergravity at low-energies:

IIB supergravity in bulk + IIB supergravity near brane horizon
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Subtracting bulk supergravity... [Maldacena (1997)]

N=4 SU(N) Yang–Mills at

gYM on R× S3
∼= IIB string theory at gs on

AdS5×S5 with radii R

where

λ = g2
YMN ∼ gsN ∼ R4

`4s

• perturbative Yang–Mills requires λ� 1

• gravity approximation is valid for R4 � `4s
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Many tests of the conjecture have been performed:

• symmetries (and supersymmetries)

Group IIB SYM

SO(4, 2) Isometry AdS5 Conformal Group

×
SO(6) Isometry S5 R-symmetry

×
SL(2,Z) S-duality EM duality

• spectrum of, say, single trace operators; e.g., chiral primaries (in

short multiplets)

Tr′ φ⊗ · · · ⊗ φ
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But...further checks are hindered by lack of clear dictionary between

massive string modes and gauge invariant operators in the strongly

coupled gauge theory:

• unprotected single trace operators (in long multiplets) have

divergent anomalous dimensions at strong coupling

• all massive string states have divergent mass

However...recent progress in this direction has been made using a

different large N limit, the so-called plane wave limit.
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The plane wave limit in gravity

A nontrivial approximation to a spacetime in the neighbourhood of

a null geodesic. [Penrose (1976)]

• (M, g) a lorentzian manifold

• γ ⊂M a null geodesic

Boost along γ and zoom in on γ while rescaling g.
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• Choose coordinates U, V, Y i such that

g = 2dUdV +AdV 2 +BidY
idV + CijdY

idY j

=⇒ ∂/∂U is geodetic (and “twist-free”)

• “parabolic blow-up” (Ω > 0)

U = u V = Ω2v Y i = Ωyi

• rescale

gplane wave = lim
Ω→0

Ω−2g(Ω)
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In “Brinkmann coordinates”

gplane wave = 2dx−dx+ +
∑
i,j

Aij(x+)xixj(dx+)2 +
∑

i

dxidxi

The limit uses diffeomorphisms and homotheties.

Therefore...

in any theory invariant under diffeomorphisms and homotheties, e.g.,

Einstein gravity)

PWL : Solutions → Solutions
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The plane wave limit in supergravity

The plane wave limit extends to supergravity theories. [Güven (2000)]

e.g., A(p): p-form gauge potential

• “lightlike gauge”

ı∂/∂UA
(p) = 0
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• parabolic blow-up and rescale

A
(p)
plane wave = lim

Ω→0
Ω−pA(p)(Ω)

In Brinkmann coordinates

A
(p)
plane wave =

∑
Ai1i2···ip(x

+)dxi1 ∧ · · · ∧ dxip

Note: field strength is null :

Fplane wave = dAplane wave = dx+ ∧Θ(x+)
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The plane wave limit in supergravity exploits invariances of field

equations:

• diffeomorphisms

• gauge invariance

• rescalings (homotheties,...)

As a result, again

PWL : Solutions → Solutions
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Properties of plane wave limits

It depends on γ, but only up to isometry.

If γ′ = ϕγ, where

ϕ∗g = g ϕ∗A = A etc

then the plane wave limits along γ and γ′ are physically equivalent.

We call this the covariance property . [Blau et al. (2002)]

It is useful in classifying the different plane wave limits of a given

background.
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The plane wave limit is a special case of Geroch’s limits of

spacetimes. [Geroch (1969)]

In this way, one can prove that Killing vectors and Killing spinors

are preserved under plane wave limits... but their (super)algebras

get contracted . [Blau et al. (2002)]

(Super)symmetry can also be enhanced.

In fact, plane wave limits preserve at least one half of the

supersymmetry.

A plane wave limit of a maximally supersymmetric solution is also

maximally supersymmetric, so

PWL : Vacua → Vacua
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Vacua of the form AdSp×Sq have two possible plane wave limits:

AdSp × Sq
�

�
�

�
�

��
wave

@
@

@
@

@
@R

flat

depending on whether or not the component of γ̇ tangent to Sq

vanishes. [Blau et al. (2002)]
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Some examples

Eleven-dimensional supergravity vacua: [FO–Papadopoulos (2002)]

AdS4 × S7 S4 × AdS7

�
�

�
�

�
��

@
@

@
@

@
@I

KG

@
@

@
@

@
@R

�
�

�
�

�
�	

flat
?

KG: 11-dimensional symmetric plane wave [Kowalski-Glikman (1984)]
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In ten-dimensional IIB supergravity: [FO–Papadopoulos (2002)]

AdS5 × S5
�

�
�

�
�

��
BFOHP

@
@

@
@

@
@R

flat
?

BFOHP: 10-dimensional symmetric plane wave [Blau et al.(2001)]
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In six-dimensional (1,0) supergravity: [Chamseddine et al]

AdS3 × S3
�

�
�

�
�

��
M

@
@

@
@

@
@R

flat
?

M: 6-dimensional symmetric plane wave [Meessen (2001)]

All solutions are Lie groups and all plane wave limits are group

contractions. [FO–Stanciu]
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A word on the wave geometry

Symmetric plane waves are lorentzian symmetric spaces with

solvable “transvection” groups. [Cahen–Wallach (1970)]

They are examples of “Hpp-waves.” [FO–Papadopoulos (2001)]

In Brinkmann coordinates

2dx−dx+ +
∑
i,j

Aijx
ixj(dx+)2 +

∑
i

(dxi)2

where Aij is constant, and is determined by its eigenvalues, up to

order and scale.
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IIB string theory on a symmetric plane wave

g = 2dx−dx+ − µ2
8∑

i=1

(xi)2(dx+)2 +
8∑

i=1

(dxi)2

F =
µ

4π3gsα′
2dx

+ ∧ (dx1234 + dx5678)

eΦ = gs

• all other fluxes vanish

• µ inessential, but µ→ 0 recovers flat solution
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• associated symmetry superalgebra is a contraction of su(2, 2|4)
[Blau et al. (2001,2002), Hatsuda et al. (2002)]

• ∂/∂x− is a parallel null vector =⇒ natural light-cone gauge

• gauge-fixed Green–Schwarz action is quadratic [Metsaev (2001)]

1
2πα′

∫
dτ

∫ 2πα′p+

0

dσ
[
1
2ẋ

2 − 1
2x
′2 − 1

2µ
2x2 + iψ̄(∂/+ µM)ψ

]
where x : W → R8 and ψ ∈ C∞(x∗S+⊗Σ) with S+ the positive

chirality spin bundle on R8 and Σ the bundle of Majorana spinors

on the worldsheet W

• fermion mass matrix µM is only remnant of RR flux
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• this theory describes 8 massive bosons and 8 massive fermions

• quantise by expanding in Fourier modes with period 2πα′p+

• light-cone hamiltonian

p− ∼
∑
n∈Z

Nn

√
µ2 +

n2

(α′p+)2

• Nn the total occupation number of nth mode:

n > 0 left-movers, n < 0 right-movers

and n = 0 zero modes but still oscillatory (µ 6= 0)
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subject to momentum conservation∑
n∈Z

nNn = 0

• µ→ 0 recovers the flat space spectrum

We will now see that the spectrum can be recovered from the gauge

theory but we will first need to understand how the plane wave limit

is manifested in the gauge theory.
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Plane wave limit in the gauge theory

How can we implement the plane wave limit?

γ ⊂ AdS5×S5: null geodesic giving rise to plane wave limit

γ̇ = γ̇AdS + γ̇S

and γ̇S 6= 0

A null Killing vector γ̇ is automatically geodetic:

〈∇γ̇γ̇, X〉 = −〈∇Xγ̇, γ̇〉 = −1
2X‖γ̇‖

2 = 0

24



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up (R playing the role of Ω)



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up (R playing the role of Ω)

• γ̇AdS + γ̇S → ∂/∂x+



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up (R playing the role of Ω)

• γ̇AdS + γ̇S → ∂/∂x+ =⇒ p− ∼ ∆− J



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up (R playing the role of Ω)

• γ̇AdS + γ̇S → ∂/∂x+ =⇒ p− ∼ ∆− J

• (γ̇AdS − γ̇S)/R2 → ∂/∂x−



So we can choose

• γ̇AdS: a timelike Killing vector on AdS5, generating time

translations =⇒ energy or conformal dimension ∆

• γ̇S: a Killing vector on S5 =⇒ R-charge J

Under the parabolic blow-up (R playing the role of Ω)

• γ̇AdS + γ̇S → ∂/∂x+ =⇒ p− ∼ ∆− J

• (γ̇AdS − γ̇S)/R2 → ∂/∂x− =⇒ p+ ∼ (∆ + J)/R2
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Notice: BPS condition ∆ ≥ |J | =⇒ p± ≥ 0

To keep p± finite in the limit R→∞: [Berenstein et al. (2002)]

take N →∞ while keeping

J√
N

gYM

∆− J

fixed

Notice: As N → ∞ we focus on states with larger and larger J .

Thus observables are not held fixed in this limit.
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The precise dictionary is

µp+α′ =
J√
λ

p−

µ
= ∆− J g2

YM = 4πgs

Now...

• one focuses on a subset of “nearly BPS” operators (BMN

operators) having finite conformal dimension in the limit

• they are dual to the free string excitations on the plane wave

background
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The BMN operators

Gauge theory scalars:

• Z: complex field with J = 1

• φ, ψ: neutral complex fields with J = 0

BMN operators are single trace operators consisting in a string of J

Z’s and a finite number of impurities.
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Impurities are in one-to-one correspondence with string excitations:

1√
(N/2)J+1

TrZJ ↔ |p+〉

1√
(N/2)J+1

TrZJψ ↔ α†0|p+〉

1√
(N/2)J+1

TrZJφ ↔ α†0|p+〉

1√
(N/2)J+1

TrDZZJ ↔ α†0|p+〉

etc...
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The conformal dimensions of BMN operators agree with the mass

formula for the string excitations

[Berenstein et al., Gross et al.,Santambrogio–Zanon (2002)]

In other words...

there is a kinematical correspondence

BMN operators ⇐⇒ free string on plane wave (and

flat space) background

How about interactions?
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Interacting string theory

A detailed study of BMN correlators shows:

[Kristjansen et al., Gross et al., Constable et al. (2002)]

• theory develops a different effective coupling constant

λ′ =
g2

YMN

J2
=

1
(µp+α′)2
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• a different genus-counting parameter

g2
2 =

(
J2

N

)2

= 16π2g2
s(µp

+α′)4

• a different effective string coupling

g′s = g2
√
λ′
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This means:

• λ′ and g′s are independently tunable, so both can be small

• but nonplanar diagrams are not necessarily ignorable

There has been much work on extending the correspondence to

interacting strings:

• string bit formalism

[Verlinde, Zhou, Vaman–Verlinde, Pearson et al. (2002)]

• string field theory

[..., Chu–Khoze, Gomis et al. (2003)]
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• all calculations thus far support the validity of the

correspondence...

• but many more checks still need to be done

• holography suggests that the BMN operators are described by a

quantum mechanical system:

conformal boundary of plane wave is a null line

[Berenstein–Nastase, Papadopoulos, Marolf–Ross (2002)]

• the correspondence has been extended to theories with less

supersymmetry; but as usual QCD remains elusive.
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Thank you.


