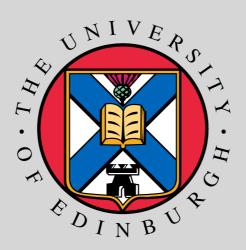
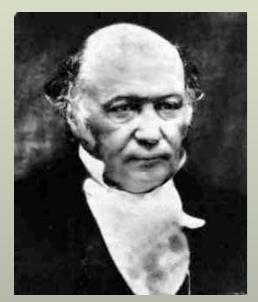
Exceptional spheres and supergravity

José Figueroa-O'Farrill
Maxwell Institute & School of Mathematics



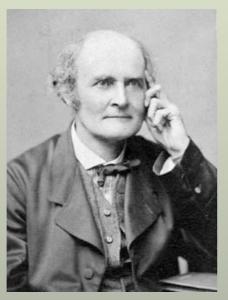
NBMPS XVIII, York 20 June 2007

Introduction



Hamilton

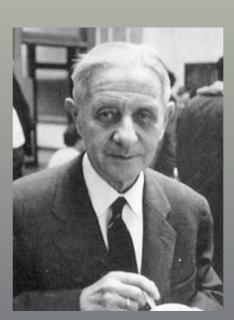
É. Cartan



Cayley

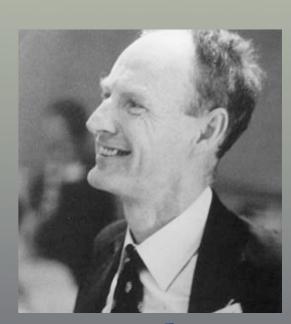
Hurwitz

Lie



Hopf

Killing



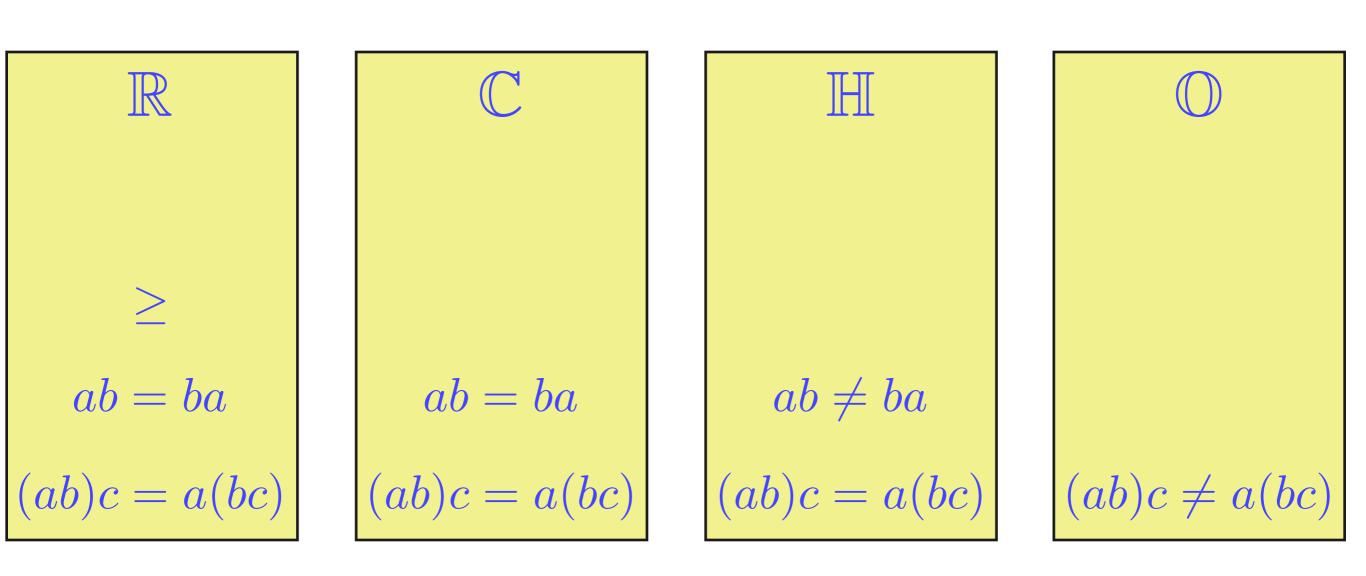
J.F. Adams

This talk is about a relation between **exceptional** objects:

- Hopf bundles
- exceptional Lie algebras

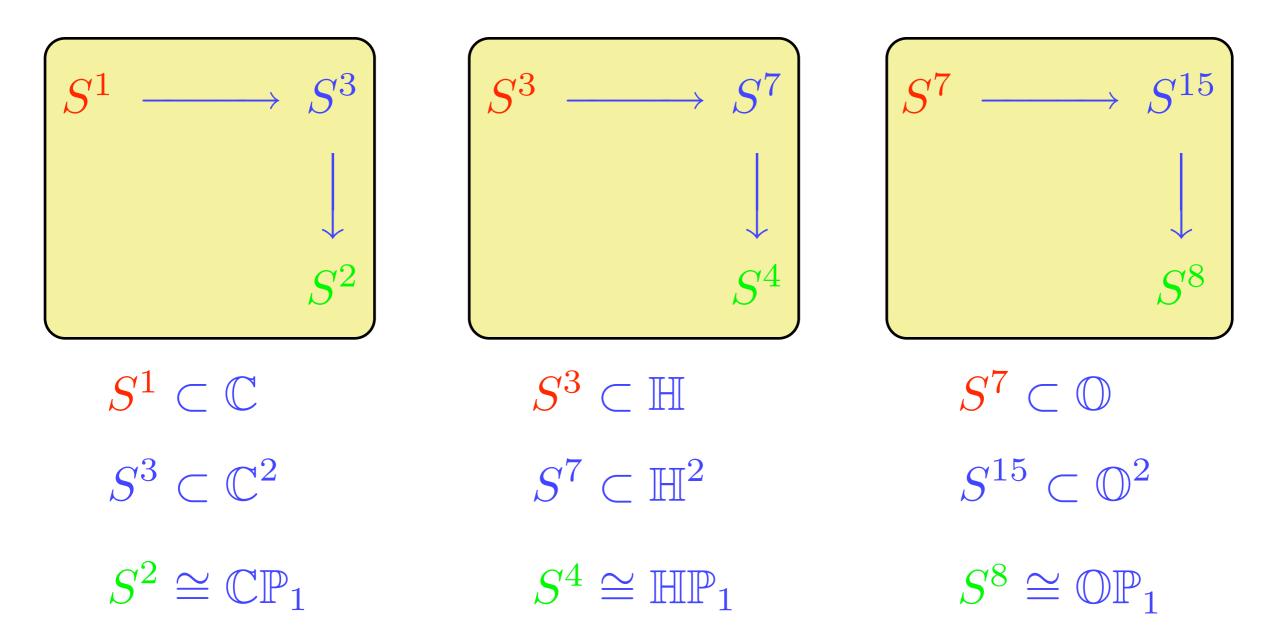
using a **geometric** construction familiar from **supergravity**: the **Killing** (**super)algebra**.

Real division algebras



These are all the euclidean normed real division algebras. [Hurwitz]

Hopf fibrations



These are the only examples of fibre bundles where all three spaces are spheres. [Adams]

Simple Lie algebras

(over \mathbb{C})

4 classical series:

$$A_{n\geq 1}$$
 $SU(n+1)$

$$B_{n>2}$$
 $SO(2n+1)$

$$C_{n\geq 3}$$
 $Sp(n)$

$$D_{n\geq 4}$$
 $SO(2n)$

5 exceptions:

 G_2 14

 F_4 52

 E_6 78

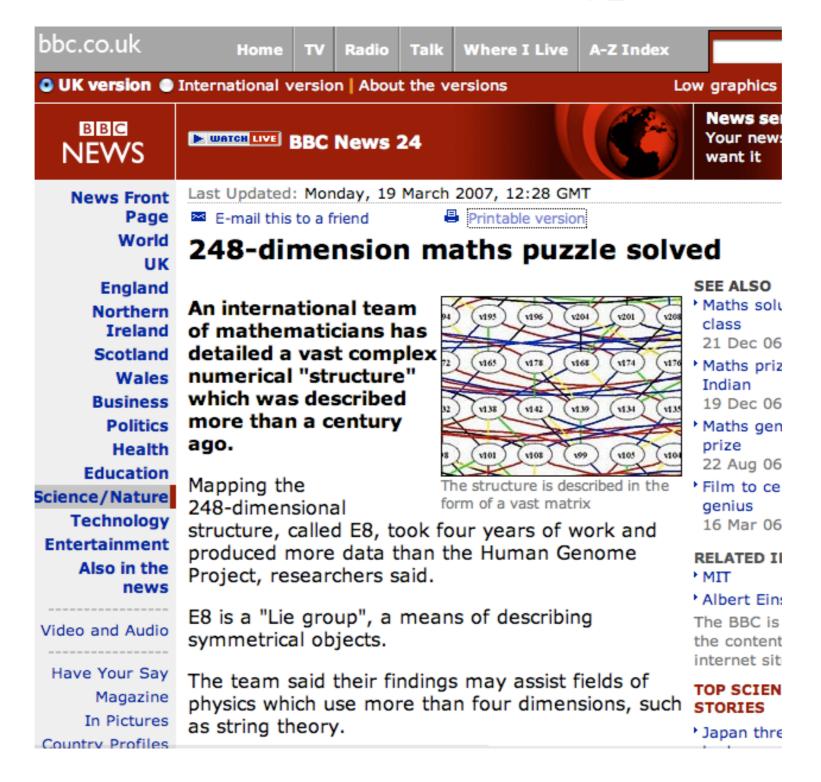
 E_7 133

 E_8 248

[Lie]

[Killing, Cartan]

Mathematical hype?



http://news.bbc.co.uk/1/hi/sci/tech/6466129.stm

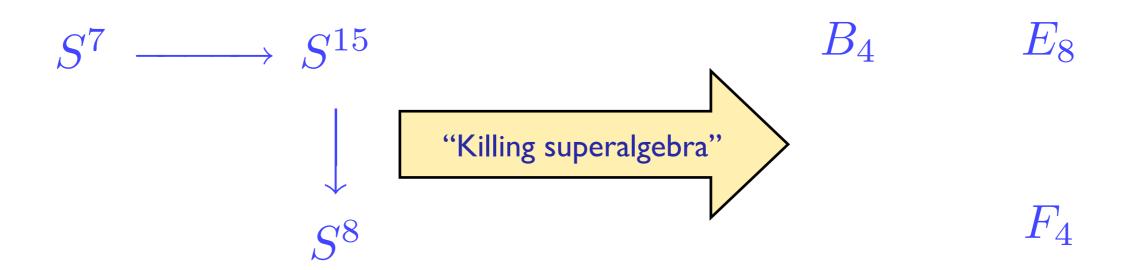
Supergravity

A supergravity background consists of a **lorentzian** spin manifold with additional geometric data, together with a notion of Killing spinor.

These spinors together with the infinitesimal automorphisms of the geometry generate the **Killing** superalgebra.

This is a useful invariant of the background.

Applying the Killing superalgebra construction to the exceptional Hopf fibration, one obtains a triple of exceptional Lie algebras:



plane of numbers.

Rules of Multiplication in an Algebra of n units.

In general, if we in iterating by Trushits, $\iota_1, \iota_2, \ldots \iota_n$, such the $\iota_r^2 = -1$, $\iota_r \iota_s = -\iota_s \iota_r$, a product of m linear factors will contain terms which are all of even order if m is even, and all of odd order if m is odd; for the such that $\iota_r^2 = -1$ is even.

plane of numbers.

Rules of Multiplication in an Algebra of n units.

In general, if we consider an algebra of n units, $\iota_1, \iota_2, \ldots \iota_n$, such that $\iota_r^2 = -1$, $\iota_r \iota_s = -\iota_s \iota_r$, a product of m linear factors will consider an algebra of n units, n and n is even, and all of odd order if

plane of numbers.

Rules of Multiplication in an Algebra of n ur

In general, if we consider an algebra of n units, ι_1 , ι_2 , . Clifforthan the $\iota_r^2 = -1$, $\iota_r \iota_s = -\iota_s \iota_r$, a product of m linear factors will contain terms which are all of even order if m is even, and all of odd order if m is odd; for the second contains the second

Clifford algebras

$$V^n \qquad \langle -, - \rangle$$

real euclidean vector space

$$C\ell(V) = rac{igotimes V}{\langle m{v} \otimes m{v} + |m{v}|^2 \mathbf{1}
angle}$$
 filtered associative algebra

$$C\ell(V) \cong \Lambda V$$

(as vector spaces)

$$C\ell(V) = C\ell(V)_0 \oplus C\ell(V)_1$$

$$C\ell(V)_0 \cong \Lambda^{\text{even}}V$$

$$C\ell(V)_1 \cong \Lambda^{\text{odd}}V$$

orthonormal frame

$$e_1,\ldots,e_n$$

$$\boldsymbol{e}_i \boldsymbol{e}_j + \boldsymbol{e}_j \boldsymbol{e}_i = -2\delta_{ij} \mathbf{1}$$

$$C\ell\left(\mathbb{R}^n\right) =: C\ell_n$$

Examples:

$$C\ell_0 = \langle \mathbf{1} \rangle \cong \mathbb{R}$$

$$C\ell_1 = \left\langle \mathbf{1}, \boldsymbol{e}_1 \middle| \boldsymbol{e}_1^2 = -\mathbf{1} \right\rangle \cong \mathbb{C}$$

$$C\ell_2 = \langle \mathbf{1}, \mathbf{e}_1, \mathbf{e}_2 | \mathbf{e}_1^2 = \mathbf{e}_2^2 = -\mathbf{1}, \mathbf{e}_1 \mathbf{e}_2 = -\mathbf{e}_2 \mathbf{e}_1 \rangle \cong \mathbb{H}$$

Classification

n	$C\ell_n$
0	\mathbb{R}
1	\mathbb{C}
2	\mathbb{H}
3	$\mathbb{H} \oplus \mathbb{H}$
4	$\mathbb{H}(2)$
5	$\mathbb{C}(4)$
6	$\mathbb{R}(8)$
7	$\mathbb{R}(8)\oplus\mathbb{R}(8)$

Bott periodicity:

$$C\ell_{n+8} \cong C\ell_n \otimes \mathbb{R}(16)$$

$$C\ell_9 \cong \mathbb{C}(16)$$

$$C\ell_{16} \cong \mathbb{R}(256)$$

From this table one can read the type and dimension of the irreducible representations.

 $C\ell_n$ has a **unique** irreducible representation if n is even and **two** if n is odd.

They are distinguished by the action of

$$e_1e_2\cdots e_n$$

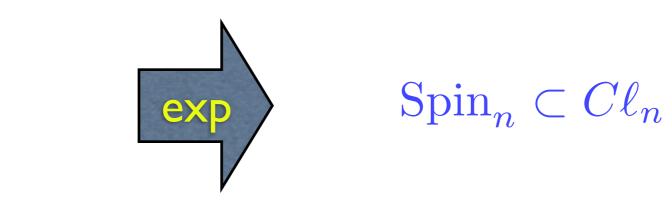
which is **central** for n odd.

Notation: \mathfrak{M}_n or \mathfrak{M}_n^{\pm} Clifford modules

$$\dim \mathfrak{M}_n = 2^{\lfloor n/2 \rfloor}$$

Spinor representatinos

$$egin{aligned} oldsymbol{\mathfrak{so}}_n &
ightarrow C\ell_n \ oldsymbol{e}_i \wedge oldsymbol{e}_j &
ightarrow -rac{1}{2}oldsymbol{e}_ioldsymbol{e}_j \end{aligned}$$



$$\operatorname{Spin}_n \subset C\ell_n$$

$$s \in \mathrm{Spin}_n, \quad \boldsymbol{v} \in \mathbb{R}^n$$

$$oldsymbol{v} \in \mathbb{R}^n$$

$$\implies svs^{-1} \in \mathbb{R}^n$$

which defines a 2-to-1 map $\operatorname{Spin}_n \to \operatorname{SO}_n$

$$\mathrm{Spin}_n \to \mathrm{SO}_n$$

with archetypical example

$$\operatorname{Spin}_{3} \cong \operatorname{SU}_{2} \subset \mathbb{H}$$

$$\downarrow \mathbf{2-1}$$

$$SO_3 \cong SO(Im\mathbb{H})$$

By restriction, every representation of $C\ell_n$ defines a representation of Spin_n :

$$C\ell_n\supset {
m Spin}_n$$
 $\mathfrak{M}=\Delta=\Delta_+\oplus \Delta_ \Delta_\pm$ chiral spinors $\mathfrak{M}^\pm=\Delta$ Δ spinors

One can read off the type of representation from

$$\operatorname{Spin}_{n} \subset (C\ell_{n})_{0} \cong C\ell_{n-1}$$

$$\dim \Delta = 2^{(n-1)/2} \qquad \dim \Delta_{+} = 2^{(n-2)/2}$$

Spinor inner product

(-,-) bilinear form on \triangle

$$(arepsilon_1, arepsilon_2) = \overline{(arepsilon_2, arepsilon_1)}$$
 $(arepsilon_1, oldsymbol{e}_i \cdot arepsilon_2) = -(oldsymbol{e}_i \cdot arepsilon_1, arepsilon_2) = -(oldsymbol{e}_i oldsymbol{e}_j \cdot arepsilon_1, arepsilon_2)$
 $\Longrightarrow (arepsilon_1, oldsymbol{e}_i oldsymbol{e}_j \cdot arepsilon_2) = -(oldsymbol{e}_i oldsymbol{e}_j \cdot arepsilon_1, arepsilon_2)$

which allows us to define $[-,-]:\Lambda^2\Delta\to\mathbb{R}^n$

$$\langle [\varepsilon_1, \varepsilon_2], \boldsymbol{e}_i \rangle = (\varepsilon_1, \boldsymbol{e}_i \cdot \varepsilon_2)$$

Spin manifolds

 M^n differentiable manifold, orientable, spin riemannian metric

$$GL(M) \longleftarrow O(M) \stackrel{w_1 = 0}{\longleftarrow} SO(M) \stackrel{w_2 = 0}{\longleftarrow} Spin(M)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \qquad M \qquad M$$

$$\operatorname{GL}_n \iff \operatorname{O}_n \iff \operatorname{SO}_n \iff \operatorname{Spin}_n$$

Possible Spin(M) are classified by $H^1(M; \mathbb{Z}/2)$.

e.g.,
$$M = S^n \subset \mathbb{R}^{n+1}$$

$$O(M) = O_{n+1}$$

$$SO(M) = SO_{n+1}$$

$$Spin(M) = Spin_{n+1}$$

$$S^n \cong \mathcal{O}_{n+1}/\mathcal{O}_n \cong \mathcal{SO}_{n+1}/\mathcal{SO}_n \cong \mathcal{Spin}_{n+1}/\mathcal{Spin}_n$$

$$\pi_1(M) = \{1\} \implies \text{unique spin structure}$$

Spinor bundles

$$C\ell(TM)$$
 Clifford bundle $C\ell(TM) \cong \Lambda TM$

$$S(M):=\mathrm{Spin}(M) imes_{\mathrm{Spin}_n}\Delta$$
 (chiral) spinor $S(M)_{\pm}:=\mathrm{Spin}(M) imes_{\mathrm{Spin}_n}\Delta_{\pm}$ bundles

We will assume that $C\ell(TM)$ acts on S(M)

The Levi-Cività connection allows us to differentiate spinors

$$\nabla: S(M) \to T^*M \otimes S(M)$$

which in turn allows us to define

parallel spinor

$$\nabla \varepsilon = 0$$

Killing spinor

$$\nabla_X \varepsilon = \lambda X \cdot \varepsilon$$

Killing constant

If (M,g) admits ...



parallel spinors (M,g) is **Ricci-flat**

Killing spinors (M,g) is **Einstein**

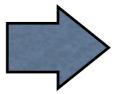
$$R = 4\lambda^2 n(n-1)$$

$$\implies \lambda \in \mathbb{R} \cup i\mathbb{R}$$

Today we only consider **real** λ .

Killing spinors have their origin in supergravity.

The name stems from the fact that they are "square roots" of Killing vectors.



 $arepsilon_1,arepsilon_2$ Killing $[arepsilon_1,arepsilon_2]$ Killing

Which manifolds admit Killing spinors?

Ch. Bär

(M,g)

 $(\overline{M}, \overline{g})$ metric cone

$$\overline{M} = \mathbb{R}^+ \times M$$

$$\overline{M} = \mathbb{R}^+ \times M$$
 $\overline{g} = dr^2 + r^2 g$

Killing spinors in (M,g)

$$\left(\lambda = \pm \frac{1}{2}\right)$$

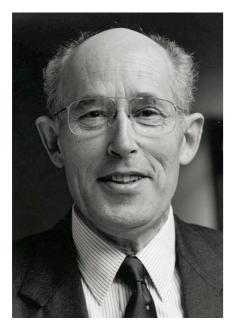
parallel spinors in the cone

More precisely...

If n is **odd**, Killing spinors are in one-to-one correspondence with **chiral** parallel spinors in the cone: the chirality is the **sign** of λ .

If n is **even**, Killing spinors with **both** signs of λ are in one-to-one correspondence with the parallel spinors in the cone, and the sign of λ enters in the relation between the Clifford bundles.

This reduces the problem to one (already solved) about the holonomy group of the cone.



M. Berger

n	Holonomy
n	SO_n
2m	U_m
2m	SU_m
4m	$\operatorname{Sp}_m \cdot \operatorname{Sp}_1$
4m	Sp_m
7	G_2
8	Spin_7

M. Wang

Or else the cone is flat and M is a sphere.

e₊ Killing superalgebra

$$\sum_{i \le 3} \Gamma^i C^{-1} e_i + \frac{3}{\mu} \sum_{i \le 3} I \Gamma^i C^{-1} e_i^* + \frac{6}{\mu} \sum_{i \le 3} I \Gamma^i C^{-$$

$$_{+}C^{-1}e_{-} + \frac{\mu}{6} \sum_{i,j \leq 3} \Gamma_{+}I\Gamma^{ij}C^{-1}M_{ij}$$

$$\frac{\mu}{12} \sum_{12} \Gamma_{+} I \Gamma^{ij} C^{-1} M_{ij}$$
.

Construction of the algebra

(M,g) riemannian spin manifold

$$\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$$

$$\mathfrak{k}_0 = \left\{ \text{Killing vectors} \right\}$$

$$\mathfrak{k}_1 = \left\{ \text{Killing spinors} \right\}$$
 $\left(\text{with } \lambda = \frac{1}{2} \right)$

$$[-,-]:\Lambda^2\mathfrak{k} o \mathfrak{k}$$
 ?

$$[-,-]:\Lambda^2\mathfrak{k}_0\to\mathfrak{k}_0$$

$$[-,-]:\Lambda^2\mathfrak{k}_0\to\mathfrak{k}_0$$
 \(\psi\) [-,-] of vector fields

$$[-,-]:\Lambda^2\mathfrak{k}_1\to\mathfrak{k}_0$$

$$[-,-]:\Lambda^2\mathfrak{k}_1\to\mathfrak{k}_0\qquad \blacktriangleleft g([\varepsilon_1,\varepsilon_2],X)=(\varepsilon_1,X\cdot\varepsilon_2)$$

$$[-,-]:\mathfrak{k}_0\otimes\mathfrak{k}_1 o\mathfrak{k}_1$$

spinorial Lie derivative!

Kosmann

Lichnerowicz

$$X \in \Gamma(TM)$$
 Killing $\mathcal{L}_X g = 0$

$$\mathcal{L}_X g = 0$$

$$A_X := Y \mapsto -\nabla_Y X$$

$$\oplus$$
 $\mathfrak{so}(TM)$

$$\varrho:\mathfrak{so}(TM) \to \operatorname{End}S(M)$$
 spinor representation

$\mathcal{L}_X := abla_X + arrho(A_X)$ spinorial Lie derivative

cf.
$$\mathfrak{L}_X Y = \nabla_X Y + A_X Y = \nabla_X Y - \nabla_Y X = [X, Y]$$

Properties

$$\forall X, Y \in \mathfrak{k}_0, \quad Z \in \Gamma(TM), \quad \varepsilon \in \Gamma(S(M)), \quad f \in C^{\infty}(M)$$

$$\mathfrak{L}_X(Z \cdot \varepsilon) = [X, Z] \cdot \varepsilon + Z \cdot \mathfrak{L}_X \varepsilon$$

$$\mathfrak{L}_X(f\varepsilon) = X(f)\varepsilon + f\mathfrak{L}_X\varepsilon$$

$$[\mathfrak{L}_X, \nabla_Z] \varepsilon = \nabla_{[X,Z]} \varepsilon$$

$$[\mathfrak{L}_X,\mathfrak{L}_Y]arepsilon=\mathfrak{L}_{[X,Y]}arepsilon$$

$$\forall \varepsilon \in \mathfrak{k}_1, X \in \mathfrak{k}_0$$

$$\mathcal{L}_X \varepsilon \in \mathfrak{k}_1$$

$$[-,-]:\mathfrak{k}_0\otimes\mathfrak{k}_1\to\mathfrak{k}_1$$
 $[X,\varepsilon]:=\mathcal{L}_X\varepsilon$

$$[X, \varepsilon] := \mathcal{L}_X \varepsilon$$

The Jacobi identity

Jacobi: $\Lambda^3 \mathfrak{k} \to \mathfrak{k}$

$$(X, Y, Z) \mapsto [X, [Y, Z]] - [[X, Y], Z] - [Y, [X, Z]]$$

4 components:

$$\Lambda^3 \mathfrak{k}_0 \to \mathfrak{k}_0$$

✓ Jacobi for vector fields

$$\Lambda^2 \mathfrak{k}_0 \otimes \mathfrak{k}_1 \to \mathfrak{k}_1$$

$$\Lambda^2 \mathfrak{k}_0 \otimes \mathfrak{k}_1 \to \mathfrak{k}_1 \qquad \checkmark \qquad [\mathfrak{L}_X, \mathfrak{L}_Y] \varepsilon = \mathfrak{L}_{[X,Y]} \varepsilon$$

$$\mathfrak{k}_0 \otimes \Lambda^2 \mathfrak{k}_1 \longrightarrow \mathfrak{k}_0$$

$$\checkmark \quad \mathfrak{L}_X(Z \cdot \varepsilon) = [X, Z] \cdot \varepsilon + Z \cdot \mathfrak{L}_X \varepsilon$$

$$\Lambda^3 \mathfrak{k}_1 \longrightarrow \mathfrak{k}_1$$

$$borevige but $borevige _0$ — equivariant$$

Some examples

$$S^7 \subset \mathbb{R}^8$$

$$\mathfrak{k}_0 = \mathfrak{so}_8$$

$$\mathfrak{k}_0=\mathfrak{so}_8$$
 $\mathfrak{k}_1=\Delta_+$ 28 + 8 = 36

$$28 + 8 = 36$$

$$S^8 \subset \mathbb{R}^9$$

$$\mathfrak{k}_0=\mathfrak{so}_9$$
 $\mathfrak{k}_1=\Delta$ 36 + 16 = 52

$$\mathfrak{k}_1 = \Delta$$

$$36 + 16 = 52$$

$$\mathfrak{f}_4$$

$$S^{15}\subset\mathbb{R}^{16}$$
 $\mathfrak{k}_0=\mathfrak{so}_{16}$ $\mathfrak{k}_1=\Delta_+$ 120+128 = 248

$$\mathfrak{k}_0 = \mathfrak{so}_{16}$$

$$\mathfrak{k}_1 = \Delta_+$$

$$120+128=248$$

In all cases, the Jacobi identity follows from

$$\left(\mathfrak{k}_1\otimes\Lambda^3\mathfrak{k}_1^*\right)^{\mathfrak{k}_0}=\mathbf{0}$$

A sketch of the proof

Two observations:

1) The bijection between Killing spinors and parallel spinors in the cone is equivariant under the action of isometries.

Use the cone to calculate $\mathcal{L}_X \varepsilon$.

2) In the cone, $\mathcal{L}_X \varepsilon = \varrho(A_X) \varepsilon$ and since X is **linear**, the endomorphism A_X is constant.

It is the natural action on spinors.

We then compare with the known constructions.

Alternatively, we appeal to the classification of riemannian symmetric spaces.

These Lie algebras have the following form:

$$\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$$
 \mathfrak{k}_0 Lie algebra
$$\mathfrak{k}_0\text{-representation}$$
 $(-,-)$ $\mathfrak{k}\text{-invariant inner product}$

 K/K_0 symmetric space

Looking up the list, we find the following:

$$F_4/\mathrm{Spin}_9$$

$$E_8/\mathrm{Spin}_{16}$$

with the expected linear isotropy representations.

Open questions

- Other exceptional Lie algebras?
- Other dimensions and/or signatures?
- Are the Killing superalgebras of the Hopf spheres related?
- What structure in the 15-sphere has E8 as automorphisms?

Thank you!