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2007 will be known 
as the year where 
E8 (and Lie groups) 
went mainstream...









Introduction

Hopf

Hamilton Cayley Lie Killing

É. Cartan Hurwitz J.F. Adams



This talk is about a relation between exceptional 
objects:

• Hopf bundles

• exceptional Lie algebras

using a geometric construction familiar from 
supergravity: the Killing (super)algebra.



Real division algebras

R

≥

ab = ba

(ab)c = a(bc)

C

ab = ba

(ab)c = a(bc)

O

(ab)c != a(bc)

H

ab != ba

(ab)c = a(bc)

These are all the euclidean normed real division 
algebras.  [Hurwitz]



Hopf  fibrations

These are the only examples of fibre bundles 
where all three spaces are spheres.  [Adams]

S1 ⊂ C

S2 ∼= CP1

S3 ⊂ C2

S3

" S1

S2

S4 ∼= HP1

S3 ⊂ H

S7 ⊂ H2

S7

" S3

S4

S8 ∼= OP1

S7 ⊂ O

S15 ⊂ O2

S15

" S7

S8

S1

" S0

S1

S0 ⊂ R

S1 ⊂ R2

S1 ∼= RP1



Simple Lie algebras

4 classical series:

An≥1

Bn≥2

Cn≥3

Dn≥4

G2

F4

E6

E7

E8

5 exceptions:

SU(n + 1)

SO(2n + 1)

Sp(n)

SO(2n)

14

52

78

133

248

[Lie] [Killing, Cartan]

(over C)



Supergravity

Supergravity is a nontrivial generalisation of Einstein’s 
theory of General Relativity.

The supergravity universe consists of a lorentzian spin 
manifold with additional geometric data, together with 
a notion of Killing spinor.

These spinors generate the Killing superalgebra.

This is a useful invariant of the universe.



“Killing superalgebra”

Applying the Killing superalgebra construction 
to the exceptional Hopf fibration, one 
obtains a triple of exceptional Lie algebras:

S15

" S7

S8

E8

B4

F4



Clifford

Spinors



Clifford algebras

real euclidean vector space

filtered associative algebra

V n 〈−,−〉

C!(V ) =
⊗

V

〈v ⊗ v + |v|21〉

C!(V ) ∼= ΛV (as vector spaces)

C!(V ) = C!(V )0 ⊕ C!(V )1

C!(V )0 ∼= ΛevenV C!(V )1 ∼= ΛoddV



e1, . . . ,enorthonormal frame

C! (Rn) =: C!n

C!0 = 〈1〉 ∼= R

C!1 =
〈
1, e1

∣∣e2
1 = −1

〉 ∼= C

C!2 =
〈
1, e1, e2

∣∣e2
1 = e2

2 = −1, e1e2 = −e2e1

〉 ∼= H

Examples:

eiej + ejei = −2δij1



n C!n

0 R
1 C
2 H
3 H⊕H
4 H(2)
5 C(4)
6 R(8)
7 R(8)⊕ R(8)

C!n+8
∼= C!n ⊗ R(16)

Bott periodicity:

e.g., 

C!9 ∼= C(16)

From this table one can read the type and 
dimension of the irreducible representations.

C!16 ∼= R(256)

Classification



       has a unique irreducible representation if 
n is even and two if n is odd.
C!n

Notation : Mn or M±
n

dim Mn = 2!n/2"

Clifford modules

They are distinguished by the action of

which is central for n odd. 

e1e2 · · · en



son → C!n

ei ∧ ej "→ −1
2eiej

exp Spinn ⊂ C!n

which defines a 2-to-1 map Spinn → SOn

with archetypical example Spin3
∼= SU2 ⊂ H

"

SO3
∼= SO(ImH)

s ∈ Spinn, v ∈ Rn =⇒ svs−1 ∈ Rn

Spinor representatinos

2-1



By restriction, every representation of        defines a 
representation of          :

C!n

Spinn

∆ spinors
∆± chiral spinors

One can read off the type of representation from

Spinn ⊂ (C!n)0 ∼= C!n−1

dim ∆± = 2(n−2)/2dim ∆ = 2(n−1)/2

C!n ⊃ Spinn

M± = ∆
M = ∆ = ∆+ ⊕∆−



Spinor inner product

(ε1, ei · ε2) = − (ei · ε1, ε2) ∀εi ∈ ∆

=⇒ (ε1, eiej · ε2) = − (eiej · ε1, ε2)

which allows us to define

〈[ε1, ε2], ei〉 = (ε1, ei · ε2)

(ε1, ε2) = (ε2, ε1)

[−,−] : Λ2∆→ Rn

(−,−) nondegenerate form on ∆



Spin geometry



Spin manifolds

Spin(M)
"

M

SO(M)
"

M

O(M)
"

M

GL(M)
"

M

w1 = 0 w2 = 0

differentiable manifoldMn

g riemannian metric

, orientable, spin

GLn On
! "!! SOn

! "!! Spinn
!!!!



e.g., M = Sn ⊂ Rn+1

O(M) = On+1

SO(M) = SOn+1

Spin(M) = Spinn+1

Sn ∼= On+1/On
∼= SOn+1/SOn

∼= Spinn+1/Spinn

Possible Spin(M) are classified by                   .H1 (M ; Z/2)

π1(M) = {1} =⇒ unique spin structure



C!(TM)
"

M
C!(TM) ∼= ΛTM

S(M) := Spin(M)×Spinn
∆

S(M)± := Spin(M)×Spinn
∆±

Clifford bundle

(chiral) 
spinor 
bundles

Spinor bundles

S(M)C!(TM) acts on We will assume that



The Levi-Cività connection allows us to 
differentiate spinors

∇ : S(M)→ T ∗M ⊗ S(M)

which in turn allows us to define

parallel spinor ∇ε = 0

Killing spinor ∇Xε = λX · ε

Killing constant



If (M,g) admits

parallel spinors

Killing spinors

(M,g) is Ricci-flat

(M,g) is Einstein

R = 4λ2n(n− 1)

=⇒ λ ∈ R ∪ iR

Today we only consider real λ.



Killing spinors have their origin in supergravity.

The name stems from the fact that they are 
“square roots” of Killing vectors.

ε1, ε2 Killing Killing[ε1, ε2]



Killing spinors 
in (M,g)

Ch. Bär

Which manifolds admit 
real Killing spinors?

(M, g)

(M, g)

M = R+ ×M

metric cone

1-1
parallel spinors 
in the cone

(
λ = ± 1

2

)

g = dr2 + r2g



More precisely...

If n is odd, Killing spinors are in one-to-one 
correspondence with chiral parallel spinors in 
the cone: the chirality is the sign of λ.

If n is even, Killing spinors with both signs of 
λ are in one-to-one correspondence with the 
parallel spinors in the cone, and the sign of λ 
enters in the relation between the Clifford 
bundles.



This reduces the problem to one (already 
solved) about the holonomy group of the 
cone.

M. Berger

M. Wang

Or else the cone is flat and M is a sphere.

n Holonomy
n SOn

2m Um

2m SUm

4m Spm · Sp1

4m Spm

7 G2

8 Spin7



Killing superalgebra



(M, g) riemannian spin manifold

k = k0 ⊕ k1

Killing spinors{ }k1 =

Construction of the algebra

(
with λ = 1

2

)

Killing vectors{ }k0 = [k1, k1] ⊂



[−,−] : Λ2k→ k              ?

[−,−] : Λ2k0 → k0

[−,−] : Λ2k1 → k0

[−,−] : k0 ⊗ k1 → k1

[—,—] of vector fields

g([ε1, ε2], X) = (ε1, X · ε2)

spinorial Lie derivative!

✓

✓

?

LichnerowiczKosmann



KillingX ∈ Γ(TM) LXg = 0

AX := Y !→ −∇Y X

∈

so(TM)

! : so(TM)→ EndS(M) spinor representation

LX := ∇X + !(AX) spinorial Lie derivative

cf. LXY = ∇XY + AXY = ∇XY −∇Y X = [X, Y ] ✓



Properties

LX(fε) = X(f)ε + fLXε

[LX ,LY ]ε = L[X,Y ]ε

LX(Z · ε) = [X, Z] · ε + Z · LXε

[LX ,∇Z ]ε = ∇[X,Z]ε} ∀ε ∈ k1, X ∈ k0

LXε ∈ k1

[X, ε] := LXε

[−,−] : k0 ⊗ k1 → k1

✓

∀X, Y ∈ k0, Z ∈ Γ(TM), ε ∈ Γ(S(M)), f ∈ C∞(M)



The Jacobi identity

Jacobi: Λ3k→ k

(X, Y, Z) !→ [X, [Y, Z]]− [[X, Y ], Z]− [Y, [X, Z]]

Λ3k0 → k0

Λ2k0 ⊗ k1 → k1

k0 ⊗ Λ2k1 → k0

Λ3k1 → k1

4 components :

✓ Jacobi for vector fields

✓

✓

?

[LX ,LY ]ε = L[X,Y ]ε

LX(Z · ε) = [X, Z] · ε + Z · LXε

but k0 − equivariant



Some examples

S7 ⊂ R8

S8 ⊂ R9

k0 = so8

k0 = so9

k0 = so16

k1 = ∆+

k1 = ∆

k1 = ∆+

28 + 8 = 36

36 +16 = 52

120+128 = 248

so9

f4

e8S15 ⊂ R16

(
k1 ⊗ Λ3k∗1

)k0 = 0 =⇒ Jacobi

Resulting Lie algebras are simple.



A sketch of the proof

Use the cone to calculate        .LXε

The bijection between Killing spinors and 
parallel spinors in the cone is equivariant 
under the action of isometries.

Two observations:
1)

In the cone,                       and since X is 
linear, the endomorphism      is constant.   

LXε = "(AX)ε
AX

2)

It is the natural action on spinors.



A (slight) generalisation

S9 ⊂ R10 C!9 ∼= C(16) M = ∆⊗ C

Spin(9)→ SO(16)

dvol(S9) = i

〈X · ψ1, ψ2〉 = + 〈ψ1, X · ψ2〉

S→ S9

irreducible real spinor module

complex symmetric inner product

complex spinor bundle



g0 = soC(10)⊕ C

z ∈ C =⇒ [z, ψ] = 1
3Dψ

g1 = k1

K± =
{
ψ ∈ Γ(S)

∣∣∇Xψ = ± 1
2X · ψ

}

k0 = soC(10)
k1 = K+ ⊕K−

Killing spinors

Natural brackets well-defined, but Jacobi fails!

(Killing-Yano)

[ψ+, ψ−] = · · · + 〈ψ+, ψ−〉

empirical!



(
Λ3g1 → g1

)g0 "= 0

Jacobi:

[[ψ+, ψ−], χ+]− [[χ+, ψ−], ψ+] = 0 ∀ψ±, χ± ∈ K±

is satisfied, even when

The resulting Lie algebra is E6 (complexified)



Open questions

• Other exceptional Lie algebras? E7 should 
follow from the 11-sphere, but this is still 
work in progress.  G2?

• Are the Killing superalgebras of the Hopf 
spheres related?

• What structure in the 15-sphere has E8 as 
automorphisms?


