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Introduction

Hopf

Hamilton Cayley Lie Killing

É. Cartan Hurwitz J.F. Adams



This talk is about a relation between exceptional 
objects:

• Hopf bundles

• exceptional Lie algebras

using a geometric construction familiar from 
supergravity: the Killing (super)algebra.



Real division algebras

R

≥

ab = ba

(ab)c = a(bc)

C

ab = ba

(ab)c = a(bc)

O

(ab)c != a(bc)

H

ab != ba

(ab)c = a(bc)

These are all the euclidean normed real division 
algebras.  [Hurwitz]



S1 −−−−→ S3

"

S2

S3 −−−−→ S7

"

S4

Hopf  fibrations

S7 −−−−→ S15

"

S8

These are the only examples of fibre bundles 
where all three spaces are spheres.  [Adams]

S1 ⊂ C

S2 ∼= CP1

S3 ⊂ C2

S4 ∼= HP1

S3 ⊂ H

S7 ⊂ H2

S8 ∼= OP1

S7 ⊂ O

S15 ⊂ O2



Simple Lie algebras

4 classical series:

An≥1

Bn≥2

Cn≥3

Dn≥4

G2

F4

E6

E7

E8

5 exceptions:

SU(n + 1)

SO(2n + 1)

Sp(n)

SO(2n)

14

52

78

133

248

[Lie] [Killing, Cartan]

(over C)



Mathematical hype?

http://news.bbc.co.uk/1/hi/sci/tech/6466129.stm



Supergravity

A supergravity background consists of a lorentzian 
spin manifold with additional geometric data, together 
with a notion of Killing spinor.

These spinors together with the infinitesimal 
automorphisms of the geometry generate the Killing 
superalgebra.

This is a useful invariant of the background.



“Killing superalgebra”

S7 −−−−→ S15

"

S8

Applying the Killing superalgebra construction 
to the exceptional Hopf fibration, one 
obtains a triple of exceptional Lie algebras:

B4 E8

F4



Clifford

Spinors



Clifford algebras

real euclidean vector space

filtered associative algebra

V n 〈−,−〉

C!(V ) =
⊗

V

〈v ⊗ v + |v|21〉

C!(V ) ∼= ΛV (as vector spaces)

C!(V ) = C!(V )0 ⊕ C!(V )1

C!(V )0 ∼= ΛevenV C!(V )1 ∼= ΛoddV



e1, . . . ,enorthonormal frame

C! (Rn) =: C!n

C!0 = 〈1〉 ∼= R

C!1 =
〈
1, e1

∣∣e2
1 = −1

〉 ∼= C

C!2 =
〈
1, e1, e2

∣∣e2
1 = e2

2 = −1, e1e2 = −e2e1

〉 ∼= H

Examples:

eiej + ejei = −2δij1



n C!n

0 R
1 C
2 H
3 H⊕H
4 H(2)
5 C(4)
6 R(8)
7 R(8)⊕ R(8)

C!n+8
∼= C!n ⊗ R(16)

Bott periodicity:

e.g., 

C!9 ∼= C(16)

From this table one can read the type and 
dimension of the irreducible representations.

C!16 ∼= R(256)

Classification



       has a unique irreducible representation if 
n is even and two if n is odd.
C!n

Notation : Mn or M±
n

dim Mn = 2!n/2"

Clifford modules

They are distinguished by the action of

which is central for n odd. 

e1e2 · · · en



son → C!n

ei ∧ ej "→ −1
2eiej

exp Spinn ⊂ C!n

which defines a 2-to-1 map Spinn → SOn

with archetypical example Spin3
∼= SU2 ⊂ H

"

SO3
∼= SO(ImH)

s ∈ Spinn, v ∈ Rn =⇒ svs−1 ∈ Rn

Spinor representatinos

2-1



By restriction, every representation of        defines a 
representation of          :

C!n

Spinn

∆ spinors
∆± chiral spinors

One can read off the type of representation from

Spinn ⊂ (C!n)0 ∼= C!n−1

dim ∆± = 2(n−2)/2dim ∆ = 2(n−1)/2

C!n ⊃ Spinn

M± = ∆
M = ∆ = ∆+ ⊕∆−



Spinor inner product

(ε1, ei · ε2) = − (ei · ε1, ε2) ∀εi ∈ ∆

=⇒ (ε1, eiej · ε2) = − (eiej · ε1, ε2)

which allows us to define

〈[ε1, ε2], ei〉 = (ε1, ei · ε2)

(ε1, ε2) = (ε2, ε1)

[−,−] : Λ2∆→ Rn

(−,−) bilinear form on ∆



Spin geometry



Spin manifolds

Spin(M)
"

M

SO(M)
"

M

O(M)
"

M

GL(M)
"

M

w1 = 0 w2 = 0

differentiable manifoldMn

g riemannian metric

, orientable, spin

GLn On
! "!! SOn

! "!! Spinn
!!!!



e.g., M = Sn ⊂ Rn+1

O(M) = On+1

SO(M) = SOn+1

Spin(M) = Spinn+1

Sn ∼= On+1/On
∼= SOn+1/SOn

∼= Spinn+1/Spinn

Possible Spin(M) are classified by                   .H1 (M ; Z/2)

π1(M) = {1} =⇒ unique spin structure



C!(TM)
"

M
C!(TM) ∼= ΛTM

S(M) := Spin(M)×Spinn
∆

S(M)± := Spin(M)×Spinn
∆±

Clifford bundle

(chiral) 
spinor 
bundles

Spinor bundles

S(M)C!(TM) acts on We will assume that





The Levi-Cività connection allows us to 
differentiate spinors

∇ : S(M)→ T ∗M ⊗ S(M)

which in turn allows us to define

parallel spinor ∇ε = 0

Killing spinor ∇Xε = λX · ε

Killing constant



If (M,g) admits

parallel spinors

Killing spinors

(M,g) is Ricci-flat

(M,g) is Einstein

R = 4λ2n(n− 1)

=⇒ λ ∈ R ∪ iR

Today we only consider real λ.

...



Killing spinors have their origin in supergravity.

The name stems from the fact that they are 
“square roots” of Killing vectors.

ε1, ε2 Killing

(                        )V ∈ Γ(TM) LV g = 0is Killing if

Killing[ε1, ε2]



Killing spinors 
in (M,g)

Ch. Bär

Which manifolds admit 
Killing spinors?

(M, g)

(M, g)

M = R+ ×M

metric cone

1-1
parallel spinors 
in the cone

(
λ = ± 1

2

)

g = dr2 + r2g



More precisely...

If n is odd, Killing spinors are in one-to-one 
correspondence with chiral parallel spinors in 
the cone: the chirality is the sign of λ.

If n is even, Killing spinors with both signs of 
λ are in one-to-one correspondence with the 
parallel spinors in the cone, and the sign of λ 
enters in the relation between the Clifford 
bundles.



This reduces the problem to one (already 
solved) about the holonomy group of the 
cone.

M. Berger

M. Wang

Or else the cone is flat and M is a sphere.

n Holonomy
n SOn

2m Um

2m SUm

4m Spm · Sp1

4m Spm

7 G2

8 Spin7



Killing superalgebra



(M, g) riemannian spin manifold

k = k0 ⊕ k1

Killing vectors{ }k0 =

Killing spinors{ }k1 =

Construction of the algebra

(
with λ = 1

2

)



[−,−] : Λ2k→ k              ?

[−,−] : Λ2k0 → k0

[−,−] : Λ2k1 → k0

[−,−] : k0 ⊗ k1 → k1

[—,—] of vector fields

g([ε1, ε2], X) = (ε1, X · ε2)

spinorial Lie derivative!

✓

✓

?

LichnerowiczKosmann



KillingX ∈ Γ(TM) LXg = 0

AX := Y !→ −∇Y X

∈

so(TM)

! : so(TM)→ EndS(M) spinor representation

LX := ∇X + !(AX) spinorial Lie derivative

cf. LXY = ∇XY + AXY = ∇XY −∇Y X = [X, Y ] ✓



Properties

LX(fε) = X(f)ε + fLXε

[LX ,LY ]ε = L[X,Y ]ε

LX(Z · ε) = [X, Z] · ε + Z · LXε

[LX ,∇Z ]ε = ∇[X,Z]ε} ∀ε ∈ k1, X ∈ k0

LXε ∈ k1

[X, ε] := LXε

[−,−] : k0 ⊗ k1 → k1

✓

∀X, Y ∈ k0, Z ∈ Γ(TM), ε ∈ Γ(S(M)), f ∈ C∞(M)



The Jacobi identity

Jacobi: Λ3k→ k

(X, Y, Z) !→ [X, [Y, Z]]− [[X, Y ], Z]− [Y, [X, Z]]

Λ3k0 → k0

Λ2k0 ⊗ k1 → k1

k0 ⊗ Λ2k1 → k0

Λ3k1 → k1

4 components :

✓ Jacobi for vector fields

✓

✓

?

[LX ,LY ]ε = L[X,Y ]ε

LX(Z · ε) = [X, Z] · ε + Z · LXε

but k0 − equivariant



Some examples

S7 ⊂ R8

S8 ⊂ R9

k0 = so8

k0 = so9

k0 = so16

k1 = ∆+

k1 = ∆

k1 = ∆+

28 + 8 = 36

36 +16 = 52

120+128 = 248

so9

f4

e8

In all cases, the Jacobi identity follows from
(
k1 ⊗ Λ3k∗1

)k0 = 0

S15 ⊂ R16



A sketch of the proof

Use the cone to calculate        .LXε

The bijection between Killing spinors and 
parallel spinors in the cone is equivariant 
under the action of isometries.

Two observations:
1)

In the cone,                       and since X is 
linear, the endomorphism      is constant.   

LXε = "(AX)ε
AX

2)

It is the natural action on spinors.



We then compare with the known constructions.

Alternatively, we appeal to the classification of 
riemannian symmetric spaces.

These Lie algebras have the following form:

k = k0 ⊕ k1 k0 Lie algebra
k1 k0-representation

(−,−) k-invariant inner product

symmetric spaceK/K0



Looking up the list, we find the following:

E8/Spin16

F4/Spin9

Spin9/Spin8

with the expected linear isotropy representations.



Open questions

• Other exceptional Lie algebras?

• Other dimensions and/or signatures?

• Are the Killing superalgebras of the Hopf 
spheres related?

• What structure in the 15-sphere has E8 as 
automorphisms?



!ank y"!


