The nonlinear 5 model describes harmonic maps

 $\varphi: \Sigma \longrightarrow M$

where $(\Sigma,h) \in (M,g)$ are preudoriewannian and Σ oriented. The action functional is given by $S_{\sigma}I\psi I = \frac{1}{2} \int g_{ij}(\psi) d\psi' \wedge \star d\psi' J$ $\Sigma \int I\psi I = \frac{1}{2} \int g_{ij}(\psi) d\psi' \wedge \star d\psi' J$

If G is a connected lie group acting by isometries on (M,g). Then it acts on maps $\Sigma \rightarrow M$ leaving S_{σ} invariant. It is enough to diede infinitestimally. So let $X \in g$, $\Xi_X \in X(M)$ Killing rector. Then under $S_X e^i = \Xi_X^i(e)$ the action changes by O by Villing's opation $S_X S_{\sigma}^i(e^j) = \frac{1}{2} \int_{\Sigma} (\mathcal{A}_{\Xi_X} g)_{ij} de^i \wedge * de^j$

Gauging the σ model means coupling it to gauge fields in each a way that $S_{\sigma}[g,A]$ is invariant under local transformations in Map(Σ, g). Let (ϵ_a) be a basis for g and $\xi_a := \xi_{e_a}$ the KV. Let $\chi: \Sigma \rightarrow g$ $\chi = \chi^a e_a$, $\chi^a \in \mathbb{C}^{\infty}(\Sigma)$ and define $S_{\chi} \varphi^i = \chi^a \xi_a^i(\varphi)$ & S_{σ} no longer invariant.

so introduce AER'(E, 9) and SZA=dZ+[A,Z].

Define
$$\nabla \varphi^{i} = d \varphi^{i} - A^{q} \xi^{i}(\varphi)$$
 "minimal
and $S_{q}[\varphi] = \frac{i}{2} \int_{\Sigma} \vartheta_{ij}(\varphi) \nabla \varphi^{i} \wedge \nabla \varphi^{j}$
Let dim $\Sigma = d$ and let we $\Omega^{d+i}(M)$ be a
stored form. Let B be a $(d+i)$ -dimi'l manifold
with $\partial B = \Sigma$ and extend φ to B . We can
add

$$S_{WZ}[Y] = \int_{B} \Psi^* \omega$$

Because dw=0, the variation of this term is an exact (d+1)- form & hence by stokes's it is an integral over Σ and hence the field equations do not depend on the extension.

Suppose wis G-invariant. Hence so is Swz. Can one gauge this? We could try minimal coupling: that produces a gauge-invariant action but the resulting field equations are no longer local because the minimally coupled ythe need not be closed.

eg: if w=d0 and 0 is G-invariant, then we can minimally couple: Jet w = Jet 0 Answer: Swz can be gauged if w admits an equivariant closed extension.

 $\begin{array}{rcl} \underline{u}: & \exists \ \widehat{\omega} = \omega + F^{\alpha}\psi_{\alpha} + F^{\alpha}F^{\delta}\psi_{\alpha\delta} + \cdots & \exists \ \psi_{\alpha} \in \Omega^{d-1}(M) \\ \\ \underline{s} & (\Lambda) & \underline{g} - \hat{n} variant & \Psi_{\alpha\delta} \in \Omega^{d-3}(M) \\ \\ & (2) & \underline{d}_{c}\widehat{\omega} = 0 & \underline{e^{\underline{t}}} \cdots \\ \\ & \text{where} & \underline{d}_{c}(F^{\alpha}) = 0 & \text{and} & \underline{d}_{c}(\omega) = \omega - F^{\alpha}z_{\alpha}\omega \end{array}$

Examples

1) Id v-model with symplectic target

 $G \cap (M, \omega)$ symplectically is a symmetry of $S_{WZ} = \int_{B^2} \psi^* \omega$

and it can be gauge if and only if the Graction is haw iltonian, so there exists are aquivariant moment may pe: M - g*.

2 2d NZN model

M is a lie group w/bi-invariant metric and lie algebra TT with ad-invariant invariant product \langle , \rangle . Then $\omega = \frac{1}{6} \langle \Theta_L, [\Theta_L, \Theta_L] \rangle$

Let G ⊂ M×M be a subgroup of isometries It preserves w and hence SwZ. G can be gauged if and only if L^{*}(, > = r^{*}(, > where (L,r): g → m⊕m are the LA homomorphism induced by the ewbedding G → M×M. eq: Magoral subgroups can alway be gauged. (e.g. wset construction in CFT) chiral subgroups for which g ⊂ TT is isotopic (e.g. Dinkeld-Sokolow reduction) 3 5-modes with lie group targets & trangressing WZ terms

Again M is a lie group with lie algebra TTD. Let $P \in (G^{n}TTT^{*})^{m}$ be an invariant polynomial. Let $\omega = P(\Theta_{L}, d\Theta_{L}, ..., d\Theta_{L}) \in \Omega^{2n-1}(M)$ Then wis invariant under MXM.

Let GCMXM and gCMBM with inducion homomorphisms lor.

Conjecture The Gisymmetry of S_{WZ} can be gauged if and only if $l^*P = r^*P$.

C#>