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Introduction 
(and Outline)



Basic physical question:

How does supersymmetry shape the 
geometry of a supergravity background?

Equivalent mathematical problem:

Classification of supersymmetric 
supergravity backgrounds.



But what do we mean by classification?

★ listing all possible backgrounds?

✴ or only those with sufficient 
supersymmetry?

★ listing the possible holonomy groups of the 
superconnection?

★ determining special properties implied by 
supersymmetry? e.g., homogeneity



Some “experimental” evidence:

★ maximally supersymmetric backgrounds are 
symmetric spaces

★ all known backgrounds preserving > ½ 
supersymmetry are homogeneous

★ there are nonhomogeneous ½-BPS 
backgrounds; e.g., elementary branes

Natural conjecture:

All > ½ -BPS backgrounds are homogeneous!



What has been proven thus far?

✓ d=10 type I/heterotic supergravity

❖ d=11 and d=10 type IIA/B supergravities: 

➡ > ¾ implies homogeneity

These results use a geometric construction called the 
Killing superalgebra of a supergravity background. 



This talk is based on the following work:

★ hep-th/9808014, w/ Bobby Acharya, Chris Hull & Bill Spence
➡ applications to AdS/CFT

★ hep-th/9902066
➡ Killing superalgebra for AdS x Y backgrounds

★ hep-th/0409170, w/ Patrick Meessen & Simon Philip
➡ KSA for M-theory backgrounds and homogeneity

★ hep-th/0703192, w/ Emily Hackett-Jones & George Moutsopoulos
➡ KSA and homogeneity of ten-dimensional backgrounds

★ work in progress, w/ Patricia Ritter
➡ deformation theory of KSAs



Supergravity 
backgrounds



Generic supergravity fields:

Bosons Fermions

lorentzian metric gravitinos

gauge fields gauginos

p-forms, scalars dilatinos



Geometrically, a supergravity background consists of the 
following data:

The fermionic fields are set to zero, but their 
supersymmetry variations define the Killing spinors.

A background is said to be supersymmetric if it admits 
nonzero Killing spinors.

• a d-dimensional lorentzian spin manifold 

• a real spinor bundle 

• other bosonic fields 

subject to field equations which generalise the Einstein
and Maxwell equations. 

F , φ,...

S

(M, g)



The gravitino variation gives rise to a differential equation:

Connection on  S

The other fermions give rise to algebraic equations:

δελ = Pε = 0

δεψ = ∇ε + · · · = Dε = 0

A spinor    is Killing if ε δε(fermions) = 0

Natural question: which 
holonomy groups appear?

Dε = 0
Pε = 0

...



d=11 supergravity

Field equations

Killing spinors

Spinors are real and have 32 components

Fields g F ∈ Ω4 dF = 0

d ! F = − 1
2F ∧ FRicci(g) = T (g, F )

DXε = ∇Xε + 1
6 ıXF · ε + 1

12X ∧ F · ε = 0

Clifford product



supersymmetry fraction

dim{ε | Dε = 0} = 32ν

ν = 1

ν = 1
2

Maximally supersymmetric vacua

½-BPS backgrounds
e.g., M2, M5, MKK, MW

Which fractions can appear?

Gran+Gutowski+Papadopoulos+Roest (2006)
Figueroa-O’Farrill+Gadhia (2007)

1
32 , 1

16 , 3
32 , 1

8 , 5
32 , 3

16 , . . . , 1
4 , . . . , 3

8 , . . . , 1
2 , . . . , 9

16 , . . . , 5
8 , . . . , 11

16 , . . . , 3
4 , . . . , 1

and only      (supergravity preons) has been ruled out.31
32

So far,

Figueroa-O’Farrill+Papadopoulos (2002)



d=10 heterotic supergravity

Field equations follow from (string frame) lagrangian

Killing spinors

Spinors are real, chiral and have 16 components

Fields g φ H ∈ Ω3 dH = 0 F ∈ Ω2(g)

e−2φ
(
R + 4|dφ|2 − 1

2 |H|2 − 1
2 |F |2

)

Dε = 0 dφ · ε + 1
2H · ε = 0 F · ε = 0

spin connection with torsion H



Killing 
superalgebras



Lie superalgebras
(real) vector superspace

g = g0 ⊕ g1

(super) antisymmetric even bracket

[X, Y ] = −(−1)XY [Y,X]

[ , ] : gi ⊗ gj → gi+j

obeying the Jacobi identity

[X, [Y,Z]] = [[X, Y ], Z] + (−1)XY [Y, [X, Z]]



Let us unpack this data:

[ , ] : g0 ⊗ g0 → g0 is an honest Lie bracket

g0g1[ , ] : g0 ⊗ g1 → g1 makes      into a rep of 

[ , ] : g1 ⊗ g1 → g0 is     -equivariantg0

and the only remaining identity is the odd-odd-odd 
Jacobi identity:

for all X ∈ g1[[X, X], X] = 0

∴      is a Lie algebrag0



The construction of the Killing superalgebra of a supergravity 
background requires:

1) identifying      andg0 g1

2) identifying the brackets:

[ , ] : g0 ⊗ g0 → g0

[ , ] : g0 ⊗ g1 → g1

[ , ] : g1 ⊗ g1 → g0

     and
3) proving the Jacobi identities.

The last two also 
require showing that 
the brackets close on 

the correct space!



Details vary depending on the supergravity theory, 
but the basic construction is universal.

g0 is the Lie algebra of infinitesimal symmetries

i.e., Killing vector fields preserving all bosonic fields

e.g., in a d=11 supergravity background (M, g, F )
vector fields     obeying LXg = 0 = LXFX

is the space of Killing spinorsg1

[ , ] : g0 ⊗ g0 → g0 is the Lie bracket of vector fields
(automatically obeys Jacobi)



[ , ] : g0 ⊗ g1 → g1 is the spinorial Lie derivative
Lichnerowicz+Kosmann (1972)

X Killing

ρ : so(TM)→ End(S) the spinor representation

LX := ∇X + ρ(∇X) obeys the following properties:

[LX ,LY ] = L[X,Y ]

commutator of endomorphisms
Lie bracket of vector fields

is skewsymmetric∇X : Y "→ ∇Y X

1)



[LX ,∇Y ] = ∇[X,Y ]

LX(Y · ε) = [X, Y ] · ε + Y · LXε

any vector field2)

X ∈ g0
[LX , DY ] = D[X,Y ]

LX(Pε) = PLXε

∴ ε ∈ g1 =⇒ LXε ∈ g1

is well-defined and, using 1), obeys the 
even-even-odd Jacobi identity.

∴ [ , ] : g0 ⊗ g1 → g1

[X, ε] := LXεdefined by

3)



is defined by squaring spinors[ , ] : g1 ⊗ g1 → g0

[ε1, ε2] := X

where      has componentsX Xa = ε1γaε2

This is symmetric in lorentzian signature.

X is always causal.

The Killing spinor equations imply that

ε1, ε2 ∈ g1 =⇒ X ∈ g0

(It suffices to show this for             .)ε1 = ε2

The even-odd-odd Jacobi identity follows from properties of 
the spinorial Lie derivative.

This is not 
completely trivial and 
requires a calculation!



It remains to prove the odd-odd-odd Jacobi identity:

LXε = 0

where
Xa = εγaε

This is an algebraic equation, which ought to follow from 
representation theory alone, but in practice requires a 
calculation.



The Killing superalgebra has been constructed 
(and shown to be a Lie superalgebra) for the 
following supergravity theories:

★ d=11 supergravity 

★ d=10 type I/heterotic supergravities

★ d=10 type IIA/IIB supergravities

Figueroa-O’Farrill+Meessen+Philip (2004)
Figueroa-O’Farrill+Hackett-Jones+Moutsopoulos (2007)



The explicit form of the Killing superalgebra is known 
for a number of supergravity backgrounds:

Freund-Rubin vacua:

AdS4 × S7

AdS7 × S4

AdS5 × S5 su(2, 2|4)

osp(8|2)

osp(6, 2|2)

Minkowski vacuum        Poincaré superalgebra

Plane wave vacua        contractions of the above
Figueroa-O’Farrill+Papadopoulos (2001)

Blau+Figueroa-O’Farrill+Hull+Papadopoulos (2001,2002)
Hatsuda+Kamimura+Sakaguchi (2002) 

Blau+Figueroa-O’Farrill+Papadopoulos (2002)



For purely gravitational backgrounds, the KSA is a Lie 
subsuperalgebra of the Poincaré superalgebra:

Background canonical ideal

elementary branes
(also multicentred)

translations along brane 
worldvolume

branes at conical singularities
translations along brane 

worldvolume

half-BPS plane wave and its 
generalisations parallel null vector

Kaluza-Klein monopole and 
its generalisations

translations along 
Minkowski factor

[g1, g1]



For the near-horizon geometries of the branes at 
conical singularities, one obtains the conformal 
superalgebras predicted by AdS/CFT.

Acharya+Figueroa-O’Farrill+Hull+Spence (1998)

The Killing superalgebra can be calculated 
without explicit knowledge of the form of the 
Killing spinors, using the Bär cone construction.

This construction can also be used to classify 
supersymmetric Freund-Rubin backgrounds.

Bär (1993)

Figueroa-O’Farrill+Leitner+Simón (in preparation)



Homogeneity



A supergravity background is homogeneous 
if it admits a transitive action of a Lie group 
by flux-preserving isometries.

In (super)gravity we must work with local 
geometries — this requires a local version of 
homogeneity.

A supergravity background is locally 
homogeneous if, at every point, there exists 
a local frame consisting of infinitesimal 
symmetries.



[g1, g1] ⊂ g0

The more supersymmetry a 
background preserves, the more 
infinitesimal isometries it admits.

Maximally supersymmetric backgrounds are 
homogeneous — in fact, symmetric.

Facts:

There are non-homogeneous half-BPS backgrounds.

There exists a critical fraction     
such that if             the background is locally 
homogeneous.

ν > νc

νc ≥ 1
2



All known supergravity backgrounds with       are 
(locally) homogeneous — suggesting that            .νc = 1

2

ν > 1
2

For d=11 and d=10 types IIA/B supergravities, one can 
prove that                   , exploiting the representation 

theory of the Clifford algebra.

1
2 ≤ νc ≤ 3

4

Killing spinors are determined by their value at any 
point, whence it is enough to show that

dim g1 large enough [g1, g1]⊥ = 0

Linear algebra shows that                     is large enough. dim g1 > 24
Figueroa-O’Farrill+Meessen+Philip (2004)

Figueroa-O’Farrill+Hackett-Jones+Moutsopoulos (2007)



V ∈ [g1, g1]⊥ ⇐⇒ ε1V
aγaε2 = 0 ∀ε1,2 ∈ g1

Indeed,

Since we know that             , we may assume thatνc ≥ 1
2

dim g1 > dim g⊥1

whence Clifford multiplication by     defines a mapV

V̂ : g1 → g⊥1

whence      has nontrivial kernelV̂     is nullV̂



This means that the bilinear form on spinors

(ε1, ε2) !→ ε1V aγaε2

has rank 16.

On the other hand, one can easily estimate the maximum 
rank of such a bilinear to be

2 codim g1

which shows that for a nonzero      to exist, the 
codimension of       must be at least 8. 

V
g1

Therefore, if                    , no such vector can exist and dim g1 > 24

[g1, g1]⊥ = 0



In the 2004 paper, we conjectured that the critical 
fraction was indeed ¾.

However,  this proof ignores the fact that the 
Killing spinors satisfy a differential equation — that 
is, ignores information about the holonomy of the 
superconnection.

Figueroa-O’Farrill (2003)

川野+山口 (2003)

Figueroa-O’Farrill+川野+山口 (2003)
Figueroa-O’Farrill+Hackett-Jones+Moutsopoulos (2007)

A similar argument for d=10 heterotic/type I 

supergravity would also suggest that             , but

using the classification of parallelisable 

backgrounds one shows that             .νc = 1
2

νc
?= 3

4



Deformations



It is a generalised belief in string theory that 

supergravity backgrounds — that is, solutions to 
the supergravity field equations — can be 
deformed continuously to solutions of the field 

equations with quantum or α’ corrections.

This belief justifies, from a string theory point of 
view, much of the research into supergravity.

For the purposes of this talk, we shall not 
question this belief.



Natural question:

What happens to the Killing superalgebra 
under quantum or α’ corrections?

Possible answers:

★ The notion of KSA does not persist
✓ The notion persists:

★ not as a Lie superalgebra
✓ as a Lie superalgebra:

★ of different dimension, or
✓ of the same dimension



Let us make the assumption that it deforms as a Lie 
superalgebra of the same dimension.

Then, relative to some basis, the structure constants 
now depend on α’ (or ℏ).

This is a well-known mathematical problem, which 
can be analysed using techniques of Lie (super)algebra 
cohomology, as developed by Chevalley+Eilenberg 
and, in the super case, by Leites.



A one-parameter family of Lie brackets is given by:

[X, Y ]t =
∑

n≥0

tnΦn(X, Y )

where
Φn : Λ2g→ g

superantisymmetric!

The Jacobi identity gives rise to an infinite number of 
quadratic equations involving the      , one for each 
power of the parameter.

Φn

The first equation is the Jacobi identity for      , 
corresponding to the undeformed Lie superalgebra.

Φ0



The second equation says that       is a 2-cocycle for 
the undeformed Lie superalgebra.  If a coboundary, it is 
not a genuine deformation, but simply a t-dependent 
change of basis.

Φ1

H2(g; g)∴               = space of infinitesimal deformations.

The remaining equations give an infinite number of 
obstructions to integrating an infinitesimal deformation, 
which can interpreted as cohomology classes one 
dimension higher.

∴               = space of obstructions.H3(g; g)



The calculations of these cohomology groups is a 
problem in linear algebra, but it can quickly grow 
out of control due to the size of the vector spaces 
involved.

By the rigidity of semisimple Lie algebras and of 
their representations, one can exploit the existence 
of semisimple factors of the undeformed Lie 
superalgebra to cut the computation considerably 
down in size.

Technically, one computes the cohomology groups 
using a method of successive approximations 
known as the Hochschild-Serre spectral sequence.



The end result of this method is the factorisation 
theorem of Hochschild–Serre–Binegar.

H2(g; g) ∼= H2(I; g)s

H3(g; g) ∼= H3(I; g)s ⊕
(
H3(s)⊗ z

)

I < g s := g/ILet           be an ideal such that               is semisimple.

Then
Hn(g; g) ∼=

n⊕

i=0

(
Hn−i(s)⊗Hi(I; g)s

)

In particular, We need only work 
with   -invariants.s

Center



The resulting complexes are now much smaller 
and the calculations tractable by hand.

We have analysed the deformations of the 
Killing superalgebras associated to the simplest 
M-theory backgrounds.

The eleven-dimensional Poincaré superalgebra 
admits no deformations: it is rigid.  (This contrasts 
sharply with four dimensions, where the Poincaré superalgebra 
deforms to the de Sitter superalgebras.)

This suggests that the Minkowski vacuum 
admits no quantum corrections.



Similarly the KSA of the M5-brane and of the Freund-
Rubin vacua are also rigid, suggesting that these 
backgrounds receive no quantum corrections either.

On the other hand, the M2-brane KSA admits a 
deformation, whose bosonic subalgebra contains the 
isometry algebra of anti-de Sitter space.  This suggests 
that under quantum corrections, the worldvolume of 
the M2-brane gets curved.



Similarly, the half-BPS M-wave and Kaluza-Klein 
monopole admit a unique deformation.  The maximally 
supersymmetric plane wave admits at least one 
deformation, which corresponds to the inverse to the 
contraction induced by the plane-wave limit. (The 
analysis has still to be completed.)

One has to be careful, however, to extract predictions 
from this analysis, since it is based on the assumption 
that the KSA persists (and does not drop in 
dimension) under quantum corrections.

A better understanding of the structure of the 
quantum-corrected supergravities is necessary to make 
further progress.



どうもありがとうございました。


