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Motivation

• fluxbrane backgrounds in type II string theory

• string theory in

? time-dependent backgrounds, and

? causally singular backgrounds

• supersymmetric Clifford–Klein space form problem
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Melvin universe and fluxbranes

• axisymmetric solution of d=4 Einstein–Maxwell theory

[Melvin (1964)]

• describes a gravitationally stable universe of flux

• dilatonic version in supergravity [Gibbons–Maeda (1988)]

• Kaluza–Klein reduction of a flat five-dimensional spacetime

[F. Dowker et al. (1994)]

• R1,4/Γ, with Γ ∼= R, or R1,10/Γ =⇒ IIA fluxbranes
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• (M, g, F, ...) a supergravity background

• symmetry group G— not just isometries, but also preserving F, ...

• determine all quotient supergravity backgrounds M/Γ, where

Γ ⊂ G is a one-parameter subgroup, paying close attention to:

? smoothness,

? causal regularity,

? spin structure,

? supersymmetry,...
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One-parameter subgroups

• (M, g, F, ...)

• symmetries

f : M
∼=−→ M f∗g = g f∗F = F . . .

define a Lie group G, with Lie algebra g

• X ∈ g defines a one-parameter subgroup

Γ = {exp(tX) | t ∈ R}
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• X ∈ g also defines a Killing vector ξX:

LξX
g = 0 LξX

F = 0 . . .

whose integral curves are the orbits of Γ

• two possible topologies:

? Γ ∼= S1, if and only if ∃T > 0 such that exp(TX) = 1
? Γ ∼= R, otherwise

• we are interested in the orbit space M/Γ
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Kaluza–Klein and discrete quotients

• Γ ∼= S1: M/Γ is standard Kaluza–Klein reduction

• Γ ∼= R: quotient performed in two steps:

? discrete quotient M/ΓL, where L > 0 and

ΓL = {exp(nLX) | n ∈ Z} ∼= Z

? Kaluza–Klein reduction by Γ/ΓL
∼= R/Z ∼= S1
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• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry
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Classifying quotients

• (M, g, F, ...) with symmetry group G, Lie algebra g

• X, X ′ ∈ g generate one-parameter subgroups

Γ = {exp(tX) | t ∈ R} Γ′ = {exp(tX ′) | t ∈ R}

• if X ′ = λX, λ 6= 0, then Γ′ = Γ

• if X ′ = gXg−1, then Γ′ = gΓg−1, and moreover M/Γ ∼= M/Γ′
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• enough to classify normal forms of X ∈ g under

X ∼ λgXg−1 g ∈ G λ ∈ R
×

i.e., projectivised adjoint orbits of g
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Eleven-dimensional supergravity backgrounds

• (M, g): lorentzian spin 11-dimensional connected manifold

• F a closed 4-form

• (M, g, F ) is supersymmetric ⇐⇒ admits nonzero Killing spinors,

parallel with respect to

DX = ∇X + 1
6ιXF − 1

12X
[ ∧ F
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• (M, g, F ) is ν-BPS ⇐⇒

dim {Killing spinors} = 32ν

e.g.,

? ν = 1 backgrounds

∗ Minkowski

∗ Freund–Rubin

∗ Kowalski-Glikman wave

? ν = 1
2 backgrounds

∗ M2 and M5 branes

∗ Kaluza–Klein monopole

∗ M-wave
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• (R1,10, F = 0) has symmetry O(1, 10) n R
1,10 ⊂ GL(12,R):(

A v

0 1

)
A ∈ O(1, 10) v ∈ R

1,10

• Γ ⊂ O(1, 10) n R
1,10, generated by

X = XL + XT ∈ so(1, 10)⊕ R
1,10 ,

which we need to put in normal form
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• X ∈ so(p, q) ⇐⇒ X : Rp+q → R
p+q linear, skew-symmetric

relative to 〈−,−〉 of signature (p, q)

• X =
∑

i Xi relative to an orthogonal decomposition

R
p+q =

⊕
i

Vi with Vi indecomposable

• for each indecomposable block, if λ is an eigenvalue, then so are

−λ, λ∗, and −λ∗
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• possible minimal polynomials:

? λ = 0 µ(x) = xn

? λ = β ∈ R,

µ(x) = (x2 − β2)n

? λ = iϕ ∈ iR,

µ(x) = (x2 + ϕ2)n

? λ = β + iϕ, βϕ 6= 0,

µ(x) =
((

x2 + β2 + ϕ2
)2 − 4β2x2

)n
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Strategy

• for each µ(x), write down X in (real) Jordan form

• determine metric making X skew-symmetric, using automorphism

of Jordan form if necessary to bring the metric to standard form

• keep only those blocks with appropriate signature

• example: µ(x) = x3
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Elementary lorentzian blocks

Signature Minimal polynomial Type

(0, 1) x trivial

(0, 2) x2 + ϕ2 rotation

(1, 0) x trivial

(1, 1) x2 − β2 boost

(1, 2) x3 null rotation
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Lorentzian normal forms

Play with the elementary blocks!

In signature (1, 10):

• R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4) + R9\(ϕ5)

• B02(β) + R34(ϕ1) + R56(ϕ2) + R78(ϕ3) + R9\(ϕ4)

• N+2 + R34(ϕ1) + R56(ϕ2) + R78(ϕ3) + R9\(ϕ4)

where β > 0, ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕk−1 ≥ ϕk ≥ 0
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19

Normal forms for the Poincaré algebra
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• λ + τ ∈ so(1, 10)⊕ R
1,10

• conjugate by O(1, 10) to bring λ to normal form



19

Normal forms for the Poincaré algebra
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Normal forms for the Poincaré algebra

• λ + τ ∈ so(1, 10)⊕ R
1,10

• conjugate by O(1, 10) to bring λ to normal form

• conjugate by R1,10:

λ + τ 7→ λ + τ − [λ, τ ′]

to get rid of component of τ in the image of [λ,−]
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• the subgroups with everywhere spacelike orbits are generated by

either

? ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4); or

? ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4),

where ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ 0

• both are ∼= R

• the former gives rise to fluxbranes and the latter to nullbranes
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Adapted coordinates

• start with metric in flat coordinates y, z

ds2 = 2|dy|2 + dz2

• “undress” the Killing vector

ξ = ∂z + λ = U ∂z U−1 with U = exp(−zλ)
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• introduce new coordinates

x = U y = exp(−zB)y where λy = By

whence ξx = 0

• rewrite the metric in terms of x:

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

where

? Λ = 1 + |Bx|2
? A = Λ−1 Bx · dx
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• comparing with the Kaluza–Klein “ansatz”

ds2 = e4Φ/3(dz + A)2 + e−2Φ/3h

we read off the IIA fields

? dilaton: Φ = 3
4 log(1 + |Bx|2)

? RR 1-form potential:

A =
Bx · dx

1 + |Bx|2

? string frame metric:

h = Λ1/2|dx|2 − Λ−1/2(Bx · dx)2
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• the only data is the matrix

B =



0 −ϕ1 0 u

ϕ1 0 0 0

0 −ϕ2

ϕ2 0

0 −ϕ3

ϕ3 0

0 −ϕ4

ϕ4 0

−u 0

0 0


where either

? u = 0 (generalised fluxbranes); or

? u = 1 and ϕ1 = 0 (generalised nullbranes)
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[Costa–Gutperle, hep-th/0012072]

? u = 0, ϕ1 = ϕ2, ϕ3 = ϕ4 = 0 =⇒ half-BPS flux-fivebrane

[Gutperle–Strominger, hep-th/0104136]

? u = 0, ϕ1 = ϕ2 + ϕ3, ϕ4 = 0 =⇒ 1
4-BPS flux-threebrane

? u = 0, ϕ1 − ϕ2 = ϕ3 ± ϕ4 =⇒ 1
8-BPS flux-string

[Uranga, hep-th/0108196]

? u = 0, ϕ1 = ϕ2, ϕ3 = ϕ4 =⇒ 1
4-BPS flux-string

? u = 1, ϕi = 0 =⇒ half-BPS nullbrane
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Discrete quotients

• start with the metric in adapted coordinates

ds2 = Λ(dz + A)2 + |dx|2 − ΛA2

and identify z ∼ z + L; e.g., u = 1, ϕi = 0 in B

=⇒ half-BPS eleven-dimensional nullbrane:

? time-dependent

? smooth

? stable

? smooth transition between Big Crunch and Big Bang

? resolution of parabolic orbifold [Horowitz–Steif (1991)]
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Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε = ∇ξε + 1
8∇aξbΓabε = 0

In string/M-theory this cannot be the end of the story.
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“Supersymmetry without supersymmetry”

• T-duality relates backgrounds with different amount of

“supergravitational supersymmetry”

• dramatic example:

AdS5×S5

((QQQQQQQQQQQQQ

oo // AdS5×CP2 × S1

uukkkkkkkkkkkkkkk

AdS5×CP2

CP
2 is not even spin! [Duff–Lü–Pope, hep-th/9704186,9803061]
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Spin structures in quotients

• (M, g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

• if Γ ∼= R, then M/Γ is always spin

• so let Γ ∼= S1 with (normalised) Killing vector ξ = ξX

• Lξ has integral weights on tensors , e.g.,

LξT = inT for n ∈ Z

so that exp(2πX) does act like 1 on tensors
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• ξ also acts on spinors via Lξ; but two things may happen:

? Lξ integrates to an action of Γ: weights are again integral; or

? Lξ integrates to an action of a double cover Γ̂: weights are

now half-integral:

Lξε = i(n + 1
2)ε

• if Γ acts on spinors, M/Γ is spin;

• if only Γ̂ does, M/Γ is not spin, but spinc

• it suffices to check this on Killing spinors
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• e.g., the Hopf fibration S5 → CP
2; with S5 ⊂ C

3 as the quadric

|z1|2 + |z2|2 + |z3|2 = 1 ,

and S1-action

(z1, z2, z3) 7→ (eitz1, e
itz2, e

itz3)

• Killing spinors on S5 are restrictions of parallel spinors on C
3

• Lξ acts as

Lξε = 1
2(Γ12 + Γ34 + Γ56)ε
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• Γ2
ij = −1: its eigenvalues are ±i, hence weights of Lξ are ±3

2

(with multiplicity 1) and ±1
2 (with multiplicity 3)

• weights are half-integral =⇒ CP
2 has no spin structure

• more generally, M → M/Γ is a principal circle bundle

• let L = M ×Γ C be the complex line bundle on M/Γ associated

to the representation with charge 1
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• a spinor ε on M such that

Lξε = inε

defines a section of S ⊗ Ln over M/Γ, where S → M/Γ is the

bundle of spinors

• a spinor ε on M such that

Lξε = i(n + 1/2)ε

would define a section of

S ⊗ Ln+1/2 ∼= (S ⊗ L1/2)⊗ Ln
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• however neither S nor L1/2 exist as bundles; although S ⊗ L1/2

does: it is the bundle of spinc spinors

• L carries a natural connection: the RR 1-form

• sections through Ln carry n units of RR charge

• spinc spinors carry fractional RR charge

• RR charge ↔ momentum along the compact direction given by ξ

• RR charged states are T-dual to winding states
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• e.g., Killing spinors in AdS5×S5 are T-dual to winding states in

AdS5×CP2 × S1, which the supergravity does not see, or does

it?

[e.g., Hull hep-th/0305039]
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Supersymmetry of supergravity quotients

• (M, g, F, ...) supersymmetric

• Γ one-parameter group of symmetries, generated by ξ

• Killing spinors of M/Γ ⇐⇒ Γ-invariant Killing spinors of M

• it suffices to determine zero weights of Lξ on Killing spinors

• e.g., (R1,10): Killing spinors are parallel, whence

Lξε = 1
8∇aξbΓabε
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• e.g., fluxbranes

ξ = ∂z + R12(ϕ1) + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2(ϕ1Γ12 + ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)
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• e.g., nullbranes

ξ = ∂z + N+2 + R34(ϕ2) + R56(ϕ3) + R78(ϕ4)

=⇒
Lξ = 1

2Γ+2 + 1
2(ϕ2Γ34 + ϕ3Γ56 + ϕ4Γ78)

• N+2 is nilpotent, whereas 1
2(ϕ2Γ34+ϕ3Γ56+ϕ4Γ78) is semisimple

and commutes with it; whence invariant spinors are annihilated

by both

• ker N+2 = ker Γ+, and this simply halves the number of

supersymmetries
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? ϕ2 − ϕ3 − ϕ4 = 0 =⇒ ν = 1
8

? ϕ2 = ϕ3, ϕ4 = 0 =⇒ ν = 1
4

? ϕ2 = ϕ3 = ϕ4 = 0 =⇒ ν = 1
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Brane quotients

• typical electric p-brane solution:

g = e2A(r)ds2(R1,p) + e2B(r)ds2(RD−1−p)

Fp+2 = dvol(R1,p) ∧ dC(r)

with r the transverse radius

• A(r), B(r), C(r) → 0 as r → ∞ =⇒ asymptotic to

(R1,D−1, F = 0)
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• symmetry group

G =
(
SO(1, p) n R

1,p
)
×O(D− p− 1) ⊂ O(1, D − 1) n R

1,D−1

• Killing spinors

ε = eD(r)ε∞

where ε∞ is a Killing spinor of the asymptotic background,

satisfying

dvol(R1,p) · ε∞ = ε∞
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• e.g., M2-brane

g = V −2/3ds2(R1,2) + V 1/3ds2(R8)

F = dvol(R1,2) ∧ dV −1

ε = V −1/6ε∞

with V (r) = 1 + Q/r6, and

dvol(R1,2) · ε∞ = ε∞

=⇒ the M2-brane is half-BPS
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=⇒ the classification problem reduces to the flat case, with two

important differences:

? G is not the full asymptotic symmetry group, and

? brane metric is not flat, so causal properties of Killing vectors

may differ from R
1,D−1

• e.g., ξ may be everywhere spacelike in the brane metric, but

its asymptotic value may not be everywhere spacelike in the flat

metric
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Example: M2-brane

• metric:

V −2/3ds2(R1,2) + V 1/3ds2(R8)

with V = 1 + |Q|/r6

• Killing vector:

ξ = τ‖ + ρ‖ + ρ⊥

mutually orthogonal
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‖ξ‖2 = V −2/3
(
|τ |2 + |ρ‖|2

)
+ V 1/3|ρ⊥|2

= V −2/3
(
|τ |2 + |ρ‖|2

)
+ V 1/3r2|ρ⊥|2S

≥ V −2/3|τ |2 + V 1/3r2m2

where |ρ⊥|2S ≥ m2, which defines

f(r) := V (r)−2/3|τ |2 + V (r)1/3r2m2

• odd-dimensional spheres can be combed =⇒ m2 can be > 0
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• f(r) has a minimum at r0 > 0, where

V (r0)r8
0 = −2|Q|

m2
|τ |2

? if |τ |2 ≥ 0, there is no such r0 > 0
? if |τ |2 < 0, there is, and

‖ξ‖2 ≥ V (r0)−2/3|τ |2 + V (r0)1/3r2
0m

2

which is > 0 provided that

|τ |2 > −3
2m

2(2|Q|)1/3
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• such ξ are not everywhere spacelike in R
1,10, so the resulting

quotient does not have a straight-forward physical interpretation

• moreover they contain closed timelike curves

[Maoz–Simón, hep-th/0310255]

• so do the associated discrete quotients

• similar results hold for delocalised branes, intersecting branes,...
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• purely geometric backgrounds, with product geometry

(M4 ×N7, g ⊕ h) and F ∝ dvolg

• field equations ⇐⇒ (M, g) and (N,h) are Einstein

• supersymmetry ⇐⇒ (M, g) and (N,h) admit geometric Killing

spinors:

∇aε = λΓaε where λ ∈ R
×
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• (M, g) admits geometric Killing spinors ⇐⇒ the cone (M̂, ĝ),

M̂ = R
+ ×M and ĝ = dr2 + 4λ2r2g ,

admits parallel spinors: ∇ε̂ = 0
[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)
[hep-th/9902066]
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• (M, g) riemannian =⇒ (M̂, ĝ) riemannian

• (M1,n−1, g) lorentzian =⇒ (M̂, ĝ) has signature (2, n− 1)

• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS4×S7 and S4 ×AdS7 ,

the cones of each factor are flat:

? cone of Sn is Rn+1

? cone of AdS1+p is (a domain in) R2,p

• again the problem reduces to one of flat spaces!
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Isometries of AdS1+p

• AdS1+p is simply-connected; it is the universal cover of a quadric

Q1+p ⊂ R
2,p, given by

−x2
1 − x2

2 + x2
3 + · · ·+ x2

p+2 = −R2

• For p > 2, π1Q1+p
∼= Z, generated by (topological) CTCs

x1(t) + ix2(t) = reit with r2 = R2 + x2
3 + · · ·+ x2

p+2
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• (orientation-preserving) isometries of Q1+p:

SO(2, p) ⊂ GL(p + 2,R)

• SO(2, p) is not the (orientation-preserving) isometry group of

AdS1+p. Why? Because...

? SO(2, p) has maximal compact subgroup SO(2)× SO(p)
? the orbits of SO(2) are the CTCs above

? these curves are not closed in AdS1+p

? in AdS1+p, x1∂2 − x2∂1 does not generate SO(2) but R

• the (orientation-preserving) isometry group of AdS1+p is an

infinite cover S̃O(2, p), a central extension of SO(2, p) by Z
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• the central element is the generator of π1Q1+p

• The bad news: S̃O(2, p) is not a matrix group; it has no finite-

dimensional matrix representations

• The good news:

? the Lie algebra of S̃O(2, p) is still so(2, p); and

? adjoint group is again SO(2, p)

whence

• one-parameter subgroups↔ projectivised adjoint orbits of so(2, p)
under SO(2, p)
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Normal forms for so(2, p)

We play again but with a bigger set!

We can still use the lorentzian elementary blocks:

• (0, 2) and also (2, 0), µ(x) = x2 + ϕ2, rotation

B(0,2)(ϕ) = B(2,0)(ϕ) =
[

0 ϕ

−ϕ 0

]
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• (1, 1), µ(x) = x2 − β2, boost

B(1,1) =
[
0 −β

β 0

]

• (1, 2) and also (2, 1), µ(x) = x3, null rotation

B(1,2) = B(2,1) =

0 −1 0
1 0 −1
0 1 0





60

But there are also new ones:

• (2, 2)



60

But there are also new ones:

• (2, 2), µ(x) = x2



60

But there are also new ones:

• (2, 2), µ(x) = x2, “rotation” in a totally null plane



60

But there are also new ones:

• (2, 2), µ(x) = x2, “rotation” in a totally null plane

B
(2,2)
±



60

But there are also new ones:

• (2, 2), µ(x) = x2, “rotation” in a totally null plane

B
(2,2)
± =


0 ∓1 1 0
±1 0 0 ∓1
−1 0 0 1
0 ±1 −1 0
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• (2, 2), µ(x) = (x2−β2)2, deformation of B
(2,2)
± by a (anti)selfdual

boost

B
(2,2)
± (β > 0) =


0 ∓1 1 −β

±1 0 ±β ∓1
−1 ∓β 0 1
β ±1 −1 0



The associated discrete quotient of AdS3 yields the extremal

BTZ black hole; the non-extremal black hole is obtained from

B(1,1)(β1)⊕B(1,1)(β2), for |β1| 6= |β2|
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• (2, 2), µ(x) = (x2 + ϕ2)2, deformation of B
(2,2)
± by a (anti)self-

dual rotation

B
(2,2)
± (ϕ) =


0 ∓1± ϕ 1 0

±1∓ ϕ 0 0 ∓1
−1 0 0 1 + ϕ

0 ±1 −1− ϕ 0
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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2, self-dual boost + antiself-

dual rotation
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• (2, 2), µ(x) = (x2 +β2 +ϕ2)− 4β2x2, self-dual boost + antiself-

dual rotation

B
(2,2)
± (β > 0, ϕ > 0) =


0 ±ϕ 0 −β

∓ϕ 0 ±β 0
0 ∓β 0 −ϕ

β 0 ϕ 0
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• (2, 3), µ(x) = x5, deformation of B
(2,2)
+ by a null rotation in a

perpendicular direction

B(2,3) =


0 1 −1 0 −1
−1 0 0 1 0
1 0 0 −1 0
0 −1 1 0 −1
1 0 0 1 0
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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0
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• (2, 4), µ(x) = (x2 + ϕ2)3, double null rotation + simultaneous

rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0



• and that’s all!
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Causal properties

• Killing vectors on AdS1+p×Sq decompose

ξ = ξA + ξS

whose norms add

‖ξ‖2 = ‖ξA‖2 + ‖ξS‖2
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• Sq is compact =⇒

R2M2 ≥ ‖ξS‖2 ≥ R2m2

and if q is odd, m2 can be > 0

• ξ can be everywhere spacelike on AdS1+p×S2k+1, even if ξA is

not spacelike everywhere, provided that ‖ξA‖2 is bounded below

and ξS has no zeroes

• it is convenient to distinguish Killing vectors according to norm
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• everywhere non-negative norm:

? ⊕iB
(0,2)(ϕi)

? B(1,1)(β1)⊕B(1,1)(β2)⊕i B(0,2)(ϕi), if |β1| = |β2|
? B(1,2) ⊕i B(0,2)(ϕi)
? B(1,2) ⊕B(1,2) ⊕i B(0,2)(ϕi)
? B

(2,2)
± ⊕i B(0,2)(ϕi)

• norm bounded below:

? B(2,0)(ϕ)⊕i B(0,2)(ϕi), if p is even and |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), if |ϕi| ≥ |ϕ| ≥ 0 for all i

• arbitrarily negative norm: the rest!
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(2,2)
± (β)⊕i B(0,2)(ϕi)

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), unless |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (β, ϕ)⊕i B(0,2)(ϕi)

? B(2,3) ⊕i B(0,2)(ϕi)
? B

(2,4)
± (ϕ)⊕i B(0,2)(ϕi)

Some of these give rise to higher-dimensional BTZ-like black

holes: quotient only a part of AdS and check that the boundary

thus introduced lies behind a horizon.
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Discrete quotients with CTCs

• ξ = ξA + ξS a Killing vector in AdS1+p×S2k+1, with ‖ξ‖2 > 0
but ‖ξA‖ not everywhere spacelike

• the corresponding one-parameter subgroup Γ ∼= R

• pick L > 0 and consider the cyclic subgroup ΓL
∼= Z generated

by

γ = exp(LX)
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• the “orbifold” of AdS1+p×S2k+1 by ΓL contains CTCs

• idea of the proof: find a timelike curve which connects a point x

to its image γNx for N � 1

• e.g., a Z-quotient of a lorentzian cylinder
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? therefore ‖ċS‖ ≤ D/NL
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? therefore ‖ċS‖ ≤ D/NL, and
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• the same argument applies to any Freund–Rubin background

M ×N , where M is lorentzian admitting such isometries and N

is complete:

? N is Einstein with positive cosmological constant and Einstein

? Bonnet-Myers Theorem =⇒ N is compact =⇒ has bounded

diameter

• geometrical CTCs are also natural in certain kinds of

supersymmetric Freund–Rubin backgrounds M × N , where M

is lorentzian Einstein–Sasaki: timelike circle bundles over Kähler

manifolds
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• 3
4-BPS AdS4×CP3 background of IIA

[Duff–Lü–Pope, hep-th/9704186]

• 9
16-BPS IIA backgrounds: reductions of AdS4×S7 by

B
(2,2)
+ ⊕ ϕ(R12 + R34 + R56 −R78)
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by

B(1,1)(β)⊕B(1,1)(β)⊕B(0,2)(ϕ)⊕B(0,2)(−ϕ)

Both these half-BPS quotients are of the form S4 × (AdS7 /Γ)

• a number of maximally supersymmetric reductions of AdS3×S3:

near-horizon geometries of the supersymmetric rotating black

holes, including over-rotating cases
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• reductions which break no supersymmetry are rare: this is

intimately linked to the fact that AdS3×S3 is a lorentzian Lie

group, and the Killing vectors are left-invariant

[Chamseddine–FO–Sabra, hep-th/0306278]
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Thank you.


