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Motivation

• stringy geometry is different from classical geometry, e.g., mirror

symmetry

• in supergravity limit stringy origin is manifested in fields to which

strings and branes couple

• some fields have classical geometric interpretation (e.g., metric,

volume form, connection, torsion); whereas others do not

Aim: To classify/characterise supergravity backgrounds with

classical geometric interpretation.
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• purely gravitational backgrounds of D=11 supergravity

[hep-th/9904124]

• Freund–Rubin backgrounds of type IIB and D=11 supergravity

[Acharya–FO–Hull–Spence hep-th/9808014, hep-th/9910086]

[FO–Leitner–Simón, in preparation]

• parallelisable backgrounds in ten-dimensional string theory

[hep-th/0305079, FO–Kawano–Yamaguchi hep-th/0308141]
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Supergravity backgrounds

• (M, g, S,Φ), where

? (M, g): lorentzian spin manifold

? S: bundle of real Clifford modules (“spinors”), with a

connection D depending on (g,Φ)
? Φ: other bosonic fields

• (g,Φ) are subject to field equations generalising the Einstein–

Maxwell equations

• (M, g, S,Φ) is supersymmetric if S admits Killing spinors; i.e.,

nonzero sections parallel with respect to D
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Purely gravitational backgrounds

• (M, g) lorentzian spin manifold

• S a real spinor bundle with spin connection ∇

• field equations ⇐⇒ Ricci-flatness

• supersymmetry ⇐⇒ ∃ parallel spinors

Z In lorentzian geometry

∃ parallel spinors does not imply Ricci-flatness
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Holonomy classification

Holonomy principle =⇒
(M1,n, g) lorentzian spin admits parallel spinors ⇐⇒

Hol(g) ⊂ G

where G ⊂ Spin(1, n) is the isotropy group of a nonzero spinor

Possible G follow from orbit decomposition of the spinor

representation under Spin(1, n)
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Spinor orbits of Spin(1, 10)

• ∆ ∼= R32: irreducible spinor representation of Spin(1, 10)

• define a quartic Spin(1, 10)-invariant q : ∆ → R:

q(ψ) = (ψ̄γµψ) (ψ̄γµψ) ≤ 0

? if q(ψ) < 0, Gψ ∼= SU(5), dim Oψ = 31
? if q(ψ) = 0 (and ψ 6= 0), Gψ ∼= Spin(7) n R9, dim Oψ = 25

[Bryant math.DG/0004073]
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Supersymmetric gravitational M-theory
backgrounds

• if ∇ψ = 0 and Gψ ∼= SU(5), ψ̄γµψ is parallel, time-like,

hypersurface orthogonal, whence

g = −dt2 + ḡ ,

with Hol(ḡ) ⊂ SU(5)
e.g., Kaluza–Klein monopole

M = R1,6 × Taub-NUT

[Sorkin, Gross–Perry (1983); Han–Koh (1985)]



8

Static backgrounds



8

Static backgrounds

M = R1,10−d ×Kd



8

Static backgrounds

M = R1,10−d ×Kd, H = Hol(K)



8

Static backgrounds

M = R1,10−d ×Kd, H = Hol(K):

d H ⊂ SO(d) ν

10 SU(5) 1
16

10 SU(2)× SU(3) 1
8

8 Spin(7) 1
16

8 SU(4) 1
8

8 Sp(2) 3
16

d H ⊂ SO(d) ν

8 Sp(1)× Sp(1) 1
4

7 G2
1
8

6 SU(3) 1
4

4 SU(2) ∼= Sp(1) 1
2

0 {1} 1

[Wang (1989)]
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• if ∇ψ = 0 and Gψ ∼= Spin(7) n R9, ψ̄γµψ is parallel and null,

whence (M, g) is a Brinkmann space

e.g., the M-wave

g = 2dudv +H(u,x)du2 + |dx|2

with H(u,−) : R9 → R harmonic.

[Hull (1984)]
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Spin(7) n R8

)
× R 1

32(
SU(4) n R8

)
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16(
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× R 3
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Indecomposable non-static backgrounds

H ⊂ SO(1, 10) ν(
Spin(7) n R8

)
× R 1

32(
SU(4) n R8

)
× R 1

16(
Sp(2) n R8

)
× R 3

32(
Sp(1) n R4

)
×

(
Sp(1) n R4

)
× R 1

8(
G2 n R7

)
× R2 1

16(
SU(3) n R6

)
× R3 1

8(
Sp(1) n R4

)
× R5 1

4

R9 1
2

[Leistner math.DG/0309274]
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Freund–Rubin backgrounds

Although not purely gravitational, the background is determined by

the geometry:

(M, g)× (N,h)

with p-form fields given in terms of volume forms of M and/or N .

Classical examples:

• AdS4×S7 and AdS7×S4 in M-theory

• AdS5×S5 in IIB
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Freund–Rubin ansatz in M-theory

Ansatz:

(M4, g)× (N7, h) and F = f dvolg

Field equations:

• f constant

• (M, g) and (N,h) Einstein with scalar curvatures ±4
3f

2 and ∓7
6f

2,

respectively.



13

Supersymmetry



13

Supersymmetry:

• (M, g) and (N,h) admit (geometric) Killing spinors



13

Supersymmetry:

• (M, g) and (N,h) admit (geometric) Killing spinors

∇Xε = λX · ε



13

Supersymmetry:

• (M, g) and (N,h) admit (geometric) Killing spinors

∇Xε = λX · ε

with λ = ±f6 and ± f
12, respectively.
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Freund–Rubin ansatz in IIB

Ansatz:

(M5, g)× (N5, h) and F = f(dvolg−dvolh)

Field equations:

• f constant

• (M, g) riemannian and (N,h) lorentzian with scalar curvatures

±80f2, respectively.
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Supersymmetry:

• (M, g) and (N,h) admit (geometric) Killing spinors

∇Xε = ±fX · ε

Task: To characterise the lorentzian and riemannian Einstein

n-manifolds admitting geometric Killing spinors, for n = 4, 5, 7.

Z In lorentzian geometry

∃ Killing spinors does not imply Einstein
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Riemannian manifolds admitting Killing spinors

(M, g) riemannian spin

There is a one-to-one correspondence between:

Killing spinors in (M, g)
(with λ = ±1

2)
↔ parallel spinors in the

metric cone (M̄, ḡ)

where

M̄ = M × R+ and ḡ = dr2 + r2g

[Bär (1993)]
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If (M, g) is complete, (M̄, ḡ) is either irreducible or flat.

[Gallot (1979)]

The holonomy of (M̄, ḡ) is contained in Wang’s list:

d H ⊂ SO(d) (Md−1, g)
d {1} round Sd−1

2n SU(n) Einstein Sasaki

4n Sp(n) 3-Sasaki

7 G2 nearly Kähler

8 Spin(7) nearly parallel G2

Physics may not require completeness of (M, g). We will therefore

allow for reducible cones, but still admitting parallel spinors.
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Locally, the cone splits

M̄ = P ×Q

where P and Q admit parallel spinors. [Leistner (2002)]

General result: If (dimP,dimQ) = (p+ 1, q + 1) with p, q ≥ 0,

then

g = dt2 + cos2 t hp + sin2 t kq

where h and k are p- and q-dimensional metrics admitting Killing

spinors. [Leitner (2003)]

We are interested in dimM = 4, 5, 7, whence dim M̄ = 5, 6, 8.
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One obtains the following “new” solutions for dimM = 7:

• dt2 + cos2 t h6, with h nearly Kähler

• dt2 + cos2 t(du2 + cos2 u h5), with h Einstein Sasaki

in addition to the ones with irreducible cone.
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Summary

(Md, g) riemannian spin admitting Killing spinors:

• d = 4: S4

• d = 5: S5, Sasaki Einstein

• d = 7: S7, nearly parallel G2, Sasaki Einstein, 3-Sasaki, warped

product with nearly Kähler, and iterated warped product with

5-dimensional Sasaki Einstein



21

Lorentzian manifolds admitting Killing spinors



21

Lorentzian manifolds admitting Killing spinors

(M, g) lorentzian spin



21

Lorentzian manifolds admitting Killing spinors

(M, g) lorentzian spin

There is a one-to-one correspondence



21

Lorentzian manifolds admitting Killing spinors

(M, g) lorentzian spin

There is a one-to-one correspondence:

Killing spinors in (M, g)



21

Lorentzian manifolds admitting Killing spinors

(M, g) lorentzian spin

There is a one-to-one correspondence:

Killing spinors in (M, g)
(with λ = ± i

2)



21

Lorentzian manifolds admitting Killing spinors

(M, g) lorentzian spin

There is a one-to-one correspondence:

Killing spinors in (M, g)
(with λ = ± i

2)
↔ parallel spinors in the

metric cone (M̄, ḡ)
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(M, g) lorentzian spin

There is a one-to-one correspondence:

Killing spinors in (M, g)
(with λ = ± i

2)
↔ parallel spinors in the

metric cone (M̄, ḡ)

where now

M̄ = M × R+ and ḡ = −dr2 + r2g

[Kath (1999)]! Wang’s list not known in signature (2, n)
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(M, g) lorentzian spin manifold with Killing spinor ε:

• ε is nowhere zero

• V µ = ε̄γµε is a nowhere zero causal Killing vector

• either |V |2 ≡ 0 or else is zero on a hypersurface

• if |V |2 6≡ 0 then M is Einstein

• if |V |2 ≡ 0 then M is (locally) conformal to a Brinkmann space

admitting parallel spinors

[Baum (2000), Baum–Leitner math.DG/0305063]
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Killing spinors with null Killing vector

These are characterised by their holonomy H ⊂ SO(1, d− 1). In

dimensions d = 4, 5, 7 we have:

d H ⊂ SO(1, d− 1)
4 R2

5 R3

7 SU(2) n R5

For d = 4, 5 the most general such metric is known.

[hep-th/9904124]
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Killing spinors with timelike Killing vector

• if the cone is flat, then (M, g) is (locally) AdSd

• if the cone is irreducible, then the holonomy is SU(1, n), so that

(M1,2n, g) is (locally) lorentzian Einstein Sasaki

• if the cone is reducible, then (M1,6, g) is (locally) a warped

product

? dt2+cosh2 t(du2+cosh2 u h), with h lorentzian Einstein Sasaki

? dt2 + sinh2 t(−du2 + cosh2 u h), with h Einstein Sasaki

[Leitner math.DG/0302024]
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Lorentzian Einstein Sasaki geometry

(M1,2n, g) lorentzian Einstein Sasaki

• (locally) isometric to total space of circle bundle

S1 −→ My
N

where N is Kähler with negative scalar curvature

• circle bundle is associated to spin bundle on N

• circles are timelike, hence “Gödel-like”
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Physical interpretation

Classical Freund–Rubin backgrounds are near-horizon limits of
1
2-BPS branes: M2, M5 and D3.

Many Freund–Rubin backgrounds can be interpreted as

near-horizon limits of Ricci-flat branes (cf. [Brecher–Perry

hep-th/9908018]) at conical singularities.

Others thus far lack a clear physical interpretation.
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Parallelisable string backgrounds

Common sector of type II string theory:

• (M1,9, g) a lorentzian spin manifold

• D a metric connection with torsion H, obeying dH = 0

• dilaton φ

• action ∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2
)
dvolg
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• Killing spinors are sections of the following bundles:

? Type IIA: S = S+ ⊕ S−
? Type IIB: S = S+ ⊕ S+

• and satisfy the gravitino variation:

? Type IIA: D±ε = 0 on S±, with D±
X = ∇X ± 1

4ıXH

? Type IIB: ∇Xε + 1
4ıXH · iε, with i the complex structure on

S+ ⊕ S+, i : (ψ1, ψ2) 7→ (ψ2,−ψ1)

• and the dilatino variation:

(dφ+ 1
2H)ε = 0
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We will concentrate on parallelisable backgrounds; that is, those for

which D is flat.

Remarks:

• parallelisability is a topological condition: it is the triviality of the

tangent bundle TM

• by the reduction theorem there is a connection D on TM with

trivial holonomy

• we are asking in addition that Dg = 0, and that dH = 0

This turns M into a Lie group with bi-invariant metric.
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Some theorems

(M, g) simply-connected irreducible riemannian parallelisable:

• (R, dt2)

• compact simple Lie group with (a multiple of) the Killing form

• S7 with the nearly parallel G2 structure

[Cartan–Schouten (1926), Wolf (1970)]

Only the first two have dH = 0.
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(M, g) simply-connected indecomposable lorentzian parallelisable:

• (R,−dt2)

• AdS3

• CW2n+2(J) a symmetric plane wave of signature (1, 2n+ 1):

2dudv − |Jx|2du2 + |dx|2

with J : R2n→ R2n non-degenerate skew-symmetric

[Cahen–Parker (1977)]

They are all Lie groups with bi-invariant metrics, whence dH = 0.
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Parallelisable building blocks

All ten-dimensional lorentzian parallelisable spacetimes can be built

out of:

Space Torsion

AdS3 dH = 0 |H|2 < 0
R1,n, n ≥ 0 H = 0
Rn, n ≥ 1 H = 0
S3 dH = 0 |H|2 > 0
S7 dH 6= 0 |H|2 > 0
SU(3) dH = 0 |H|2 > 0
CW2n+2(J) dH = 0 |H|2 = 0
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Ten-dimensional parallelisable geometries

AdS3×S7

AdS3×S3 × R4

R1,0 × S3 × S3 × S3

R1,2 × S7

R1,6 × S3

CW10(J)
CW6(J)× S3 × R
CW4(J)× S3 × S3

CW4(J)× R6

AdS3×S3 × S3 × R
AdS3×R7

R1,1 × SU(3)
R1,3 × S3 × S3

R1,9

CW8(J)× R2

CW6(J)× R4

CW4(J)× S3 × R3
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Equations of motion

Parallelisability implies the Einstein equations. In addition,

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇dφ = 0 =⇒ linear dilaton

• |dφ|2 = 1
4|H|

2

For non-dilatonic backgrounds (dφ = 0) we require |H|2 = 0,

which implies that (M, g) is scalar flat.

The case of linear dilaton was analysed by Kawano and Yamaguchi.
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Supersymmetry

Parallelisability implies that the supercovariant connections for

both type IIA and IIB are flat. The amount of supersymmetry is

determined from the dilatino variation

(dφ+ 1
2H)ε = 0

For non-dilatonic backgrounds, this equation has solutions if and

only if |H|2 = 0; which restricts the possible geometries.
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Spacetime Supersymmetry

AdS3×S3 × S3 × R 16

AdS3×S3 × R4 16

CW10(J) 16,18(A),20,22(A),24(B),28(B)

CW8(J)× R2 16,20

CW6(J)× R4 16,24

CW4(J)× R6 16

R1,9 32
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Turning on the linear dilaton all backgrounds are now half-BPS:

AdS3×S3 × S3 × R
AdS3×S3 × R4

R1,1 × SU(3)
R1,3 × S3 × S3

R1,6 × S3

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW6(J)× S3 × R
CW4(J)× S3 × R3

CW4(J)× R6

[Kawano–Yamaguchi hep-th/0306038]

All these backgrounds are exact string backgrounds: coupling a

WZW model for (M, g,H) to a Liouville field theory for φ.
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Parallelisable heterotic backgrounds

Type I supergravity coupled to supersymmetric Yang–Mills:

• (M1,9, g,D,H, φ) as before

• F curvature on a E8 × E8 or Spin(32)/Z2 principal bundle

• dH = N
2 TrF ∧ F + · · ·

• action ∫
M

e−2φ
(
R+ 4|dφ|2 − 1

2|H|
2 − N

2 |F |
2
)
dvolg
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Killing spinors are sections of S+ obeying the following equations:

• gravitino variation:

Dε = 0

• dilatino variation:

(dφ+ 1
2H)ε = 0

• gaugino variation:

Fε = 0
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Equations of motion in a parallelisable geometry:

• dH = N
2 TrF ∧ F

• dφ ∧ ?H = 0 =⇒ dφ is central

• ∇a∂bφ = N
4 TrFacFbc

• |dφ|2 = 1
4|H|

2 + 3N
8 |F |

2

• δD,A(e−2φF ) = 0
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Supersymmetry

Fε = 0 implies that F must belong to the isotropy of a chiral

spinor ε.

The orbit structure of S+ under Spin(1, 9) is very simple: every

nonzero spinor is in the same open orbit, with isotropy
∼= Spin(7) n R8. [Bryant math.DG/0004073]

From the dilaton equation

φ is linear (or constant) ⇐⇒ F = 0

for a supersymmetric background.
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Parallelisable backgrounds with F = 0

Linear dilaton: all backgrounds are 1
2-BPS, whereas for constant

dilaton one has:

Spacetime Supersymmetry

AdS3×S3 × S3 × R 8

AdS3×S3 × R4 8

CW10(J) 8,10,12,14

CW8(J)× R2 8,10

CW6(J)× R4 8,12

CW4(J)× R6 8

R1,9 16
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Parallelisable backgrounds with F 6= 0

We must distinguish two classes of supersymmetric backgrounds:

• |H|2 = 0, which are 1
2-BPS:

R1,9

CW10(J)
CW8(J)× R2

CW6(J)× R4

CW4(J)× R6
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• |H|2 > 0, which are 1
4-BPS:

R1,3 × S3 × S3

R1,6 × S3

CW6(J)× S3 × R
CW4(J)× S3 × R3

In all cases F is null: F = du ∧ θ.
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Some geometric limits

Some of these backgrounds are related by geometric limits:

• SU(3)  R8, S3  R3, and AdS3  R1,2 by taking the radius

of curvature to infinity

• CW2n(J) CW2n−2(J ′)× R2 by allowing J to degenerate

• AdS3×S3 × R4  CW6(J) × R4, and AdS3×S3 × S3 × R  
CW8(J)× R2 by taking a Penrose limit
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Thank you.


