Quotienting string backgrounds

José Figueroa-O'Farrill Edinburgh Mathematical Physics Group School of Mathematics

Supercordas do Noroeste, Oviedo, 4–6 February 2004

1

• JHEP 12 (2001) 011, hep-th/0110170

• JHEP 12 (2001) 011, hep-th/0110170

• Adv. Theor. Math. Phys. 6 (2003) 703–793, hep-th/0208107

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703–793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206

and on work in progress with Joan Simón

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206

and on work in progress with Joan Simón, Hannu Rajaniemi (Edinburgh)

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206

and on work in progress with Joan Simón, Hannu Rajaniemi (Edinburgh), Owen Madden and Simon Ross (Durham).

• fluxbrane backgrounds in type II string theory

- fluxbrane backgrounds in type II string theory
- string theory in
 - * time-dependent backgrounds

• fluxbrane backgrounds in type II string theory

• string theory in

 \star time-dependent backgrounds, and

* causally singular backgrounds

• fluxbrane backgrounds in type II string theory

• string theory in

* time-dependent backgrounds, and

causally singular backgrounds

supersymmetric Clifford–Klein space form problem

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

• dilatonic version in supergravity

[Gibbons–Maeda (1988)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

• $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

• $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$, or $\mathbb{R}^{1,10}/\Gamma$

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]
- $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$, or $\mathbb{R}^{1,10}/\Gamma \implies$ IIA fluxbranes

• (M, g, F, ...) a supergravity background

- (M, g, F, ...) a supergravity background
- symmetry group *G*

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...
- determine all quotient supergravity backgrounds M/Γ

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ***** spin structure

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry,...

One-parameter subgroups

One-parameter subgroups

5
- (M, g, F, ...)
- symmetries

- (M, g, F, \ldots)
- symmetries

 $f:M\xrightarrow{\cong} M$

- (M, g, F, \ldots)
- symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g$$

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g \qquad f^*F = F$$

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G

• (M, g, F, ...)

symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• (M, g, F, ...)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

• (M, g, F, ...)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \}$

$$\mathcal{L}_{\xi_X}g = 0$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \ \Gamma \cong S^1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

★ $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ ★ $\Gamma \cong \mathbb{R}$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

• we are interested in the orbit space M/Γ

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong \mathbb{R}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

 $\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

 $\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

$$\star$$
 Kaluza–Klein reduction by Γ/Γ_L

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z} \cong S^1$

• we may stop after the first step

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - $\star M$ static, but M/Γ_L time-dependent

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
 - \star M supersymmetric, but M/Γ_L breaking all supersymmetry

• (M, g, F, ...) with symmetry group G

• (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \overline{\exp(tX) \mid t \in \mathbb{R}} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

• if $X' = gXg^{-1}$, then $\Gamma' = g\Gamma g^{-1}$

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ generate one-parameter subgroups

 $\overline{\Gamma} = \{ \exp(tX) \mid t \in \mathbb{R} \} \qquad \Gamma' = \{ \exp(tX') \mid t \in \mathbb{R} \}$

• if $X' = \lambda X$, $\lambda \neq 0$, then $\Gamma' = \Gamma$

• if $X' = gXg^{-1}$, then $\Gamma' = g\Gamma g^{-1}$, and moreover $M/\Gamma \cong M/\Gamma'$

• enough to classify normal forms of $X \in \mathfrak{g}$ under

$$X \sim \lambda g X g^{-1} \qquad g \in G \quad \lambda \in \mathbb{R}^{\times}$$

• enough to classify normal forms of $X \in \mathfrak{g}$ under

$$X \sim \lambda g X g^{-1} \qquad g \in G \quad \lambda \in \mathbb{R}^{\times}$$

i.e., projectivised adjoint orbits of ${\mathfrak g}$

• (M, g): lorentzian spin 11-dimensional connected manifold

- (M, g): lorentzian spin 11-dimensional connected manifold
- F a closed 4-form

- (M, g): lorentzian spin 11-dimensional connected manifold
- F a closed 4-form
- (M, g, F) is supersymmetric

- (M,g): lorentzian spin 11-dimensional connected manifold
- F a closed 4-form
- (M, g, F) is supersymmetric \iff admits nonzero Killing spinors

- (M, g): lorentzian spin 11-dimensional connected manifold
- F a closed 4-form
- (M, g, F) is supersymmetric \iff admits nonzero Killing spinors, parallel with respect to

$$D_X = \nabla_X + \frac{1}{6}\iota_X F - \frac{1}{12}X^{\flat} \wedge F$$

dim {Killing spinors} = 32ν

dim {Killing spinors} = 32ν

e.g.,

 $\star \nu = 1$ backgrounds

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin
 - * Kowalski-Glikman wave

dim {Killing spinors} = 32ν

e.g.,

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin
 - * Kowalski-Glikman wave

* $\nu = \frac{1}{2}$ backgrounds

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin
 - * Kowalski-Glikman wave
- $\star \nu = \frac{1}{2}$ backgrounds
 - \ast M2 and M5 branes

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin
 - * Kowalski-Glikman wave
- $\star \nu = \frac{1}{2}$ backgrounds
 - \ast M2 and M5 branes
 - * Kaluza–Klein monopole

dim {Killing spinors} = 32ν

- $\star \nu = 1$ backgrounds
 - * Minkowski
 - * Freund–Rubin
 - * Kowalski-Glikman wave
- $\star \nu = \frac{1}{2}$ backgrounds
 - \ast M2 and M5 branes
 - * Kaluza-Klein monopole
 - * M-wave

•
$$(\mathbb{R}^{1,10}, F = 0)$$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1,10) \ltimes \mathbb{R}^{1,10}$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1, 10) \ltimes \mathbb{R}^{1,10} \subset GL(12, \mathbb{R})$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1,10) \ltimes \mathbb{R}^{1,10} \subset GL(12,\mathbb{R})$: $\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1, 10) \ltimes \mathbb{R}^{1,10} \subset GL(12, \mathbb{R})$: $\begin{pmatrix} A & \mathbf{v} \\ \mathbf{0} & 1 \end{pmatrix} \qquad A \in O(1, 10)$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1, 10) \ltimes \mathbb{R}^{1,10} \subset GL(12, \mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1, 10) \qquad \boldsymbol{v} \in \mathbb{R}^{1,10}$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1,10) \ltimes \mathbb{R}^{1,10} \subset GL(12,\mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1,10) \qquad \boldsymbol{v} \in \mathbb{R}^{1,10}$

• $\Gamma \subset \mathcal{O}(1, 10) \ltimes \mathbb{R}^{1, 10}$

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1, 10) \ltimes \mathbb{R}^{1,10} \subset GL(12, \mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1, 10) \qquad \boldsymbol{v} \in \mathbb{R}^{1,10}$

• $\Gamma \subset O(1, 10) \ltimes \mathbb{R}^{1, 10}$, generated by

 $\overline{X} = \overline{X_L} + \overline{X_T} \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$
Minkowski vacuum

• $(\mathbb{R}^{1,10}, F = 0)$ has symmetry $O(1, 10) \ltimes \mathbb{R}^{1,10} \subset GL(12, \mathbb{R})$: $\begin{pmatrix} A & \boldsymbol{v} \\ \boldsymbol{0} & 1 \end{pmatrix} \qquad A \in O(1, 10) \qquad \boldsymbol{v} \in \mathbb{R}^{1,10}$

• $\Gamma \subset O(1, 10) \ltimes \mathbb{R}^{1, 10}$, generated by

 $X = X_L + X_T \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10} ,$

which we need to put in normal form

 $\bullet \ X \ \in \ \mathfrak{so}(p,q)$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear

• $X \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_i X_i$

- $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, \rangle$ of signature (p,q)
- $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

• $X \in \mathfrak{so}(p,q) \iff \overline{X} : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

$$\mathbb{R}^{p+q} = \bigoplus_i \mathbb{V}_i$$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_{i} \qquad \text{with } \mathbb{V}_{i} \text{ indecomposable}$

for each indecomposable block

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \quad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$, λ^*

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• for each indecomposable block, if λ is an eigenvalue, then so are $-\lambda$, λ^* , and $-\lambda^*$

 \star $\lambda = 0$

$$\star \ \lambda = 0 \qquad \qquad \mu(x) = x^r$$

$$\begin{array}{l} \star \ \lambda = 0 \\ \star \ \lambda = \beta \in \mathbb{R} \end{array} \qquad \qquad \mu(x) = x^n \\ \end{array}$$

 $\begin{array}{l} \star \ \lambda = 0 & \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, & \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \ \lambda = i\varphi \in i\mathbb{R}$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \; \lambda = i arphi \in i \mathbb{R}$,

 $\mu(x) = (x^2 + \varphi^2)^n$

 $\begin{array}{ll} \star \ \lambda = 0 & \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, & \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \; \lambda = i arphi \in i \mathbb{R}$,

$$\mu(x) = (x^2 + \varphi^2)^n$$

 $\star \ \lambda = \beta + i \varphi$

 $\begin{array}{l} \star \ \lambda = 0 \qquad \qquad \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, \qquad \qquad \mu(x) = (x^2 - \beta^2)^n \end{array}$

 $\star \lambda = \beta + i \varphi$, $\beta \varphi \neq 0$

 $\begin{array}{ll} \star \ \lambda = 0 & \mu(x) = x^n \\ \star \ \lambda = \beta \in \mathbb{R}, & \mu(x) = (x^2 - \beta^2)^n \end{array}$

*
$$\lambda = \beta + i\varphi, \ \beta\varphi \neq 0,$$

$$\mu(x) = \left(\left(x^2 + \beta^2 + \varphi^2 \right)^2 - 4\beta^2 x^2 \right)^n$$

• for each $\mu(x)$

• for each $\mu(x)$, write down X in (real) Jordan form

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form
- keep only those blocks with appropriate signature

- for each $\mu(x)$, write down X in (real) Jordan form
- determine metric making X skew-symmetric, using automorphism of Jordan form if necessary to bring the metric to standard form
- keep only those blocks with appropriate signature
- example: $\mu(x) = x^3$

Signature Minimal polynomial Type

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
Signature	Minimal polynomial	Туре
-----------	--------------------	---------
(0,1)	x	trivial
(0,2)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial
(1, 1)		

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1, 1)	$x^2 - \beta^2$	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1, 0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1,2)	•	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1,2)	x^3	

Signature	Minimal polynomial	Туре
(0,1)	x	trivial
(0,2)	$x^2 + \varphi^2$	rotation
(1,0)	x	trivial
(1,1)	$x^2 - \beta^2$	boost
(1,2)	x^3	null rotation

• $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) + R_{9\natural}(\varphi_5)$

In signature (1, 10):

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) + R_{9\natural}(\varphi_5)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) + R_{9\natural}(\varphi_5)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) + R_{9\natural}(\varphi_5)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$

where $\beta > 0$

- $R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) + R_{9\natural}(\varphi_5)$
- $B_{02}(\beta) + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$
- $N_{+2} + R_{34}(\varphi_1) + R_{56}(\varphi_2) + R_{78}(\varphi_3) + R_{9\natural}(\varphi_4)$

where $\beta > 0$, $\varphi_1 \ge \varphi_2 \ge \cdots \ge \varphi_{k-1} \ge \varphi_k \ge 0$

• $\lambda + \tau \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$

- $\lambda + \tau \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$
- conjugate by O(1, 10) to bring λ to normal form

- $\lambda + \tau \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$
- conjugate by O(1, 10) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,10}$

- $\lambda + \tau \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$
- conjugate by O(1, 10) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,10}$:

$$\lambda + \tau \mapsto \lambda + \tau - [\lambda, \tau']$$

- $\lambda + \tau \in \mathfrak{so}(1, 10) \oplus \mathbb{R}^{1, 10}$
- conjugate by O(1, 10) to bring λ to normal form
- conjugate by $\mathbb{R}^{1,10}$:

$$\lambda + \tau \mapsto \lambda + \tau - [\lambda, \tau']$$

to get rid of component of τ in the image of $[\lambda, -]$

• the subgroups with everywhere spacelike orbits

 $\star \partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

- the subgroups with everywhere spacelike orbits are generated by either
 - * $\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$; or * $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

* $\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$; or * $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \geq \varphi_2 \geq \varphi_3 \geq \varphi_4 \geq 0$

• both are $\cong \mathbb{R}$

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

- both are $\cong \mathbb{R}$
- the former gives rise to fluxbranes

*
$$\partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$$
; or
* $\partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$,

where $\varphi_1 \ge \varphi_2 \ge \varphi_3 \ge \varphi_4 \ge 0$

- both are $\cong \mathbb{R}$
- the former gives rise to fluxbranes and the latter to nullbranes

Adapted coordinates

Adapted coordinates

• start with metric in flat coordinates y, z

Adapted coordinates

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$
• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda = U \,\partial_z \, U^{-1}$$

• start with metric in flat coordinates y, z

$$ds^2 = 2|d\boldsymbol{y}|^2 + dz^2$$

$$\xi = \partial_z + \lambda = U \, \partial_z \, U^{-1}$$
 with $U = \exp(-z\lambda)$

 $\boldsymbol{x} = U \, \boldsymbol{y}$

$$\boldsymbol{x} = U \boldsymbol{y} = \exp(-zB)\boldsymbol{y}$$

$$oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$$
 where $\lambda oldsymbol{y} = Boldsymbol{y}$

 $\boldsymbol{x} = U \, \boldsymbol{y} = \exp(-zB) \boldsymbol{y}$ where $\lambda \boldsymbol{y} = B \boldsymbol{y}$

whence $\xi x = 0$

 $\boldsymbol{x} = U \, \boldsymbol{y} = \exp(-zB) \boldsymbol{y}$ where $\lambda \boldsymbol{y} = B \boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of \boldsymbol{x}

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of *x*:

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

 $\boldsymbol{x} = U \, \boldsymbol{y} = \exp(-zB) \boldsymbol{y}$ where $\lambda \boldsymbol{y} = B \boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of \boldsymbol{x} :

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

where

 $\star \Lambda = 1 + |B\boldsymbol{x}|^2$

 $oldsymbol{x} = U oldsymbol{y} = \exp(-zB)oldsymbol{y}$ where $\lambda oldsymbol{y} = Boldsymbol{y}$

whence $\xi x = 0$

• rewrite the metric in terms of *x*:

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

where

 $\star \Lambda = 1 + |B\boldsymbol{x}|^2$ $\star A = \Lambda^{-1} B\boldsymbol{x} \cdot d\boldsymbol{x}$

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields

 \star dilaton

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields

* dilaton: $\Phi = \frac{3}{4}\log(1+|B\boldsymbol{x}|^2)$

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields * dilaton: $\Phi = \frac{3}{4} \log(1 + |Bx|^2)$ * RR 1-form potential

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields \star dilaton: $\Phi = \frac{3}{4} \log(1 + |B\boldsymbol{x}|^2)$

★ RR 1-form potential:

$$A = \frac{B\boldsymbol{x} \cdot d\boldsymbol{x}}{1 + |B\boldsymbol{x}|^2}$$

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields * dilaton: $\Phi = \frac{3}{4} \log(1 + |Bx|^2)$ * RR 1-form potential:

$$A = \frac{B\boldsymbol{x} \cdot d\boldsymbol{x}}{1 + |B\boldsymbol{x}|^2}$$

***** string frame metric

$$ds^{2} = e^{4\Phi/3}(dz + A)^{2} + e^{-2\Phi/3}h$$

we read off the IIA fields * dilaton: $\Phi = \frac{3}{4} \log(1 + |Bx|^2)$ * RR 1-form potential:

$$A = \frac{B\boldsymbol{x} \cdot d\boldsymbol{x}}{1 + |B\boldsymbol{x}|^2}$$

***** string frame metric:

$$h = \Lambda^{1/2} |d\boldsymbol{x}|^2 - \Lambda^{-1/2} (B\boldsymbol{x} \cdot d\boldsymbol{x})^2$$

$$B = \begin{pmatrix} 0 & -\varphi_1 & & & 0 & u \\ \varphi_1 & 0 & & & 0 & 0 \\ & & 0 & -\varphi_2 & & & & \\ & & & \varphi_2 & 0 & & & & \\ & & & & 0 & -\varphi_3 & & & \\ & & & & & & \varphi_3 & 0 & & \\ & & & & & & & \varphi_4 & 0 & \\ & & & & & & & & \varphi_4 & 0 & \\ & & & & & & & & & \varphi_4 & 0 & \\ & & & & & & & & & & & \end{pmatrix}$$

where

where either

 $\star u = 0$

where either

 $\star u = 0$ (generalised fluxbranes)

where either

★ u = 0 (generalised fluxbranes); or ★ u = 1 and $\varphi_1 = 0$

where either

* u = 0 (generalised fluxbranes); or * u = 1 and $\varphi_1 = 0$ (generalised nullbranes)

e.g.,

$$\star$$
 $u=0$, $arphi_2=arphi_3=arphi_4=0$

$\star u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies \text{flux-sevenbrane}$ [Costa-Gutperle, hep-th/0012072]

e.g., $\star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies \text{flux-sevenbrane}$ [Costa-Gutperle, hep-th/0012072] $\star \ u = 0$

e.g.,

* u = 0, $\varphi_2 = \varphi_3 = \varphi_4 = 0 \implies \text{flux-sevenbrane}$ [Costa-Gutperle, hep-th/0012072]

 \star u=0, $arphi_1=arphi_2$

* u = 0, $\varphi_2 = \varphi_3 = \varphi_4 = 0 \implies$ flux-sevenbrane [Costa-Gutperle, hep-th/0012072] * u = 0, $\varphi_1 = \varphi_2$, $\varphi_3 = \varphi_4 = 0 \implies$ half-BPS flux-fivebrane [Gutperle-Strominger, hep-th/0104136]
$\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\rm flux-sevenbrane} \\ & \ \ \left[{\rm Costa-Gutperle, \ hep-th/0012072} \right] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\rm half-BPS \ flux-fivebrane} \\ & \ \ \left[{\rm Gutperle-Strominger, \ hep-th/0104136} \right] \\ \star \ u = 0 \end{array}$

$$\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ & [{\sf Costa-Gutperle, \, hep-th/0012072}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ & [{\sf Gutperle-Strominger, \, hep-th/0104136}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3 \end{array}$$

 $\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm flux-sevenbrane} \\ & \ \ \left[{\rm Costa-Gutperle, \; hep-th/0012072} \right] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm half-BPS \; flux-fivebrane} \\ & \ \ \left[{\rm Gutperle-Strominger, \; hep-th/0104136} \right] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3, \; \varphi_4 = 0 \end{array}$

 $\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm flux-sevenbrane} \\ & \ \ \left[{\rm Costa-Gutperle, \; hep-th/0012072} \right] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm half-BPS \; flux-fivebrane} \\ & \ \ \left[{\rm Gutperle-Strominger, \; hep-th/0104136} \right] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3, \; \varphi_4 = 0 \; \Longrightarrow \; \frac{1}{4} \text{-BPS \; flux-threebrane} \end{array}$

$$\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\rm flux-sevenbrane} \\ [{\rm Costa-Gutperle, \; hep-th/0012072}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \implies {\rm half-BPS \; flux-fivebrane} \\ [{\rm Gutperle-Strominger, \; hep-th/0104136}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3, \; \varphi_4 = 0 \implies \frac{1}{4} \text{-BPS \; flux-threebrane} \\ \star \; u = 0 \end{array}$$

 $\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm flux-sevenbrane} \\ & [{\rm Costa-Gutperle, \; hep-th/0012072}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \; \Longrightarrow \; {\rm half-BPS \; flux-fivebrane} \\ & [{\rm Gutperle-Strominger, \; hep-th/0104136}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3, \; \varphi_4 = 0 \; \Longrightarrow \; \frac{1}{4} \text{-BPS \; flux-threebrane} \\ \star \; u = 0, \; \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \end{array}$

 $\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} {\sf -BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} {\sf -BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \end{array}$

e.g.,

$$\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} \cdot {\sf BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \cdot {\sf BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0 \end{array}$$

$$\begin{array}{l} \star \; u = 0, \; \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\rm flux-sevenbrane} \\ [{\rm Costa-Gutperle, \; hep-th/0012072}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2, \; \varphi_3 = \varphi_4 = 0 \implies {\rm half-BPS \; flux-fivebrane} \\ [{\rm Gutperle-Strominger, \; hep-th/0104136}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 + \varphi_3, \; \varphi_4 = 0 \implies \frac{1}{4} \cdot {\rm BPS \; flux-threebrane} \\ \star \; u = 0, \; \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \cdot {\rm BPS \; flux-string} \\ [{\rm Uranga, \; hep-th/0108196}] \\ \star \; u = 0, \; \varphi_1 = \varphi_2 \end{array}$$

$$\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} - {\sf BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} - {\sf BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \end{array}$$

$$u=0$$
, $arphi_1=arphi_2$, $arphi_3=arphi_4$

 $\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} \text{-BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \text{-BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \implies \frac{1}{4} \text{-BPS \ flux-string} \end{array}$

 $\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} \text{-BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \text{-BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \implies \frac{1}{4} \text{-BPS \ flux-string} \\ [{\sf Wanga, \ hep-th/0108196}] \\ \star \ u = 1 \end{array}$

 $\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} \text{-BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \text{-BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \implies \frac{1}{4} \text{-BPS \ flux-string} \\ [{\sf Wranga, \ hep-th/0108196}] \\ \star \ u = 1, \ \varphi_i = 0 \end{array}$

 $\begin{array}{l} \star \ u = 0, \ \varphi_2 = \varphi_3 = \varphi_4 = 0 \implies {\sf flux-sevenbrane} \\ [{\sf Costa-Gutperle, \ hep-th/0012072}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \implies {\sf half-BPS \ flux-fivebrane} \\ [{\sf Gutperle-Strominger, \ hep-th/0104136}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2 + \varphi_3, \ \varphi_4 = 0 \implies \frac{1}{4} \cdot {\sf BPS \ flux-threebrane} \\ \star \ u = 0, \ \varphi_1 - \varphi_2 = \varphi_3 \pm \varphi_4 \implies \frac{1}{8} \cdot {\sf BPS \ flux-string} \\ [{\sf Uranga, \ hep-th/0108196}] \\ \star \ u = 0, \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \implies \frac{1}{4} \cdot {\sf BPS \ flux-string} \\ [{\sf Wranga, \ hep-th/0108196}] \\ \star \ u = 1, \ \varphi_i = 0 \implies {\sf half-BPS \ nullbrane} \end{array}$

• start with the metric in adapted coordinates

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

• start with the metric in adapted coordinates

$$ds^2 = \Lambda (dz + A)^2 + |d\boldsymbol{x}|^2 - \Lambda A^2$$

and identify $z \sim z + L$

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane:

* time-dependent

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane:

- ★ time-dependent
- ★ smooth

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane:

- * time-dependent
- ★ smooth
- \star stable

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane:

- ★ time-dependent
- ★ smooth
- ★ stable
- * smooth transition between Big Crunch and Big Bang

• start with the metric in adapted coordinates

$$ds^{2} = \Lambda (dz + A)^{2} + |d\boldsymbol{x}|^{2} - \Lambda A^{2}$$

and identify $z \sim z + L$; e.g., u = 1, $\varphi_i = 0$ in B \implies half-BPS eleven-dimensional nullbrane:

- ★ time-dependent
- ★ smooth
- ★ stable
- * smooth transition between Big Crunch and Big Bang
- ★ resolution of parabolic orbifold

[Horowitz–Steif (1991)]

End of first lecture

• (M, g, F, ...) a supersymmetric background

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ How much supersymmetry will the quotient M/Γ preserve?

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon$$

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$
Supersymmetry

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

In string/M-theory

Supersymmetry

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

In string/M-theory this cannot be the end of the story.

 T-duality relates backgrounds with different amount of "supergravitational supersymmetry"

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example:

 $\operatorname{AdS}_5 \times S^5$

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example:

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example:

- T-duality relates backgrounds with different amount of "supergravitational supersymmetry"
- dramatic example:

 \mathbb{CP}^2 is not even spin! [Duff-Lü-Pope, hep-th/9704186,9803061]

• (M,g) spin, Γ a one-parameter subgroup of isometries

• (M,g) spin, Γ a one-parameter subgroup of isometries ls M/Γ spin?

• (M,g) spin, Γ a one-parameter subgroup of isometries $\label{eq:main} {\rm Is} \ M/\Gamma \ {\rm spin}?$

• if $\Gamma \cong \mathbb{R}$

(M,g) spin, Γ a one-parameter subgroup of isometries
 Is M/Γ spin?

 if Γ ≅ ℝ, then M/Γ is always spin

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$
- \mathcal{L}_{ξ} has integral weights on tensors

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$
- \mathcal{L}_{ξ} has integral weights on tensors , e.g.,

$$\mathcal{L}_{\xi}T$$

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$
- \mathcal{L}_{ξ} has integral weights on tensors , e.g.,

$$\mathcal{L}_{\xi}T = inT$$

• (M,g) spin, Γ a one-parameter subgroup of isometries

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$
- \mathcal{L}_{ξ} has integral weights on tensors , e.g.,

$$\mathcal{L}_{\xi}T = inT$$
 for $n \in \mathbb{Z}$

• (M,g) spin, Γ a one-parameter subgroup of isometries

Is M/Γ spin?

- if $\Gamma \cong \mathbb{R}$, then M/Γ is always spin
- so let $\Gamma \cong S^1$ with (normalised) Killing vector $\xi = \xi_X$
- \mathcal{L}_{ξ} has integral weights on tensors , e.g.,

$$\mathcal{L}_{\xi}T = inT$$
 for $n \in \mathbb{Z}$

so that $\exp(2\pi X)$ does act like 1 on tensors

• ξ also acts on spinors via \mathcal{L}_{ξ}

• ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - $\star \mathcal{L}_{\xi}$ integrates to an action of Γ

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - $\star \mathcal{L}_{\xi}$ integrates to an action of Γ : weights are again integral

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - * \mathcal{L}_{ξ} integrates to an action of Γ : weights are again integral; or * \mathcal{L}_{ξ} integrates to an action of a double cover $\widehat{\Gamma}$

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi}\varepsilon = i(n + \frac{1}{2})\varepsilon$$

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi} \varepsilon = i(n + \frac{1}{2})\varepsilon$$

• if Γ acts on spinors

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi}\varepsilon = i(n + \frac{1}{2})\varepsilon$$

• if Γ acts on spinors, M/Γ is spin

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi} \varepsilon = i(n + \frac{1}{2})\varepsilon$$

• if Γ acts on spinors, M/Γ is spin;

• if only $\widehat{\Gamma}$ does

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi}\varepsilon = i(n + \frac{1}{2})\varepsilon$$

- if Γ acts on spinors, M/Γ is spin;
- if only $\widehat{\Gamma}$ does, M/Γ is not spin

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi}\varepsilon = i(n + \frac{1}{2})\varepsilon$$

- if Γ acts on spinors, M/Γ is spin;
- if only $\widehat{\Gamma}$ does, M/Γ is not spin, but spin^c

- ξ also acts on spinors via \mathcal{L}_{ξ} ; but two things may happen:
 - ★ L_ξ integrates to an action of Γ: weights are again integral; or
 ★ L_ξ integrates to an action of a double cover Γ: weights are now half-integral:

$$\mathcal{L}_{\xi}\varepsilon = i(n + \frac{1}{2})\varepsilon$$

- if Γ acts on spinors, M/Γ is spin;
- if only $\widehat{\Gamma}$ does, M/Γ is not spin, but spin^c
- it suffices to check this on Killing spinors

• e.g., the Hopf fibration $S^5 o \mathbb{CP}^2$
$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

 (z_1, z_2, z_3)

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$(z_1, z_2, z_3) \mapsto (e^{it}z_1, e^{it}z_2, e^{it}z_3)$$

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$(z_1, z_2, z_3) \mapsto (e^{it}z_1, e^{it}z_2, e^{it}z_3)$$

• Killing spinors on S^5

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$(z_1, z_2, z_3) \mapsto (e^{it}z_1, e^{it}z_2, e^{it}z_3)$$

• Killing spinors on S^5 are restrictions of parallel spinors on \mathbb{C}^3

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$(z_1, z_2, z_3) \mapsto (e^{it}z_1, e^{it}z_2, e^{it}z_3)$$

• Killing spinors on S^5 are restrictions of parallel spinors on \mathbb{C}^3

• \mathcal{L}_{ξ} acts as

$$\mathcal{L}_{\xi}arepsilon$$

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$
,

and S^1 -action

$$(z_1, z_2, z_3) \mapsto (e^{it}z_1, e^{it}z_2, e^{it}z_3)$$

• Killing spinors on S^5 are restrictions of parallel spinors on \mathbb{C}^3

• \mathcal{L}_{ξ} acts as

$$\mathcal{L}_{\xi}\varepsilon = \frac{1}{2}(\Gamma_{12} + \Gamma_{34} + \Gamma_{56})\varepsilon$$

• $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$

• $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1)

• $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral $\implies \mathbb{CP}^2$ has no spin structure

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral $\implies \mathbb{CP}^2$ has no spin structure
- more generally

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral $\implies \mathbb{CP}^2$ has no spin structure
- more generally, $M \to M/\Gamma$ is a principal circle bundle

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral $\implies \mathbb{CP}^2$ has no spin structure
- more generally, $M \to M/\Gamma$ is a principal circle bundle
- let $L = M imes_{\Gamma} \mathbb{C}$ be the complex line bundle on M/Γ

- $\Gamma_{ij}^2 = -1$: its eigenvalues are $\pm i$, hence weights of \mathcal{L}_{ξ} are $\pm \frac{3}{2}$ (with multiplicity 1) and $\pm \frac{1}{2}$ (with multiplicity 3)
- weights are half-integral $\implies \mathbb{CP}^2$ has no spin structure
- more generally, $M \to M/\Gamma$ is a principal circle bundle
- let $L = M \times_{\Gamma} \mathbb{C}$ be the complex line bundle on M/Γ associated to the representation with charge 1

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S\otimes L^n$ over M/Γ

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S\otimes L^n$ over M/Γ , where $S\to M/\Gamma$ is the bundle of spinors

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S\otimes L^n$ over M/Γ , where $S\to M/\Gamma$ is the bundle of spinors

• a spinor ε on M

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S\otimes L^n$ over M/Γ , where $S\to M/\Gamma$ is the bundle of spinors

• a spinor ε on M such that

$$\mathcal{L}_{\xi}\varepsilon = i(n+1/2)\varepsilon$$

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S \otimes L^n$ over M/Γ , where $S \to M/\Gamma$ is the bundle of spinors

• a spinor ε on M such that

$$\mathcal{L}_{\xi}\varepsilon = i(n+1/2)\varepsilon$$

would define a section of

$$S \otimes L^{n+1/2}$$

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S \otimes L^n$ over M/Γ , where $S \to M/\Gamma$ is the bundle of spinors

• a spinor ε on M such that

$$\mathcal{L}_{\xi}\varepsilon = i(n+1/2)\varepsilon$$

would define a section of

$$S \otimes L^{n+1/2} \cong (S \otimes L^{1/2})$$

 $\mathcal{L}_{\xi}\varepsilon = in\varepsilon$

defines a section of $S \otimes L^n$ over M/Γ , where $S \to M/\Gamma$ is the bundle of spinors

• a spinor ε on M such that

$$\mathcal{L}_{\xi}\varepsilon = i(n+1/2)\varepsilon$$

would define a section of

$$S \otimes L^{n+1/2} \cong (S \otimes L^{1/2}) \otimes L^n$$

• however neither S

35

• however neither S nor $L^{1/2}$ exist as bundles

• however neither S nor $L^{1/2}$ exist as bundles; although $S\otimes L^{1/2}$ does

• however neither S nor $L^{1/2}$ exist as bundles; although $S \otimes L^{1/2}$ does: it is the bundle of spin^c spinors

- however neither S nor $L^{1/2}$ exist as bundles; although $S \otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection

- however neither S nor $L^{1/2}$ exist as bundles; although $S\otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form

- however neither S nor $L^{1/2}$ exist as bundles; although $S \otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form
- sections through L^n carry n units of RR charge

- however neither S nor $L^{1/2}$ exist as bundles; although $S\otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form
- sections through L^n carry n units of RR charge
- spin^c spinors carry fractional RR charge

- however neither S nor $L^{1/2}$ exist as bundles; although $S \otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form
- sections through L^n carry n units of RR charge
- spin^c spinors carry fractional RR charge
- RR charge
- however neither S nor $L^{1/2}$ exist as bundles; although $S\otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form
- sections through L^n carry n units of RR charge
- spin^c spinors carry fractional RR charge
- RR charge \leftrightarrow momentum along the compact direction given by ξ

- however neither S nor $L^{1/2}$ exist as bundles; although $S \otimes L^{1/2}$ does: it is the bundle of spin^c spinors
- L carries a natural connection: the RR 1-form
- sections through L^n carry n units of RR charge
- spin^c spinors carry fractional RR charge
- RR charge \leftrightarrow momentum along the compact direction given by ξ
- RR charged states are T-dual to winding states

• e.g., Killing spinors in $AdS_5 \times S^5$

• e.g., Killing spinors in $AdS_5 \times S^5$ are T-dual to winding states in $AdS_5 \times \mathbb{CP}^2 \times S^1$

• e.g., Killing spinors in $AdS_5 \times S^5$ are T-dual to winding states in $AdS_5 \times \mathbb{CP}^2 \times S^1$, which the supergravity does not see

• e.g., Killing spinors in $AdS_5 \times S^5$ are T-dual to winding states in $AdS_5 \times \mathbb{CP}^2 \times S^1$, which the supergravity does not see, or does it?

[e.g., Hull hep-th/0305039]

• (M, g, F, ...) supersymmetric

• (M, g, F, ...) supersymmetric

• Γ one-parameter group of symmetries

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of M/Γ

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors

• e.g., $(\mathbb{R}^{1,10})$

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors
- e.g., $(\mathbb{R}^{1,10})$: Killing spinors are parallel

- (M, g, F, ...) supersymmetric
- Γ one-parameter group of symmetries, generated by ξ
- Killing spinors of $M/\Gamma \iff \Gamma$ -invariant Killing spinors of M
- it suffices to determine zero weights of \mathcal{L}_{ξ} on Killing spinors
- e.g., $(\mathbb{R}^{1,10})$: Killing spinors are parallel, whence

$$\mathcal{L}_{\xi}\varepsilon = \frac{1}{8}\nabla_a \xi_b \Gamma^{ab}\varepsilon$$

• e.g., fluxbranes

• e.g., fluxbranes

 $\xi = \partial_z + R_{12}(\varphi_1) + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

• e.g., fluxbranes

 $\boldsymbol{\varsigma}$

c)

JU

• for generic φ_i , there are no invariant Killing spinors

 $\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0$

$$\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\star \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\star \varphi_1 = \varphi_2, \quad \varphi_2 = \varphi_4$$

$$\varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \implies \nu = \frac{1}{4}$$

$$\varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \implies \nu = \frac{1}{4}$$

$$\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \end{array}$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \end{array}$$

$$\begin{array}{l} \star \ \varphi_1 - \varphi_2 - \varphi_3 \pm \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 - \varphi_2 - \varphi_3 = 0 = \varphi_4 \Longrightarrow \ \nu = \frac{1}{4} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \Longrightarrow \ \nu = \frac{3}{8} \\ \star \ \varphi_1 = \varphi_2, \ \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \\ \star \ \varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 = 0 \Longrightarrow \ \nu = \frac{1}{2} \end{array}$$

• e.g., nullbranes

 $\xi = \partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4)$

• e.g., nullbranes

• N_{+2} is nilpotent

$$\begin{split} \xi &= \partial_z + N_{+2} + R_{34}(\varphi_2) + R_{56}(\varphi_3) + R_{78}(\varphi_4) \\ \implies \\ \mathcal{L}_{\xi} &= \frac{1}{2}\Gamma_{+2} + \frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78}) \end{split}$$

• N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34}+\varphi_3\Gamma_{56}+\varphi_4\Gamma_{78})$ is semisimple and commutes with it

• N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both

- N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both
- $\ker N_{+2} = \ker \Gamma_+$

- N_{+2} is nilpotent, whereas $\frac{1}{2}(\varphi_2\Gamma_{34} + \varphi_3\Gamma_{56} + \varphi_4\Gamma_{78})$ is semisimple and commutes with it; whence invariant spinors are annihilated by both
- $\ker N_{+2} = \ker \Gamma_+$, and this simply halves the number of supersymmetries

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0$$

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0$$

$$\star \varphi_2 - \varphi_3 - \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{8}$$

$$\star \varphi_2 = \varphi_3, \ \varphi_4 = 0 \Longrightarrow \nu = \frac{1}{4}$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0 \implies \nu = \frac{1}{4}$$

$$\varphi_2 = \varphi_3 = \varphi_4 = 0$$

$$\varphi_2 - \varphi_3 - \varphi_4 = 0 \implies \nu = \frac{1}{8}$$

$$\varphi_2 = \varphi_3, \ \varphi_4 = 0 \implies \nu = \frac{1}{4}$$

$$\varphi_2 = \varphi_3 = \varphi_4 = 0 \implies \nu = \frac{1}{2}$$

• typical electric *p*-brane solution

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p})$$

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p}) + e^{2B(r)} ds^2(\mathbb{R}^{D-1-p})$$

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p}) + e^{2B(r)} ds^2(\mathbb{R}^{D-1-p})$$
$$F_{p+2} = \operatorname{dvol}(\mathbb{R}^{1,p}) \wedge dC(r)$$

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p}) + e^{2B(r)} ds^2(\mathbb{R}^{D-1-p})$$
$$F_{p+2} = \operatorname{dvol}(\mathbb{R}^{1,p}) \wedge dC(r)$$

with r the transverse radius

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p}) + e^{2B(r)} ds^2(\mathbb{R}^{D-1-p})$$
$$F_{p+2} = \operatorname{dvol}(\mathbb{R}^{1,p}) \wedge dC(r)$$

with r the transverse radius

 $ullet A(r), B(r), C(r) \ o \ 0$ as $r \ o \ \infty$

• typical electric *p*-brane solution:

$$g = e^{2A(r)} ds^2(\mathbb{R}^{1,p}) + e^{2B(r)} ds^2(\mathbb{R}^{D-1-p})$$
$$F_{p+2} = \operatorname{dvol}(\mathbb{R}^{1,p}) \wedge dC(r)$$

with r the transverse radius

• $A(r), B(r), C(r) \rightarrow 0$ as $r \rightarrow \infty \implies$ asymptotic to $(\mathbb{R}^{1,D-1}, F = 0)$

 $G = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right)$

 $G = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right) \times \mathrm{O}(D - p - 1)$

 $G = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right) \times \mathrm{O}(D - p - 1) \subset \mathrm{O}(1, D - 1) \ltimes \mathbb{R}^{1, D - 1}$

 $G = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right) \times \mathrm{O}(D - p - 1) \subset \mathrm{O}(1, D - 1) \ltimes \mathbb{R}^{1, D - 1}$

• Killing spinors

 $\overline{G} = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right) \times \mathrm{O}(D - p - 1) \subset \mathrm{O}(1, D - 1) \ltimes \mathbb{R}^{1, D - 1}$

• Killing spinors

$$\varepsilon = e^{D(r)}\varepsilon_{\infty}$$

where ε_{∞} is a Killing spinor of the asymptotic background

 $\overline{G} = \left(\mathrm{SO}(1, p) \ltimes \mathbb{R}^{1, p} \right) \times \mathrm{O}(D - p - 1) \subset \mathrm{O}(1, D - 1) \ltimes \mathbb{R}^{1, D - 1}$

• Killing spinors

$$\varepsilon = e^{D(r)}\varepsilon_{\infty}$$

where ε_∞ is a Killing spinor of the asymptotic background, satisfying

 $\operatorname{dvol}(\mathbb{R}^{1,p}) \cdot \varepsilon_{\infty} = \varepsilon_{\infty}$

$$g = V^{-2/3} ds^2(\mathbb{R}^{1,2}) + V^{1/3} ds^2(\mathbb{R}^8)$$

$$g = V^{-2/3} ds^2(\mathbb{R}^{1,2}) + V^{1/3} ds^2(\mathbb{R}^8)$$
$$F = dvol(\mathbb{R}^{1,2}) \wedge dV^{-1}$$

$$g = V^{-2/3} ds^2(\mathbb{R}^{1,2}) + V^{1/3} ds^2(\mathbb{R}^8)$$
$$F = dvol(\mathbb{R}^{1,2}) \wedge dV^{-1}$$
$$\varepsilon = V^{-1/6} \varepsilon_{\infty}$$

$$g = V^{-2/3} ds^2(\mathbb{R}^{1,2}) + V^{1/3} ds^2(\mathbb{R}^8)$$
$$F = \operatorname{dvol}(\mathbb{R}^{1,2}) \wedge dV^{-1}$$
$$\varepsilon = V^{-1/6} \varepsilon_{\infty}$$

with $V(r) = 1 + Q/r^6$

$$g = V^{-2/3} ds^2 (\mathbb{R}^{1,2}) + V^{1/3} ds^2 (\mathbb{R}^8)$$
$$F = dvol(\mathbb{R}^{1,2}) \wedge dV^{-1}$$
$$\varepsilon = V^{-1/6} \varepsilon_{\infty}$$

with $V(r) = 1 + Q/r^6$, and

 $\operatorname{dvol}(\mathbb{R}^{1,2}) \cdot \varepsilon_{\infty} = \varepsilon_{\infty}$

$$g = V^{-2/3} ds^2 (\mathbb{R}^{1,2}) + V^{1/3} ds^2 (\mathbb{R}^8)$$
$$F = dvol(\mathbb{R}^{1,2}) \wedge dV^{-1}$$
$$\varepsilon = V^{-1/6} \varepsilon_{\infty}$$

with $V(r) = 1 + Q/r^6$, and

 $\operatorname{dvol}(\mathbb{R}^{1,2}) \cdot \varepsilon_{\infty} = \varepsilon_{\infty}$

 \implies the M2-brane is half-BPS

• action of G on Killing spinors also induced from asymptotic limit
$\star \xi$ a Killing vector

- $\star \xi$ a Killing vector
- $\star \varepsilon$ a Killing spinor

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$\mathcal{L}_{\xi}arepsilon$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty}$$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty} = e^{D(r)}\mathcal{L}_{\xi}\varepsilon_{\infty}$$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty} = e^{D(r)}\mathcal{L}_{\xi}\varepsilon_{\infty}$$

whence

 $\mathcal{L}_{\xi}\varepsilon_{\infty} = \varepsilon_{\infty}'$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty} = e^{D(r)}\mathcal{L}_{\xi}\varepsilon_{\infty}$$

whence

$$\mathcal{L}_{\xi}\varepsilon_{\infty} = \varepsilon_{\infty}'$$

(independent of r)

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty} = e^{D(r)}\mathcal{L}_{\xi}\varepsilon_{\infty}$$

whence

$$\mathcal{L}_{\xi}\varepsilon_{\infty} = \varepsilon_{\infty}'$$

(independent of r) \star compute it at $r \to \infty$

* ξ a Killing vector * ε a Killing spinor \implies so is $\mathcal{L}_{\xi}\varepsilon$, whence

$$\mathcal{L}_{\xi}\varepsilon = e^{D(r)}\varepsilon'_{\infty}$$

but also

$$\mathcal{L}_{\xi}\varepsilon = \mathcal{L}_{\xi}e^{D(r)}\varepsilon_{\infty} = e^{D(r)}\mathcal{L}_{\xi}\varepsilon_{\infty}$$

whence

$$\mathcal{L}_{\xi}\varepsilon_{\infty} = \varepsilon_{\infty}'$$

(independent of r) \star compute it at $r \to \infty$ \implies the classification problem reduces to the flat case

 \star G is <u>not</u> the full asymptotic symmetry group

 \star G is <u>not</u> the full asymptotic symmetry group, and \star brane metric is <u>not</u> flat

- \star G is <u>not</u> the full asymptotic symmetry group, and
- \star brane metric is <u>not</u> flat, so causal properties of Killing vectors may differ from $\mathbb{R}^{1,D-1}$

- \star G is <u>not</u> the full asymptotic symmetry group, and
- \star brane metric is <u>not</u> flat, so causal properties of Killing vectors may differ from $\mathbb{R}^{1,D-1}$

• e.g., ξ may be everywhere spacelike in the brane metric

- \star G is <u>not</u> the full asymptotic symmetry group, and
- \star brane metric is <u>not</u> flat, so causal properties of Killing vectors may differ from $\mathbb{R}^{1,D-1}$
- e.g., ξ may be everywhere spacelike in the brane metric, but its asymptotic value may not be everywhere spacelike in the flat metric

• metric

47

• metric:

 $V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $V=1+|Q|/r^6$

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $V=1+|Q|/r^6$

• Killing vector:

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $V=1+|Q|/r^6$

• Killing vector:

$$\xi = \tau_{\parallel}$$

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $V=1+|Q|/r^6$

• Killing vector:

 $\xi = \tau_{\parallel} + \rho_{\parallel}$

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $\overline{V}=1+|Q|/r^6$

• Killing vector:

 $\xi = \tau_{\parallel} + \rho_{\parallel} + \rho_{\perp}$

• metric:

$$V^{-2/3}ds^2(\mathbb{R}^{1,2}) + V^{1/3}ds^2(\mathbb{R}^8)$$

with $V=1+|Q|/r^6$

• Killing vector:

 $\xi = \tau_{\parallel} + \rho_{\parallel} + \rho_{\perp}$

mutually orthogonal

$$\|\xi\|^{2} = V^{-2/3} \left(|\tau|^{2} + |\rho_{\parallel}|^{2} \right) + V^{1/3} |\rho_{\perp}|^{2}$$

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \end{aligned}$$

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \\ &\ge V^{-2/3} |\tau|^2 + V^{1/3} r^2 m^2 \end{aligned}$$

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \\ &\ge V^{-2/3} |\tau|^2 + V^{1/3} r^2 m^2 \end{aligned}$$

where $|
ho_{\perp}|_S^2 \geq m^2$

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \\ &\ge V^{-2/3} |\tau|^2 + V^{1/3} r^2 m^2 \end{aligned}$$

where $|
ho_{\perp}|_S^2 \geq m^2$, which defines

$$f(r) := V(r)^{-2/3} |\tau|^2 + V(r)^{1/3} r^2 m^2$$

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \\ &\ge V^{-2/3} |\tau|^2 + V^{1/3} r^2 m^2 \end{aligned}$$

where $|
ho_{\perp}|_S^2 \geq m^2$, which defines

$$f(r) := V(r)^{-2/3} |\tau|^2 + V(r)^{1/3} r^2 m^2$$

odd-dimensional spheres can be combed

$$\begin{aligned} \|\xi\|^2 &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} |\rho_{\perp}|^2 \\ &= V^{-2/3} \left(|\tau|^2 + |\rho_{\parallel}|^2 \right) + V^{1/3} r^2 |\rho_{\perp}|_S^2 \\ &\ge V^{-2/3} |\tau|^2 + V^{1/3} r^2 m^2 \end{aligned}$$

where $|
ho_{\perp}|_S^2 \geq m^2$, which defines

$$f(r) := V(r)^{-2/3} |\tau|^2 + V(r)^{1/3} r^2 m^2$$

• odd-dimensional spheres can be combed $\implies m^2$ can be > 0

• f(r) has a minimum at $r_0 > 0$

• f(r) has a minimum at $r_0 > 0$, where

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$
$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

 \star if $| au|^2 \geq 0$

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

$$\star$$
 if $| au|^2 \geq 0$, there is no such $r_0 > 0$

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

$$\star$$
 if $|\tau|^2 \geq 0,$ there is no such $r_0 > 0$ \star if $|\tau|^2 < 0$

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

★ if $|\tau|^2 \ge 0$, there is no such $r_0 > 0$ ★ if $|\tau|^2 < 0$, there is

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

★ if $|\tau|^2 \ge 0$, there is no such $r_0 > 0$ ★ if $|\tau|^2 < 0$, there is, and

 $\|\xi\|^2 \ge V(r_0)^{-2/3} |\tau|^2 + V(r_0)^{1/3} r_0^2 m^2$

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

★ if
$$|\tau|^2 \ge 0$$
, there is no such $r_0 > 0$
★ if $|\tau|^2 < 0$, there is, and

$$\|\xi\|^2 \ge V(r_0)^{-2/3} |\tau|^2 + V(r_0)^{1/3} r_0^2 m^2$$

which is > 0

$$V(r_0)r_0^8 = -rac{2|Q|}{m^2}| au|^2$$

★ if
$$|\tau|^2 \ge 0$$
, there is no such $r_0 > 0$
★ if $|\tau|^2 < 0$, there is, and

$$\|\xi\|^2 \ge V(r_0)^{-2/3} |\tau|^2 + V(r_0)^{1/3} r_0^2 m^2$$

which is > 0 provided that

$$|\tau|^2 > -\frac{3}{2}m^2(2|Q|)^{1/3}$$

• such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$

• such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation

- such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation
- moreover they contain closed timelike curves

[Maoz-Simón, hep-th/0310255]

- such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation
- moreover they contain closed timelike curves
 [Maoz–Simón, hep-th/0310255]
- so do the associated discrete quotients

- such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation
- moreover they contain closed timelike curves
 [Maoz–Simón, hep-th/0310255]
- so do the associated discrete quotients
- similar results hold for delocalised branes

- such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation
- moreover they contain closed timelike curves
 [Maoz–Simón, hep-th/0310255]
- so do the associated discrete quotients
- similar results hold for delocalised branes, intersecting branes

- such ξ are not everywhere spacelike in $\mathbb{R}^{1,10}$, so the resulting quotient does not have a straight-forward physical interpretation
- moreover they contain closed timelike curves
 [Maoz–Simón, hep-th/0310255]
- so do the associated discrete quotients
- similar results hold for delocalised branes, intersecting branes,...

End of second lecture

purely geometric backgrounds

purely geometric backgrounds, with product geometry

 $(M^4 imes N^7, g \oplus h)$

purely geometric backgrounds, with product geometry

 $(M^4 imes N^7, g \oplus h)$ and $F \propto \operatorname{dvol}_g$

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• supersymmetry

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

$$abla_a arepsilon = \lambda \Gamma_a arepsilon$$

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

 $\nabla_a \varepsilon = \lambda \Gamma_a \varepsilon$ where $\lambda \in \mathbb{R}^{\times}$

• (M,g) admits geometric Killing spinors

 $\widehat{M} = \mathbb{R}^+ \times M$

 $\widehat{M} = \mathbb{R}^+ imes M$ and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$

admits parallel spinors

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

 $\widehat{M} = \mathbb{R}^+ \times M$ and $\widehat{g} = \overline{dr^2 + 4\lambda^2 r^2}g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)[hep-th/9902066]

• (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

 $AdS_4 \times S^7$

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 \times S^7$$
 and $S^4 \times \mathrm{AdS}_7$,

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4\! imes\!S^7$$
 and $S^4\! imes\!\mathrm{AdS}_7$,

the cones of each factor are flat

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4\! imes\!S^7$$
 and $S^4\! imes\!\mathrm{AdS}_7$,

- the cones of each factor are flat:
- \star cone of S^n is \mathbb{R}^{n+1}

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 imes S^7$$
 and $S^4 imes \mathrm{AdS}_7$,

the cones of each factor are flat:

$$\star$$
 cone of S^n is \mathbb{R}^{n+1}

 \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 imes S^7$$
 and $S^4 imes \mathrm{AdS}_7$,

the cones of each factor are flat:

$$\star$$
 cone of S^n is \mathbb{R}^{n+1}

 \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$

again the problem reduces to one of flat spaces!

• AdS_{1+p} is simply-connected

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p>2, $\pi_1Q_{1+p}\cong\mathbb{Z}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2, $\pi_1 Q_{1+p} \cong \mathbb{Z}$, generated by (topological) CTCs

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For $p>2, \ \pi_1 Q_{1+p}\cong \mathbb{Z}$, generated by (topological) CTCs $x_1(t)+ix_2(t)=re^{it}$

• AdS_{1+p} is simply-connected; it is the universal cover of a quadric $Q_{1+p} \subset \mathbb{R}^{2,p}$, given by

$$-x_1^2 - x_2^2 + x_3^2 + \dots + x_{p+2}^2 = -R^2$$

• For p > 2, $\pi_1 Q_{1+p} \cong \mathbb{Z}$, generated by (topological) CTCs $x_1(t) + ix_2(t) = re^{it}$ with $r^2 = R^2 + x_3^2 + \dots + x_{p+2}^2$

• (orientation-preserving) isometries of Q_{1+p} : $SO(2,p) \subset GL(p+2,\mathbb{R})$

- (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$
- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}

• (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$

• SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p} . Why?

- (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$
- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...

- (orientation-preserving) isometries of Q_{1+p} : SO $(2,p) \subset GL(p+2,\mathbb{R})$
- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - * SO(2, p) has maximal compact subgroup $SO(2) \times SO(p)$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - ★ SO(2, p) has maximal compact subgroup $SO(2) \times SO(p)$ ★ the orbits of SO(2) are the CTCs above

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of ${\rm AdS}_{1+p}$ is an infinite cover $\widetilde{{
 m SO}}(2,p)$

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of AdS_{1+p} is an infinite cover $\widetilde{SO}(2,p)$, a central extension of SO(2,p)

- SO(2, p) is <u>not</u> the (orientation-preserving) isometry group of AdS_{1+p}. Why? Because...
 - \star SO(2, p) has maximal compact subgroup SO(2) \times SO(p)
 - \star the orbits of SO(2) are the CTCs above
 - \star these curves are not closed in AdS_{1+p}
 - \star in AdS_{1+p} , $x_1\partial_2 x_2\partial_1$ does not generate $\mathrm{SO}(2)$ but $\mathbb R$
- the (orientation-preserving) isometry group of AdS_{1+p} is an infinite cover $\widetilde{SO}(2,p)$, a central extension of SO(2,p) by \mathbb{Z}

• the central element is the generator of $\pi_1 Q_{1+p}$

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news

• the central element is the generator of $\pi_1 Q_{1+p}$

• The bad news: $\widetilde{SO}(2,p)$ is <u>not</u> a matrix group

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations
- The good news

- the central element is the generator of $\pi_1 Q_{1+p}$
- The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations
- The good news:
 - \star the Lie algebra of $\widetilde{\mathrm{SO}}(2,p)$ is still $\mathfrak{so}(2,p)$

• the central element is the generator of $\pi_1 Q_{1+p}$

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

• The good news:

- \star the Lie algebra of SO(2,p) is still $\mathfrak{so}(2,p)$; and
- \star adjoint group is again $\mathrm{SO}(2,p)$
• the central element is the generator of $\pi_1 Q_{1+p}$

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- The good news:
 - \star the Lie algebra of SO(2,p) is still $\mathfrak{so}(2,p)$; and
 - \star adjoint group is again SO(2, p)

whence

one-parameter subgroups

• the central element is the generator of $\pi_1 Q_{1+p}$

• The bad news: SO(2, p) is <u>not</u> a matrix group; it has no finitedimensional matrix representations

- The good news:
 - \star the Lie algebra of SO(2,p) is still $\mathfrak{so}(2,p)$; and
 - \star adjoint group is again $\mathrm{SO}(2,p)$

whence

• one-parameter subgroups \leftrightarrow projectivised adjoint orbits of $\mathfrak{so}(2,p)$ under SO(2,p)

We can still use the lorentzian elementary blocks

We can still use the lorentzian elementary blocks:

• (0,2)

We can still use the lorentzian elementary blocks:

• (0,2) and also (2,0)

• (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$

 $B^{(0,2)}(\varphi)$

We play again but with a bigger set! We can still use the lorentzian elementary blocks: • (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$, rotation

 $B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi)$

We play again but with a bigger set! We can still use the lorentzian elementary blocks: • (0,2) and also (2,0), $\mu(x) = x^2 + \varphi^2$, rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

• (1,1)

59

• (1,1),
$$\mu(x) = x^2 - \beta^2$$

• (1,1),
$$\mu(x)=x^2-\beta^2$$
, boost

•
$$(1,1)$$
, $\mu(x)=x^2-eta^2$, boost

 $B^{(1,1)}$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost

$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1)

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$, null rotation

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$, null rotation

 $B^{(1,2)}$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x)=x^3$, null rotation

$$B^{(1,2)} = B^{(2,1)}$$

• (1,1),
$$\mu(x) = x^2 - \beta^2$$
, boost
$$B^{(1,1)} = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2) and also (2,1), $\mu(x) = x^3$, null rotation

$$B^{(1,2)} = B^{(2,1)} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

•
$$(2,2)$$
, $\mu(x) = x^2$

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

 $B_{\pm}^{(2,2)}$

• (2,2), $\mu(x) = x^2$, "rotation" in a totally null plane

$$B_{\pm}^{(2,2)} = \begin{bmatrix} 0 & \mp 1 & 1 & 0 \\ \pm 1 & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 \\ 0 & \pm 1 & -1 & 0 \end{bmatrix}$$

•
$$(2,2)$$
 , $\mu(x)=(x^2\!-\!\beta^2)^2$

• (2, 2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B_{\pm}^{(2,2)}$ by a (anti)selfdual boost

• (2, 2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0)$$

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

• (2,2), $\mu(x) = (x^2 - \beta^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)selfdual boost

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3
$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$, for $|\beta_1| \neq |\beta_2|$

• (2,2),
$$\mu(x) = (x^2 + \varphi^2)^2$$

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

$$B^{(2,2)}_{\pm}(arphi)$$

• (2,2), $\mu(x) = (x^2 + \varphi^2)^2$, deformation of $B^{(2,2)}_{\pm}$ by a (anti)self-dual rotation

$$B_{\pm}^{(2,2)}(\varphi) = \begin{bmatrix} 0 & \mp 1 \pm \varphi & 1 & 0 \\ \pm 1 \mp \varphi & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 + \varphi \\ 0 & \pm 1 & -1 - \varphi & 0 \end{bmatrix}$$

• (2,2),
$$\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$$

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0)$$

• (2,2), $\mu(x) = (x^2 + \beta^2 + \varphi^2) - 4\beta^2 x^2$, self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0) = \begin{bmatrix} 0 & \pm \varphi & 0 & -\beta \\ \mp \varphi & 0 & \pm \beta & 0 \\ 0 & \mp \beta & 0 & -\varphi \\ \beta & 0 & \varphi & 0 \end{bmatrix}$$

•
$$(2,3)$$
, $\mu(x) = x^{\mathrm{s}}$

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

 $B^{(2,3)}$

• (2,3), $\mu(x) = x^5$, deformation of $B^{(2,2)}_+$ by a null rotation in a perpendicular direction

$$B^{(2,3)} = \begin{bmatrix} 0 & 1 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

•
$$(2,4)$$
, $\mu(x) = (x^2 + \varphi^2)^3$

 $B^{(2,4)}_{\pm}(arphi)$

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp \varphi & 0 & 0 & -1 & 0 \\ \pm \varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp\varphi & 0 & 0 & -1 & 0 \\ \pm\varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

• and that's all!

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

whose norms add

 $\|\xi\|^2 = \|\xi_A\|^2 + \|\xi_S\|^2$

$R^2 M^2 \ge \|\xi_S\|^2$

•
$$S^q$$
 is compact \Longrightarrow

 $R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

•
$$S^q$$
 is compact \Longrightarrow

$$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$$

and if q is odd

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $\mathrm{AdS}_{1+p} imes S^{2k+1}$

• S^q is compact \Longrightarrow

$$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere
• S^q is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u>

• S^q is compact \Longrightarrow

$$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u> and ξ_S has no zeroes • S^q is compact \Longrightarrow

 $R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

- ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u> and ξ_S has no zeroes
- it is convenient to distinguish Killing vectors according to norm

everywhere non-negative norm

• everywhere non-negative norm:

 $\star \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
 - $\star \oplus_i B^{(0,2)}(\varphi_i)$ $\star B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$

- $\begin{array}{l} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}), \text{ if } |\beta_{1}| = |\beta_{2}| \end{array}$
- everywhere non-negative norm:

- everywhere non-negative norm:

- everywhere non-negative norm:
 - $\star \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,1)}(eta_1) \oplus B^{(1,1)}(eta_2) \oplus_i B^{(0,2)}(arphi_i)$, if $|eta_1| = |eta_2|$
 - $\star B^{(1,2)} \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,2)} \oplus \overline{B^{(1,2)} \oplus_i B^{(0,2)}}(\varphi_i)$

- everywhere non-negative norm:

• everywhere non-negative norm:

norm bounded below

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(arphi) \oplus_i B^{(0,2)}(arphi_i)$, if p is even

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - $\begin{array}{l} \star \ B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}, \ \overline{\text{if } p \text{ is even and } |\varphi_i| \ge \varphi > 0 \text{ for all } i \\ \star \ B^{(2,2)}_{\pm}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)} \end{array}$

- everywhere non-negative norm:
 - $\begin{array}{l} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}), \text{ if } |\beta_{1}| = |\beta_{2}| \\ \star B^{(1,2)} \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,2)} \oplus B^{(1,2)} \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(2,2)}_{\pm} \oplus_{i} B^{(0,2)}(\varphi_{i}) \end{array}$
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i
- arbitrarily negative norm

- everywhere non-negative norm:
- norm bounded below:
 - $\begin{array}{l} \star \ B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\overline{\varphi_i}), \text{ if } p \text{ is even and } |\varphi_i| \geq \overline{\varphi} > 0 \text{ for all } i \\ \star \ B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ if } |\varphi_i| \geq |\varphi| \geq 0 \text{ for all } i \end{array}$
- arbitrarily negative norm: the rest!

 $\star B^{(1,1)}(eta_1) \oplus B^{(1,1)}(eta_2) \oplus_i B^{(0,2)}(arphi_i)$

 $\star B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$

 $\begin{array}{c} \star \ B^{(1,1)}(\beta_1) \oplus \overline{B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)}, \text{ unless } |\beta_1| = |\beta_2| > 0 \\ \star \ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i

* $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$

 $\begin{array}{c} \star \ B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } p \text{ is even and } |\varphi_i| \geq |\varphi| \text{ for all } i \\ \star \ B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i
- $\star B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i
- $\star B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\overline{\beta}) \oplus_i \overline{B^{(0,2)}(\overline{\varphi_i})}$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i)$

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i \overline{B^{(0,2)}}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$
- $\star B^{(2,2)}_{\pm}(\beta,\overline{\varphi}) \oplus_i B^{(0,2)}(\overline{\varphi_i})$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i)$ $\star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i \overline{B^{(0,2)}(\varphi_i)}$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(\overline{0,2})}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0$ $★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $\overline{B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)}$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i \overline{B^{(0,2)}}(\varphi_i), \text{ unless } |\varphi_i| \ge \varphi > 0 \text{ for all } i$
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS and check that the boundary thus introduced lies behind a horizon.

Discrete quotients with CTCs

Discrete quotients with CTCs

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$
• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup Γ

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup Γ_L

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup $\Gamma_L \cong \mathbb{Z}$

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup $\Gamma_L \cong \mathbb{Z}$ generated by

 $\gamma = \exp(LX)$

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs

• idea of the proof

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a \mathbb{Z} -quotient of a lorentzian cylinder
- general case

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:

$$\star$$
 let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t)

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - * let $x = (x_A, x_S)$ be a point and $\gamma^N \cdot x = (\gamma^N \cdot x_A, \gamma^N \cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t) between c(0) = x

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t) between c(0)=x and $c(NL)=\gamma^N\cdot x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- general case:
 - \star let $x=(x_A,x_S)$ be a point and $\gamma^N\cdot x=(\gamma^N\cdot x_A,\gamma^N\cdot x_S)$ its image under γ^N
 - \star we will construct a timelike curve c(t) between c(0)=x and $c(NL)=\gamma^N\cdot x$ for $N\gg 1$

 $\star c$ is uniquely determined by its projections c_A onto AdS_{1+p}

 $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}

- \star *c* is uniquely determined by its projections c_A onto AdS_{1+p} and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star \ c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\|$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

 $\|\dot{c}\|^2$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2 \le \|\xi_A\|^2 + \frac{D^2}{N^2 L^2}$$

- $\star~c$ is uniquely determined by its projections c_A onto ${\rm AdS}_{1+p}$ and c_S onto S^{2k+1}
- $\star c_A$ is the integral curve of ξ_A
- $\star c_S$ is a length-minimising geodesic between x_S and $\gamma^N \cdot x_S$, whose arclength

$$\int_0^{NL} \|\dot{c}_S(t)\| dt = NL \|\dot{c}_S\| \le D$$

$$\|\dot{c}\|^2 = \|\dot{c}_A\|^2 + \|\dot{c}_S\|^2 \le \|\xi_A\|^2 + \frac{D^2}{N^2 L^2}$$

which is negative for $N \gg 1$

which is negative for $N \gg 1$ where $\|\xi_A\|^2 < 0$
- the same argument applies to any Freund–Rubin background $M \times N$

• the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries

• the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant and Einstein

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star~N$ is Einstein with positive cosmological constant and Einstein \star Bonnet-Myers Theorem $\implies~N$ is compact

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant and Einstein
 - * Bonnet-Myers Theorem $\implies N$ is compact \implies has bounded diameter

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant and Einstein
 - * Bonnet-Myers Theorem $\implies N$ is compact \implies has bounded diameter
- geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant and Einstein
 - * Bonnet-Myers Theorem $\implies N$ is compact \implies has bounded diameter
- geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$, where M is lorentzian Einstein–Sasaki

- the same argument applies to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive cosmological constant and Einstein
 - * Bonnet-Myers Theorem $\implies N$ is compact \implies has bounded diameter
- geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$, where M is lorentzian Einstein–Sasaki: timelike circle bundles over Kähler manifolds

- there are many families of smooth supersymmetric reductions of ${\rm AdS}_4 \times S^7$

• there are many families of smooth supersymmetric reductions of ${
m AdS}_4 imes S^7$, $S^4 imes {
m AdS}_7$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

• $\frac{9}{16}$ -BPS IIA backgrounds

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS AdS₄ × \mathbb{CP}^3 background of IIA [Duff-Lü-Pope, hep-th/9704186]
- $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

• $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$ by

 $B^{(2,2)}_{+}$

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA [Duff-Lü-Pope, hep-th/9704186]
- $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$ by

$$B_{+}^{(2,2)} \oplus \varphi(R_{12} + R_{34} + R_{56} - R_{78})$$

• a half-BPS IIA background: reduction of $S^4 imes { m AdS}^7$

 $B^{(1,2)}\oplus B^{(1,2)}$

 $B^{(1,2)} \oplus B^{(1,2)}$

• a family of half-BPS IIA backgrounds

 $B^{(1,2)} \oplus B^{(1,2)}$

• a family of half-BPS IIA backgrounds: reductions of $S^4 imes {
m AdS}^7$

$$B^{(1,2)}\oplus B^{(1,2)}$$

• a family of half-BPS IIA backgrounds: reductions of $S^4 imes ext{AdS}^7$ by $B^{(1,1)}(eta) \oplus B^{(1,1)}(eta) \oplus B^{(0,2)}(arphi) \oplus B^{(0,2)}(-arphi)$

$$B^{(1,2)}\oplus B^{(1,2)}$$

 a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇ /Γ)

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇/Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇/Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$: near-horizon geometries of the supersymmetric rotating black holes

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇ /Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$: near-horizon geometries of the supersymmetric rotating black holes, including over-rotating cases

reductions which break no supersymmetry are rare

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group, and the Killing vectors are left-invariant

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group, and the Killing vectors are left-invariant

[Chamseddine-FO-Sabra, hep-th/0306278]
Thank you.