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Supergravity

result of ongoing effort to marry GR and quantum theory

many supergravity theories, painstakingly constructed in
the 1970s and 1980s
“crown jewels of mathematical physics”
the formalism could use some improvement!
The geometric set-up:

(M,g) a lorentzian, spin manifold of dimension 6 11
some extra geometric data, e.g., differential forms F, . . .
a connection D = ∇+ · · · on the spinor (actually Clifford)
bundle S

g, F, . . . are subject to Einstein–Maxwell-like PDEs
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Eleven-dimensional supergravity

Unique supersymmetric theory in d = 11
Nahm (1979), Cremmer+Julia+Scherk (1980)

(bosonic) fields: lorentzian metric g, 3-form A

Field equations from action (with F = dA)

1
2

∫
Rdvol︸ ︷︷ ︸

Einstein–Hilbert

− 1
4

∫
F∧ ?F︸ ︷︷ ︸

Maxwell

+ 1
12

∫
F∧ F∧A︸ ︷︷ ︸

Chern–Simons

Explicitly,

d ? F = 1
2F∧ F

Ric(X, Y) = 1
2〈ιXF, ιYF〉− 1

6g(X, Y)|F|2

together with dF = 0
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Supergravity backgrounds

A triple (M,g, F) where dF = 0 and (g, F) satisfying the
above PDEs is called an (eleven-dimensional)
supergravity background.

There is by now a huge catalogue of eleven-dimensional
supergravity backgrounds:

Freund–Rubin: AdS4 × X7, AdS7 × X4,...
pp-waves
branes: elementary, intersecting, overlapping, wrapped,...
Kaluza–Klein monopoles,...
...

It is convenient to organise this information according to
how much “supersymmetry” the background preserves.
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 4 / 28



Supergravity backgrounds

A triple (M,g, F) where dF = 0 and (g, F) satisfying the
above PDEs is called an (eleven-dimensional)
supergravity background.
There is by now a huge catalogue of eleven-dimensional
supergravity backgrounds:

Freund–Rubin: AdS4 × X7, AdS7 × X4,...
pp-waves
branes: elementary, intersecting, overlapping, wrapped,...
Kaluza–Klein monopoles,...
...

It is convenient to organise this information according to
how much “supersymmetry” the background preserves.
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Supersymmetry

Eleven-dimensional supergravity has local supersymmetry

manifests itself as a connection D on the spinor bundle S
D is not induced from a connection on the spin bundle
the field equations are encoded in the curvature of D:∑

i

ei · RD(ei,−) = 0

geometric analogies:

∇ε = 0 =⇒ Ric = 0
∇Xε =

1
2X · ε =⇒ Einstein

a background (M,g, F) is supersymmetric if there exists a
nonzero spinor field ε satisfying Dε = 0
such spinor fields are called Killing spinors
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 5 / 28



Supersymmetry

Eleven-dimensional supergravity has local supersymmetry
manifests itself as a connection D on the spinor bundle S
D is not induced from a connection on the spin bundle
the field equations are encoded in the curvature of D:∑

i

ei · RD(ei,−) = 0

geometric analogies:
∇ε = 0 =⇒ Ric = 0
∇Xε =

1
2X · ε =⇒ Einstein

a background (M,g, F) is supersymmetric if there exists a
nonzero spinor field ε satisfying Dε = 0
such spinor fields are called Killing spinors
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Killing spinors

Not every manifold admits spinors: so an implicit condition
on (M,g, F) is that M should be spin

The spinor bundle of an eleven-dimensional lorentzian spin
manifold is a real 32-dimensional symplectic vector bundle
The Killing spinor equation is

DXε = ∇Xε+
1

12(X
[ ∧ F) · ε+ 1

6 ιXF · ε = 0

which is a linear, first-order PDE:

linearity: solutions form a vector space
first-order: solutions determined by their values at any point

the dimension of the space of Killing spinors is 0 6 n 6 32
a background is said to be ν-BPS, where ν = n

32
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 6 / 28



Killing spinors

Not every manifold admits spinors: so an implicit condition
on (M,g, F) is that M should be spin
The spinor bundle of an eleven-dimensional lorentzian spin
manifold is a real 32-dimensional symplectic vector bundle
The Killing spinor equation is

DXε = ∇Xε+
1

12(X
[ ∧ F) · ε+ 1

6 ιXF · ε = 0

which is a linear, first-order PDE:
linearity: solutions form a vector space
first-order: solutions determined by their values at any point

the dimension of the space of Killing spinors is 0 6 n 6 32

a background is said to be ν-BPS, where ν = n
32
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Which values of ν are known to appear?

ν = 1 backgrounds are classified
JMF+Papadopoulos (2002)

ν = 31
32 has been ruled out

Gran+Gutowski+Papadopolous+Roest (2006)
JMF+Gadhia (2007)

ν = 15
16 has been ruled out

Gran+Gutowski+Papadopoulos (2010)
No other values of ν have been ruled out
The following values are known to appear:

0, 1
32 , 1

16 , 3
32 , 1

8 , 5
32 , 3

16 , . . . , 1
4 , . . . , 3

8 , . . . , 1
2 ,

. . . , 9
16 , . . . , 5

8 , . . . , 11
16 , . . . , 3

4 , . . . , 1

where the second row are now known to be homogeneous!
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32 has been ruled out

Gran+Gutowski+Papadopolous+Roest (2006)
JMF+Gadhia (2007)
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 7 / 28



Supersymmetries generate isometries

The Dirac current Vε of a Killing spinor ε is defined by

g(Vε,X) = (ε,X · ε)

More generally, if ε1, ε2 are Killing spinors,

g(Vε1,ε2 ,X) = (ε1,X · ε2)

V := Vε is causal: g(V,V) 6 0
V is Killing: LVg = 0
LVF = 0 Gauntlett+Pakis (2002)
LVD = 0
ε ′ Killing spinor =⇒ so is LVε

′ = ∇Vε
′ − ρ(∇V)ε ′

LVε = 0 JMF+Meessen+Philip (2004)
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The Killing superalgebra

This turns the vector space g = g0 ⊕ g1, where

g0 is the space of F-preserving Killing vector fields, and
g1 is the space of Killing spinors

into a Lie superalgebra
JMF+Meessen+Philip (2004)

It is called the symmetry superalgebra of the
supersymmetric background (M,g, F)
The ideal k = [g1, g1]⊕ g1 generated by g1 is called the
Killing superalgebra
It behaves as expected: it deforms under geometric limits
(e.g., Penrose) and it embeds under asymptotic limits.
It is a very useful invariant of a supersymmetric
supergravity background
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 9 / 28



The Killing superalgebra

This turns the vector space g = g0 ⊕ g1, where
g0 is the space of F-preserving Killing vector fields, and
g1 is the space of Killing spinors

into a Lie superalgebra
JMF+Meessen+Philip (2004)

It is called the symmetry superalgebra of the
supersymmetric background (M,g, F)
The ideal k = [g1, g1]⊕ g1 generated by g1 is called the
Killing superalgebra
It behaves as expected: it deforms under geometric limits
(e.g., Penrose) and it embeds under asymptotic limits.
It is a very useful invariant of a supersymmetric
supergravity background
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A crash course on homogeneous geometry
“manifold”: smooth, connected, finite-dimensional

“Lie group”: finite-dimensional with identity 1
G acts on M (on the left) via G×M→M, sending
(γ,p) 7→ γ · p
actions are effective: γ · p = p, ∀p =⇒ γ = 1
M is homogeneous (under G) if either

1 G acts transitively: i.e., there is only one orbit; or
2 for every p ∈M, G→M sending γ 7→ γ · p is surjective
3 given p,p ′ ∈M, ∃γ ∈ G with γ · p = p ′

γ defined up to right multiplication by the stabiliser of p:
H = {γ ∈ G|γ · p = p}, a closed subgroup of G
M ∼= G/H, hence M is a coset manifold
H→ G

↓
M

is a principal H-bundle
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Homogeneous supergravity backgrounds

A diffeomorphism ϕ :M→M is an automorphism of a
supergravity background (M,g, F) if ϕ∗g = g and ϕ∗F = F

Automorphisms form a Lie group G = Aut(M,g, F)
A background (M,g, F) is said to be homogeneous if G
acts transitively on M
Let g denote the Lie algebra of G: it consists of vector fields
X ∈X (M) such that LXg = 0 and LXF = 0
(M,g, F) homogeneous =⇒ the evaluation map
evp : g→ TpM are surjective
The converse is not true in general: if evp are surjective,
then (M,g, F) is locally homogeneous
This is the “right” working notion in supergravity
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The homogeneity theorem

Empirical Fact
Every known ν-BPS background with ν > 1

2 is homogeneous.

Meessen (2004)

Theorem
Every ν-BPS background of eleven-dimensional supergravity
with ν > 1

2 is locally homogeneous.
JMF+Meessen+Philip (2004), JMF+Hustler (2012)

In fact, vector fields in the Killing superalgebra already span the
tangent spaces to every point of M
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Generalisations

Theorem
Every ν-BPS background of type IIB supergravity with ν > 1

2 is
homogeneous.
Every ν-BPS background of type I and heterotic supergravities
with ν > 1

2 is homogeneous.
JMF+Hackett-Jones+Moutsopoulos (2007)

JMF+Hustler (2012)
Every ν-BPS background of six-dimensional (1, 0) and (2, 0)
supergravities with ν > 1

2 is homogeneous.
JMF+Hustler (2013)

The theorems actually prove the strong version of the
conjecture: that the Killing superalgebra acts (locally)
transitively.
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About the six-dimensional theories

Supersymmetric (1, 0) backgrounds have been classified.
Gutowski+Martelli+Reall (2003)

Backgrounds with ν > 1
2 are actually maximally

supersymmetric.
They are self-dual lorentzian Lie groups and hence
homogeneous.

Chamseddine+JMF+Sabra (2003)
So the result was already known, but the new proof is
structural: a “Theorem”, not a “theorem.”
Maximally supersymmetric (2, 0) backgrounds are also
known to be homogeneous, but those with ν > 1

2 are not
necessarily maximally supersymmetric.

José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 14 / 28



About the six-dimensional theories

Supersymmetric (1, 0) backgrounds have been classified.
Gutowski+Martelli+Reall (2003)

Backgrounds with ν > 1
2 are actually maximally

supersymmetric.

They are self-dual lorentzian Lie groups and hence
homogeneous.

Chamseddine+JMF+Sabra (2003)
So the result was already known, but the new proof is
structural: a “Theorem”, not a “theorem.”
Maximally supersymmetric (2, 0) backgrounds are also
known to be homogeneous, but those with ν > 1

2 are not
necessarily maximally supersymmetric.
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Other supergravity theories

Poincaré supergravities either can or cannot be obtained
by dimensional reduction from a higher-dimensional theory.

‘Oxidation’: ν > 1
2 in d dimensions =⇒ ν > 1

2 in d+ 1
Killing spinors in d+ 1 are invariant under the Kaluza–Klein
isometry.
(strong) homogeneity in d+ 1 dimensions implies that the
Killing superalgebra acts locally transitively =⇒ local
homogeneity in d dimensions.
By induction, proving the (strong) homogeneity theorem for
those theories which are maximally ’oxidised’ suffices.

Hustler (in progress)
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 15 / 28



Other supergravity theories
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Poincaré supergravities either can or cannot be obtained
by dimensional reduction from a higher-dimensional theory.
‘Oxidation’: ν > 1

2 in d dimensions =⇒ ν > 1
2 in d+ 1

Killing spinors in d+ 1 are invariant under the Kaluza–Klein
isometry.
(strong) homogeneity in d+ 1 dimensions implies that the
Killing superalgebra acts locally transitively =⇒ local
homogeneity in d dimensions.
By induction, proving the (strong) homogeneity theorem for
those theories which are maximally ’oxidised’ suffices.

Hustler (in progress)
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Poincaré supergravities

32 24 20 16 12 8 4

11 M

10 IIA IIB I

9 N = 2 N = 1

8 N = 2 N = 1

7 N = 4 N = 2

6 (2, 2) (3, 1) (4, 0) (2, 1) (3, 0) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2

4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1
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Idea of proof

The proof consists of two steps:

1 One shows the existence of the Killing superalgebra
k = k0 ⊕ k1

2 One shows that for all p ∈M, evp : k0 → TpM is surjective
whenever dim k1 >

1
2 rank S

This actually only shows local homogeneity.
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What good is it?

The homogeneity theorem implies that classifying
homogeneous supergravity backgrounds also classifies ν-BPS
backgrounds for ν > 1

2 .

This is good because

the supergravity field equations for homogeneous
backgrounds are algebraic and hence simpler to solve than
PDEs
we have learnt a lot (about string theory) from
supersymmetric supergravity backgrounds, so their
classification could teach us even more
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Algebraizing homogeneous geometry
the action of G on M ∼= G/H defines G→ DiffM

the differential g→X (M)

evaluating at p ∈M: exact sequence of H-modules

0 −−−−→ h −−−−→ g −−−−→ TpM −−−−→ 0

linear isotropy representation of H on TpM is defined for
γ ∈ H as (dγ·)p : TpM→ TpM

it agrees with the representation on g/h induced by the
adjoint representation restricted to h

G/H reductive: the sequence splits (as H-modules); i.e.,
g = h⊕m with m an Ad(H)-module
there is a one-to-one correspondence{

Ad(H)-invariant
tensors on m

}
↔
{

H-invariant
tensors on TpM

}
↔
{

G-invariant
tensor fields on M

}
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 19 / 28



Algebraizing homogeneous geometry
the action of G on M ∼= G/H defines G→ DiffM
the differential g→X (M)

evaluating at p ∈M: exact sequence of H-modules

0 −−−−→ h −−−−→ g −−−−→ TpM −−−−→ 0

linear isotropy representation of H on TpM is defined for
γ ∈ H as (dγ·)p : TpM→ TpM

it agrees with the representation on g/h induced by the
adjoint representation restricted to h

G/H reductive: the sequence splits (as H-modules); i.e.,
g = h⊕m with m an Ad(H)-module
there is a one-to-one correspondence{

Ad(H)-invariant
tensors on m

}
↔
{

H-invariant
tensors on TpM

}
↔
{

G-invariant
tensor fields on M

}
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Searching for homogeneous supergravity backgrounds

A homogeneous eleven-dimensional supergravity background
is described algebraically by the data (g, h,γ,ϕ), where

g = h⊕m with dimm = 11
γ is an h-invariant lorentzian inner product on m

ϕ is an h-invariant 4-form ϕ ∈ Λ4m

subject to some algebraic equations which are given purely in
terms of the structure constants of g (and h).

Skip technical details
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Explicit expressions

Choose a basis Xa for h and a basis Yi for m.

This defines
structure constants:

[Xa,Xb] = fab
cXc

[Xa, Yi] = faijYj + faibXb

[Yi, Yj] = fijaXa + fij
kYk

If M is reductive, then faib = 0. We will assume this in what
follows.
The metric and 4-forms are described by h-invariant tensors γij
and ϕijkl.
We raise and lower indices with γij.
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 21 / 28



Explicit expressions

Choose a basis Xa for h and a basis Yi for m. This defines
structure constants:

[Xa,Xb] = fab
cXc

[Xa, Yi] = faijYj + faibXb

[Yi, Yj] = fijaXa + fij
kYk

If M is reductive, then faib = 0. We will assume this in what
follows.
The metric and 4-forms are described by h-invariant tensors γij
and ϕijkl.

We raise and lower indices with γij.
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Homogeneous Hodge/de Rham calculus

The G-invariant differential forms in M = G/H form a
subcomplex of the de Rham complex:

the de Rham differential is given by

(dϕ)jklmn = −f[jk
iϕlmn]i

the codifferential is given by

(δϕ)ijk = −3
2fm[i

nϕm
jk]n − 3Um[i

nϕm
jk]n −Um

mnϕnijk

where Uijk = fi(jk)
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Homogeneous Ricci curvature

Finally, the Ricci tensor for a homogeneous (reductive) manifold
is given by

Rij = −1
2fi

k`fjk` −
1
2fik

`fj`
k + 1

2fik
afaj

k

+ 1
2fjk

afai
k − 1

2fk`
`fkij −

1
2fk`

`fkji +
1
4fk`if

k`
j

It is now a matter of assembling these ingredients to write down
the supergravity field equations in a homogeneous Ansatz.
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Methodology

Classifying homogeneous supergravity backgrounds of a
certain type involves now the following steps:

Classify the desired homogeneous geometries
For each such geometry parametrise the space of invariant
lorentzian metrics (γ1,γ2, . . . ) and invariant closed 4-forms
(ϕ1,ϕ2, . . . )
Plug them into the supergravity field equations to get
(nonlinear) algebraic equations for the γi,ϕi

Solve the equations!
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Homogeneous lorentzian manifolds I
Their classification can seem daunting!

We wish to classify d-dimensional lorentzian manifolds
(M,g) homogeneous under a Lie group G.
Then M ∼= G/H with H a closed subgroup.
One starts by classifying Lie subalgebras h ⊂ g with

codimension d
Lie subalgebras of closed subgroups
leaving invariant a lorentzian inner product on g/h

This is hopeless except in very low dimension.
One can fare better if G is semisimple.

Definition
The action of G on M is proper if the map G×M→M×M,
(γ,m) 7→ (γ ·m,m) is proper (i.e., inverse image of compact is
compact). In particular, proper actions have compact
stabilisers.
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 25 / 28



Homogeneous lorentzian manifolds II
What if the action is not proper?

Theorem (Kowalsky, 1996)
If a simple Lie group acts transitively and non-properly on a
lorentzian manifold (M,g), then (M,g) is locally isometric to
(anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)
If a semisimple Lie group acts transitively and non-properly on a
lorentzian manifold (M,g), then (M,g) is locally isometric to the
product of (anti) de Sitter spacetime and a riemannian
homogeneous space.

This means that we need only classify Lie subalgebras
corresponding to compact Lie subgroups!
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Some recent classification results

Symmetric eleven-dimensional supergravity backgrounds
JMF (2011)

Symmetric type IIB supergravity backgrounds
JMF+Hustler (2012)

Homogeneous M2-duals: g = so(3, 2)⊕ so(N) for N > 4
JMF+Ungureanu (in preparation)
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Summary and outlook

With patience and optimism, some classes of
homogeneous backgrounds can be classified

In particular, we can “dial up” a semisimple G and hope to
solve the homogeneous supergravity equations with
symmetry G
Checking supersymmetry is an additional problem, but
there is an efficient algorithm which has already discarded
many of the symmetric eleven-dimensional backgrounds.

Lischewski (2014), Hustler+Lischewski (in progress)
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José Miguel Figueroa O’Farrill Homogeneous SUGRA Backgrounds 28 / 28



Summary and outlook

With patience and optimism, some classes of
homogeneous backgrounds can be classified
In particular, we can “dial up” a semisimple G and hope to
solve the homogeneous supergravity equations with
symmetry G
Checking supersymmetry is an additional problem, but
there is an efficient algorithm which has already discarded
many of the symmetric eleven-dimensional backgrounds.

Lischewski (2014), Hustler+Lischewski (in progress)
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