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A geometric motivation

Which are the maximally symmetric (pseudo-) riemannian

manifolds?

Infinitesimal isometries are given by Killing vectors:

∇µξν +∇νξµ = 0

These are in one-to-one correspondence with parallel sections of

the bundle

E(M) = TM ⊕ Λ2T ∗M



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν

E(M) has rank n(n + 1)/2 for an n-dimensional M .



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat



3

Indeed, a section (ξµ, Fµν) of E(M) is parallel if and only if

• ξµ is a Killing vector, and

• Fµν = ∇µξν

E(M) has rank n(n + 1)/2 for an n-dimensional M .

=⇒ ∃ ≤ n(n + 1)/2 linearly independent Killing vectors.

Maximal symmetry =⇒ E(M) is flat

=⇒ M has constant sectional curvature κ.
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In the riemannian case (and up to local isometry):

• κ = 0: euclidean space En

• κ > 0: sphere

Sn ⊂ En+1 : x2
1 + x2

2 + · · ·+ x2
n+1 =

1
κ2

• κ < 0: hyperbolic space

Hn ⊂ E1,n : −t21 + x2
1 + · · ·+ x2

n =
−1
κ2



5

In lorentzian geometry (and up to local isometry)



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1



5

In lorentzian geometry (and up to local isometry):

• κ = 0: Minkowski space En−1,1

• κ > 0: de Sitter space

dSn ⊂ E1,n : −t21 + x2
1 + x2

2 + · · ·+ x2
n =

1
κ2

• κ < 0: anti de Sitter space

AdSn ⊂ E2,n−1 : −t21 − t22 + x2
1 + · · ·+ x2

n−1 =
−1
κ2
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Note: the κ 6= 0 spaces are quadrics in a flat space in one

dimension higher; whereas the flat spaces are the degenerations

obtained by taking κ → 0.

Now it remains to classify smooth discrete quotients of the

universal covers of the above spaces.

This is the Clifford–Klein space form problem, first posed by Killing

in 1891 and reformulated in these terms by Hopf in 1925.

Only the spherical case is solved (culminating in the work of Wolf

in the 1970s), but there are many partial results in other cases.
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Supersymmetry is a nontrivial extension to the notion of symmetry,

and the analogue of maximal symmetry in gravity is maximal

supersymmetry in supergravity.

This leads to the natural question

Which are the maximally supersymmetric backgrounds of

supergravity theories?

In this talk I will report on the solution of the local problem in

several supergravity theories.

Note: A maximally supersymmetric supergravity background will

be abbreviated vacuum.

In other words, we will classify vacua up to local isometry.
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Supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

[Van Proeyen, hep-th/0301005]
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Any theory in the table can be dimensionally reduced down its

column ∴ symmetric backgrounds can be reduced à la

Kaluza–Klein, but some supersymmetry is often sacrificed.

Backgrounds can be oxidised up the column without losing

supersymmetry (indeed often gaining) =⇒ vacua oxidise to vacua.

To classify vacua, one can therefore

• classify vacua of theories at the top of each column, and

• investigate their possible Kaluza–Klein reductions.
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Strategy

Let (M, g,Φ, S) be a supergravity background:

• (M, g) a lorentzian spin manifold

• Φ denotes collectively the other bosonic fields

• S a real vector bundle of spinors (associated to a real

representation of the Clifford algebra)

• fermions have been put to zero
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(M, g,Φ, S) is supersymmetric if it admits Killing spinors; that is,

sections ε of S such that

Dµε = 0

where D is the connection on S

Dµ = ∇µ + Ωµ(g, F )

defined by the supersymmetric variation of the gravitino:

δεΨµ = Dµε
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There are possibly also algebraic equations

A(g,Φ)ε = 0

where A is the algebraic operator defined by the supersymmetric

variation of any other fermionic fields (dilatinos, gauginos,...)

δεχ = Aε

Maximal supersymmetry =⇒ D is flat and A = 0.

Typically A = 0 sets some gauge fieldstrengths to zero, and the

flatness of D constrains the geometry and any remaining

fieldstrengths. The strategy is therefore to study the flatness

equations for D.
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Classifications of supergravity vacua

In the table we have highlighted the “top” theories whose vacua

are known already:

• D = 4 N = 1 [Tod (1984)]

• D = 6 (1, 0), (2, 0) [Chamseddine–FO–Sabra]

• D = 10 IIB and I [FO–Papadopoulos]

• D = 11 M [FO–Papadopoulos]
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Vacua of eleven-dimensional supergravity

• bosonic fields:

? metric g, and

? closed 4-form F

for a total of 44 + 84 = 128 bosonic physical degrees of freedom.

• spinors are Majorana; that is, associated to one of the two

irreducible real 32-dimensional representations of C`(1, 10).
Therefore the gravitino also has 128 physical degrees of freedom.
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• the gravitino variation defines the connection

Dµ = ∇µ − 1
288Fνρστ

(
Γνρστ

µ + 8Γνρσδτ
µ

)

For fixed µ, ν, the curvature Rµν of D can be expanded in terms of

antisymmetric products of Γ matrices

[Dµ, Dν] = Rµν
IΓI

where I is an index labeling the following elements

Γa Γab Γabc Γabcd Γabcde
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(We have used that Γ01···9\ = −1 in this representation.)

The flatness equations are the vanishing of the Rµν
I.

Summarising the results:

• F is parallel: ∇F = 0

• the Riemann curvature tensor is determined algebraically in terms

of F and g:

Rµνρσ = Tµνρσ(F, g)

with T quadratic in F . This means that Rµνρσ is parallel;

equivalently, that g is locally symmetric.
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• F obeys the Plücker relations

ιXιY ιZF ∧ F = 0 for all X, Y, Z

or

Fαβγ[µFνρστ ] = 0

The solution is that F is decomposable into a wedge product of

four 1-forms:

F = θ1 ∧ θ2 ∧ θ3 ∧ θ4 or Fµνρσ = θ1
[µθ2

νθ
3
ρθ

4
σ]
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We can restrict to the tangent space at any one point in the

spacetime: the metric g defines a lorentzian inner product and F is

either zero or defines a 4-plane: the plane spanned by the θi.

If F is zero, then the solution is flat. Otherwise:

• if the plane is euclidean, we can choose a pseudo-orthonormal

frame in which the only nonzero component of F is F1234

• if the plane is lorentzian, we can choose a pseudo-orthonormal

frame in which the only nonzero component of F is F0123

• if the plane is null, we can choose a pseudo-orthonormal frame in

which the only nonzero component of F is F−123
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We now plug these expressions back into the equation which relates

the curvature tensor to F and g finding the following solutions:

• F euclidean: a one parameter R > 0 family of vacua

AdS7(−7R)× S4(8R) F =
√

6R dvol(S4)

• F lorentzian: a one parameter R < 0 family of vacua

AdS4(8R)× S7(−7R) F =
√
−6R dvol(AdS4)
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• F null: a one parameter µ ∈ R family of symmetric plane waves:

g = 2dx+dx− − 1
36µ

2

(
4

3∑
i=1

(xi)2 +
9∑

i=4

(xi)2
)

(dx−)2 +
9∑

i=1

(dxi)2

F = µdx− ∧ dx1 ∧ dx2 ∧ dx3

Notice that for µ = 0 we recover the flat space solution; whereas

for µ 6= 0 all solutions are equivalent and coincide with the

eleven-dimensional vacuum discovered by Kowalski-Glikman in

1984.

All vacua embed isometrically in E2,11 as the intersections of two

quadrics.
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Vacua of (1, 0) D = 6 supergravity

• bosonic fields:

? metric g

? anti-selfdual closed 3-form F

for a total of 9 + 3 = 12 physical bosonic degrees of freedom

• spinors are positive-chirality symplectic Majorana–Weyl; i.e.,

associated to the 8-dimensional real representation of Spin(1, 5)×
Sp(1) having positive six-dimensional chirality.

The gravitino has therefore also 12 physical degrees of freedom.
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• The gravitino variation yields the connection

Dµ = ∇µ + 1
8Fµ

abΓab

The connection D is actually induced from a metric connection

with torsion; i.e., Dg = 0 and

Dµ∂ν = Γ̂µν
ρ∂ρ with Γ̂µν

ρ = Γµν
ρ + Fµν

ρ

Maximal supersymmetry =⇒ D is flat.
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Theorem (Cartan–Schouten (1926), Wolf (1971/2)).
A pseudoriemannian manifold admitting a flat metric connection
with torsion is locally isometric to a Lie group with bi-invariant
metric and with the parallelizing torsion.

As a corollary, vacua of (1, 0) D = 6 supergravity are locally

isometric to six-dimensional Lie groups admitting a bi-invariant

lorentzian metric and whose parallelizing torsion is anti-self-dual.

Equivalently, they are in one-to-one correspondence with

six-dimensional Lie algebras with an invariant lorentzian metric and

with anti-selfdual structure constants fabc.

The solution to this problem is known.
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Lorentzian Lie algebras

Which Lie algebras have an invariant metric?

• abelian Lie algebras with any metric

• semisimple Lie algebras with the Killing form (Cartan’s criterion)

• reductive Lie algebras = semisimple ⊕ abelian

• classical doubles h n h∗ with the dual pairing

But there is a more general construction.
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The double extension

• g a Lie algebra with an invariant metric

• h a Lie algebra acting on g via antisymmetric derivations; i.e.,

? preserving the Lie bracket of g, and

? preserving the metric

• since h preserves the metric on g, there is a linear map

h → Λ2g



27

whose dual map

ω : Λ2g → h∗



27

whose dual map

ω : Λ2g → h∗

is a cocycle



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗; i.e.,

[Xa, Xb] = fab
cXc + ωab iH

i



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗; i.e.,

[Xa, Xb] = fab
cXc + ωab iH

i

relative to bases Xa, Hi and Hi for g, h and h∗, respectively.



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗; i.e.,

[Xa, Xb] = fab
cXc + ωab iH

i

relative to bases Xa, Hi and Hi for g, h and h∗, respectively.

• h acts on g×ω h∗ preserving the Lie bracket



27

whose dual map

ω : Λ2g → h∗

is a cocycle because h preserves the Lie bracket in g

• so we build the central extension g×ω h∗; i.e.,

[Xa, Xb] = fab
cXc + ωab iH

i

relative to bases Xa, Hi and Hi for g, h and h∗, respectively.

• h acts on g×ω h∗ preserving the Lie bracket, so we can form the

double extension

d(g, h) = h n (g×ω h∗)
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• the double extension admits an invariant metric


Xb Hj Hj

Xa gab 0 0
Hi 0 Bij δj

i

Hi 0 δi
j 0


where Bij is any invariant symmetric bilinear form on h (not

necessarily nondegenerate).

This construction is due to Medina and Revoy who proved an

important structure theorem.
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The structure theorem of Medina and Revoy

A metric Lie algebra is indecomposable if it is not the direct sum of

two orthogonal ideals.

Theorem (Medina–Revoy (1985)).
An indecomposable metric Lie algebra is either simple, one-
dimensional, or a double extension d(g, h) where h is either simple
or one-dimensional.
Every metric Lie algebra is obtained as an orthogonal direct sum
of indecomposables.

[See also FO–Stanciu hep-th/9506152]
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Six-dimensional lorentzian Lie algebras

It is now easy to list all six-dimensional lorentzian Lie algebras.

Notice that if the metric on g has signature (p, q) and h is

r-dimensional, the metric on d(g, h) has signature (p + r, q + r).

Therefore a lorentzian Lie algebra takes the general form

reductive⊕ d(a, h)

where a is abelian with euclidean metric and h is one-dimensional.

(Any semisimple factors in a factor out of the double extension.

[FO–Stanciu hep-th/9402035])
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Six-dimensional lorentzian Lie algebras:

• R5,1

• so(3)⊕ R2,1

• so(2, 1)⊕ R3

• so(2, 1)⊕ so(3)

• d(R4, R), actually a family of Lie algebras parametrised by

homomorphisms

R → Λ2R4 ∼= so(4)
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Antiselfduality of the structure constants narrows the list down to

• R5,1

• so(2, 1)⊕ so(3) with “commensurate” metrics, and

• d(R4, R) with the image of R → Λ2R4 self-dual

The first case corresponds to the flat vacuum. The second case

corresponds to AdS3×S3 with equal radii of curvature and

F ∝ dvol(AdS3)− dvol(S3)

The third case is a six-dimensional version of the Nappi-Witten

spacetime, NW6, discovered by Meessen. [Meessen hep-th/0111031]
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which in this case are group contractions à la Inönü–Wigner.

[Stanciu–FO hep-th/0303212]
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Vacua of D = 10 IIB supergravity

• bosonic fields:

? metric g,

? complex scalar τ ,

? closed complex 3-form H, and

? closed selfdual 5-form F

=⇒ 35+2+56+35 = 128 bosonic physical degrees of freedom

• spinors are positive-chirality Majorana–Weyl spinors.

There are two gravitini and two dilatini

=⇒ 112 + 16 = 128 fermionic physical degrees of freedom
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equation

Maximal supersymmetry =⇒ τ is constant and H = 0

• the gravitino variation defines the connection

(with H = 0 and τ constant)

Dµ = ∇µ + iαFν1ν2ν3ν4ν5Γ
ν1ν2ν3ν4ν5Γµ

where we have written the two real spinors as a complex spinor,

and α depends on the constant value of τ .
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Expanding the curvature of D into antisymmetric products of

Γ-matrices and setting the coefficients to zero, we find

• F is parallel: ∇F = 0

• the Riemann curvature tensor is again determined algebraically in

terms of F and g:

Rµνρσ = Tµνρσ(F, g)

with T quadratic in F . Again this means that Rµνρσ is parallel,

so that g is locally symmetric.
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• F obeys a quadratic identity:

Fρ ∧ F ρ = 0 or Fµ1µ2µ3ρ[ν1
F ρ

ν2ν3ν4ν5] = 0

generalising both the Plücker relations and the Jacobi identity.

Again we can work in the tangent space at a point, where g gives

rise to a lorentzian innner product and F defines a self-dual 5-form

obeying a quadratic equation.

This equation defines a generalisation of a Lie algebra known as a

4-Lie algebra (with an invariant metric). [Filippov (1985)]

(Unfortunate notation: a 2-Lie algebra is a Lie algebra.)
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n-Lie algebras

A Lie algebra is a vector space g together with an antisymmetric

bilinear map

[ ] : Λ2g → g

satisfying the condition: for all X ∈ g the map

adX : g → g defined by adX Y = [X, Y ]

is a derivation over [ ]; that is,

adX[Y, Z] = [adX Y, Z] + [Y, adX Z]
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An n-Lie algebra is a vector space n together with an

antisymmetric n-linear map

[ ] : Λnn → n

satisfying the condition: for all X1, . . . , Xn−1 ∈ n, the map

adX1,...,Xn−1 : n → n

defined by

adX1,...,Xn−1 Y = [X1, . . . , Xn−1, Y ]
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is a derivation over [ ]; that is,

[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]

If 〈−,−〉 is a metric on n, we can define F by

F (X1, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉

If F is totally antisymmetric then 〈−,−〉 is an invariant metric.

(n-Lie algebras also appear naturally in the context of Nambu

dynamics. [Nambu (1973)])
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Ten-dimensional lorentzian 4-Lie algebras

In this language, IIB vacua are in one-to-one correspondence with

ten-dimensional selfdual lorentzian 4-Lie algebras; but this is not

particularly helpful since the theory of n-Lie algebras is still largely

undeveloped.

One is forced to solve the equations. After a lot of work, we

found that a selfdual 5-form obeys the equation if and only if

F = G + ?G where G = θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5

[FO–Papadopoulos math.AG/0211170]
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In other words, G is decomposable; whence, if nonzero, it defines a

5-plane, and hence F defines two orthogonal planes.

If F = 0 we recover the flat vacuum. Otherwise there are two

possibilities:

• one plane is lorentzian and the other euclidean: we can choose a

pseudo-orthonormal frame in which the only nonzero components

of F are F01234 = F56789, or

• both planes are null: we can choose a pseudo-orthonormal frame

in which the only nonzero components of F are F−1234 = F−5678.

Plugging these expressions back into the relation between the
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curvature tensor to F and g, one finds the following backgrounds

(up to local isometry):

• F non-degenerate case: a one-parameter (R > 0) family of vacua

AdS5(−R)× S5(R) F =

√
4R

5
(
dvol(AdS5) + dvol(S5)

)

• F degenerate: a one-parameter (µ ∈ R) family of symmetric
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4µ

2
8∑

i=1

(xi)2(dx−)2 +
8∑

i=1

(dxi)2

F = 1
2µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
Again for µ = 0 we recover the flat space solution; whereas for

µ 6= 0 all solutions are isometric to the same plane wave

[Blau–FO–Hull–Papadopoulos hep-th/0110242]

Notice that g is a bi-invariant metric on a Lie group: a

ten-dimensional version of the Nappi–Witten spacetime.

[Stanciu–FO hep-th/0303212]
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quadrics, and are related by Penrose limits
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Other theories we have investigated:

• In D = 10: I, heterotic, IIA only have the flat vacuum. The

same is true for any theory lower in the corresponding columns.

(Roman’s massive supergravity has not vacua at all.)

• D = 6 (2, 0) supergravity: all (1, 0) vacua are also vacua of (2, 0)
and early indications show that there are no others. (1, 0) vacua

do have reductions preserving all supersymmetry.

[Gauntlett–Gutowsky–Hull–Pakis–Reall hep-th/0209114]

[Lozano-Tellechea–Meessen–Ort́ın hep-th/0206200]
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Thank you.


