Quotients of M-theory vacua

José Figueroa-O'Farrill Edinburgh Mathematical Physics Group School of Mathematics

Abertawe/Swansea, 3 June 2004

• JHEP 12 (2001) 011, hep-th/0110170

• JHEP 12 (2001) 011, hep-th/0110170

• Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206, to appear in ATMP

- JHEP 12 (2001) 011, hep-th/0110170
- Adv. Theor. Math. Phys. 6 (2003) 703-793, hep-th/0208107
- Class. Quant. Grav. 19 (2002) 6147-6174, hep-th/0208108
- hep-th/0401206, to appear in ATMP, and
- hep-th/0402094, to appear in PRD

• fluxbrane backgrounds in type II string theory

- fluxbrane backgrounds in type II string theory
- supersymmetric Clifford–Klein space form problem

- fluxbrane backgrounds in type II string theory
- supersymmetric Clifford–Klein space form problem
- string theory in
 - * time-dependent backgrounds

- fluxbrane backgrounds in type II string theory
- supersymmetric Clifford–Klein space form problem
- string theory in
 - * time-dependent backgrounds, and
 - causally singular backgrounds

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

• dilatonic version in supergravity

[Gibbons–Maeda (1988)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

• describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

• $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]

• $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$, or $\mathbb{R}^{1,10}/\Gamma$

axisymmetric solution of d=4 Einstein–Maxwell theory
 [Melvin (1964)]

describes a gravitationally stable universe of flux

- dilatonic version in supergravity [Gibbons-Maeda (1988)]
- Kaluza–Klein reduction of a flat five-dimensional spacetime
 [F. Dowker et al. (1994)]
- $\mathbb{R}^{1,4}/\Gamma$, with $\Gamma \cong \mathbb{R}$, or $\mathbb{R}^{1,10}/\Gamma \implies$ IIA fluxbranes

• (M, g, F, ...) a supergravity background

- (M, g, F, ...) a supergravity background
- symmetry group *G*

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F, ...
- determine all quotient supergravity backgrounds M/Γ

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ***** spin structure

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry

- (M, g, F, ...) a supergravity background
- symmetry group G—<u>not</u> just isometries, but also preserving F,...
- determine all quotient supergravity backgrounds M/Γ , where $\Gamma \subset G$ is a one-parameter subgroup, paying close attention to:
 - ★ smoothness,
 - ★ causal regularity,
 - ★ spin structure,
 - ★ supersymmetry,...

5

- (M, g, F, ...)
- symmetries

- (M, g, F, \ldots)
- symmetries

 $f:M\xrightarrow{\cong} M$

- (M, g, F, \ldots)
- symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g$$

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M \qquad f^*g = g \qquad f^*F = F$$

• (M, g, F, \ldots)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G

• (M, g, F, ...)

symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• (M, g, F, ...)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

• (M, g, F, ...)

• symmetries

$$f: M \xrightarrow{\cong} M$$
 $f^*g = g$ $f^*F = F$...

define a Lie group G, with Lie algebra \mathfrak{g}

• $X \in \mathfrak{g}$ defines a one-parameter subgroup

 $\Gamma = \{ \exp(tX) \mid t \in \mathbb{R} \}$

$$\mathcal{L}_{\xi_X}g = 0$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \ \Gamma \cong S^1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

 $\star \Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

★ $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ ★ $\Gamma \cong \mathbb{R}$

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\overline{\exp(TX)} = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

$$\mathcal{L}_{\xi_X} g = 0 \qquad \mathcal{L}_{\xi_X} F = 0 \qquad \dots$$

whose integral curves are the orbits of Γ

• two possible topologies:

* $\Gamma \cong S^1$, if and only if $\exists T > 0$ such that $\exp(TX) = 1$ * $\Gamma \cong \mathbb{R}$, otherwise

• we are interested in the orbit space M/Γ

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction

• $\Gamma \cong \mathbb{R}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

 $\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

 $\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

$$\star$$
 Kaluza–Klein reduction by Γ/Γ_L

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z}$

- $\Gamma \cong S^1$: M/Γ is standard Kaluza–Klein reduction
- $\Gamma \cong \mathbb{R}$: quotient performed in two steps:
 - \star discrete quotient M/Γ_L , where L > 0 and

$$\Gamma_L = \{ \exp(nLX) \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

* Kaluza–Klein reduction by $\Gamma/\Gamma_L \cong \mathbb{R}/\mathbb{Z} \cong S^1$

• we may stop after the first step

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M

• we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - $\star M$ static, but M/Γ_L time-dependent

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - \star M causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
 - \star M supersymmetric, but M/Γ_L breaking all supersymmetry

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star *M* static, but M/Γ_L time-dependent
 - $\star~M$ causally regular, but M/Γ_L causally singular
 - $\star~M$ spin, but M/Γ_L not spin
 - \star M supersymmetric, but M/Γ_L breaking all supersymmetry
- M an exact string background

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - $\star M$ static, but M/Γ_L time-dependent
 - $\star~M$ causally regular, but M/Γ_L causally singular
 - $\star~M$ spin, but M/Γ_L not spin
 - $\star~M$ supersymmetric, but M/Γ_L breaking all supersymmetry
- M an exact string background \implies so is the "orbifold" M/Γ_L

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - \star M static, but M/Γ_L time-dependent
 - $\star~M$ causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
 - $\star~M$ supersymmetric, but M/Γ_L breaking all supersymmetry
- M an exact string background \implies so is the "orbifold" M/Γ_L
- ... can use orbifolds to study time-dependent phenomena in string theory

- we may stop after the first step: obtaining backgrounds M/Γ_L locally isometric to M, but often with very different global properties, e.g.,
 - $\star M$ static, but M/Γ_L time-dependent
 - $\star~M$ causally regular, but M/Γ_L causally singular
 - $\star M$ spin, but M/Γ_L not spin
 - $\star M$ supersymmetric, but M/Γ_L breaking all supersymmetry
- M an exact string background \implies so is the "orbifold" M/Γ_L

.: can use orbifolds to study time-dependent phenomena in string theory; e.g., the nullbrane [Liu-Moore-Seiberg, hep-th/0206182]

• (M, g, F, ...) with symmetry group G

• (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ give rise to equivalent quotients

- (M, g, F, ...) with symmetry group G, Lie algebra \mathfrak{g}
- $X, X' \in \mathfrak{g}$ give rise to equivalent quotients if and only if

$$X' = \lambda g X g^{-1} \qquad g \in G \quad \lambda \in \mathbb{R}^{\times}$$

• (M, g, F, ...) a supersymmetric background

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ How much supersymmetry will the quotient M/Γ preserve?

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_a\xi_b\Gamma^{ab}\varepsilon$$

- (M, g, F, ...) a supersymmetric background
- Γ a one-parameter subgroup of symmetries, with Killing vector ξ
 How much supersymmetry will the quotient M/Γ preserve?
 In supergravity: Γ-invariant Killing spinors:

$$\mathcal{L}_{\xi}\varepsilon = \nabla_{\xi}\varepsilon + \frac{1}{8}\nabla_{a}\xi_{b}\Gamma^{ab}\varepsilon = 0$$

purely geometric backgrounds

purely geometric backgrounds, with product geometry

 $(M^4 imes N^7, g \oplus h)$

purely geometric backgrounds, with product geometry

 $(M^4 imes N^7, g \oplus h)$ and $F \propto \operatorname{dvol}_g$

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

• field equations $\iff (M,g)$ and (N,h) are Einstein

• supersymmetry

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

$$abla_a arepsilon = \lambda \Gamma_a arepsilon$$

• purely geometric backgrounds, with product geometry $(M^4 imes N^7, g \oplus h)$ and $F \propto {
m dvol}_g$

- field equations $\iff (M,g)$ and (N,h) are Einstein
- supersymmetry $\iff (M,g)$ and (N,h) admit geometric Killing spinors:

 $abla_a \varepsilon = \lambda \Gamma_a \varepsilon \quad \text{where } \lambda \in \mathbb{R}^{\times}$

• (M,g) admits geometric Killing spinors

 $\widehat{M} = \mathbb{R}^+ \times M$

 $\widehat{M} = \mathbb{R}^+ imes M$ and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

 $\widehat{M} = \mathbb{R}^+ \times M$ and $\widehat{g} = \overline{dr^2 + 4\lambda^2 r^2}g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

$$\widehat{M} = \mathbb{R}^+ imes M$$
 and $\widehat{g} = dr^2 + 4\lambda^2 r^2 g$,

admits parallel spinors: $\nabla \hat{\varepsilon} = 0$

[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)[hep-th/9902066]

• (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

 $AdS_4 \times S^7$

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 \times S^7$$
 and $S^4 \times \mathrm{AdS}_7$,

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4\! imes\!S^7$$
 and $S^4\! imes\!\mathrm{AdS}_7$,

the cones of each factor are flat

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4\! imes\!S^7$$
 and $S^4\! imes\!\mathrm{AdS}_7$,

- the cones of each factor are flat:
- \star cone of S^n is \mathbb{R}^{n+1}

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 imes S^7$$
 and $S^4 imes \mathrm{AdS}_7$,

the cones of each factor are flat:

$$\star$$
 cone of S^n is \mathbb{R}^{n+1}

 \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$

- (M,g) riemannian $\implies (\widehat{M},\widehat{g})$ riemannian
- $(M^{1,n-1},g)$ lorentzian $\implies (\widehat{M},\widehat{g})$ has signature (2,n-1)
- for the maximally supersymmetric Freund–Rubin backgrounds,

$$\mathrm{AdS}_4 imes S^7$$
 and $S^4 imes \mathrm{AdS}_7$,

the cones of each factor are flat:

$$\star$$
 cone of S^n is \mathbb{R}^{n+1}

- \star cone of AdS_{1+p} is (a domain in) $\mathbb{R}^{2,p}$
- the problem reduces to one of flat spaces!

• $X \in \mathfrak{so}(p,q)$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_i X_i$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

$$\mathbb{R}^{p+q} = \bigoplus_i \mathbb{V}_i$$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• $X \in \mathfrak{so}(p,q) \iff X : \mathbb{R}^{p+q} \to \mathbb{R}^{p+q}$ linear, skew-symmetric relative to $\langle -, - \rangle$ of signature (p,q)

• $X = \sum_{i} X_{i}$ relative to an orthogonal decomposition

 $\mathbb{R}^{p+q} = \bigoplus_{i} \mathbb{V}_i \qquad \text{with } \mathbb{V}_i \text{ indecomposable}$

• we need to determine the elementary blocks

We are all familiar with the lorentzian elementary blocks

We are all familiar with the lorentzian elementary blocks:

• (0,2)

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0)

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

 $B^{(0,2)}(arphi)$

We are all familiar with the lorentzian elementary blocks:

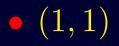
• (0,2) and also (2,0), rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi)$$

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$



We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

• (1,1), boost

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

• (1,1), boost

 $B^{(1,1)}(eta)$

We are all familiar with the lorentzian elementary blocks:

• (0,2) and also (2,0), rotation

$$B^{(0,2)}(\varphi) = B^{(2,0)}(\varphi) = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

• (1,1), boost

$$B^{(1,1)}(\beta) = \begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$$

• (1,2)

16

• (1,2) and also (2,1)

• (1,2) and also (2,1), null rotation

• (1,2) and also (2,1), null rotation

 $B^{(1,2)}$

• (1,2) and also (2,1), null rotation

$$B^{(1,2)} = B^{(2,1)}$$

• (1,2) and also (2,1), null rotation

$$B^{(1,2)} = B^{(2,1)} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

• (2,2), "rotation" in a totally null plane

• (2,2), "rotation" in a totally null plane

 $B_{\pm}^{(2,2)}$

• (2,2), "rotation" in a totally null plane

$$B_{\pm}^{(2,2)} = \begin{bmatrix} 0 & \mp 1 & 1 & 0 \\ \pm 1 & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 \\ 0 & \pm 1 & -1 & 0 \end{bmatrix}$$

$$B_{\pm}^{(2,2)}(\beta > 0)$$

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$

$$B_{\pm}^{(2,2)}(\beta > 0) = \begin{bmatrix} 0 & \mp 1 & 1 & -\beta \\ \pm 1 & 0 & \pm \beta & \mp 1 \\ -1 & \mp \beta & 0 & 1 \\ \beta & \pm 1 & -1 & 0 \end{bmatrix}$$

The associated discrete quotient of AdS_3 yields the extremal BTZ black hole; the non-extremal black hole is obtained from $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2)$, for $|\beta_1| \neq |\beta_2|$

[Bañados–Henneaux–Teitelboim–Zanelli, gr-qc/9302012]

$$B_{\pm}^{(2,2)}(\varphi)$$

$$B_{\pm}^{(2,2)}(\varphi) = \begin{bmatrix} 0 & \mp 1 \pm \varphi & 1 & 0 \\ \pm 1 \mp \varphi & 0 & 0 & \mp 1 \\ -1 & 0 & 0 & 1 + \varphi \\ 0 & \pm 1 & -1 - \varphi & 0 \end{bmatrix}$$

• (2,2), self-dual boost + antiself-dual rotation

• (2,2), self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0)$$

• (2,2), self-dual boost + antiself-dual rotation

$$B_{\pm}^{(2,2)}(\beta > 0, \varphi > 0) = \begin{bmatrix} 0 & \pm \varphi & 0 & -\beta \\ \mp \varphi & 0 & \pm \beta & 0 \\ 0 & \mp \beta & 0 & -\varphi \\ \beta & 0 & \varphi & 0 \end{bmatrix}$$

• (2,3), deformation of $B_{+}^{(2,2)}$ by a null rotation in a perpendicular direction

• (2,3), deformation of $B_{+}^{(2,2)}$ by a null rotation in a perpendicular direction

 $B^{(2,3)}$

• (2,3), deformation of $B_{+}^{(2,2)}$ by a null rotation in a perpendicular direction

$$B^{(2,3)} = \begin{bmatrix} 0 & 1 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

• (2, 4), double null rotation + simultaneous rotation

• (2, 4), double null rotation + simultaneous rotation

$B^{(2,4)}_{\pm}(arphi)$

• (2, 4), double null rotation + simultaneous rotation

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp \varphi & 0 & 0 & -1 & 0 \\ \pm \varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

• (2,4), double null rotation + simultaneous rotation

$$B_{\pm}^{(2,4)}(\varphi) = \begin{bmatrix} 0 & \mp \varphi & 0 & 0 & -1 & 0 \\ \pm \varphi & 0 & 0 & 0 & 0 & \mp 1 \\ 0 & 0 & 0 & \varphi & -1 & 0 \\ 0 & 0 & -\varphi & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & 0 & \varphi \\ 0 & \pm 1 & 0 & 1 & -\varphi & 0 \end{bmatrix}$$

and now we simply play

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

• Killing vectors on $AdS_{1+p} \times S^q$ decompose

$$\xi = \xi_A + \xi_S$$

whose norms add

 $\|\xi\|^2 = \|\xi_A\|^2 + \|\xi_S\|^2$

$R^2 M^2 \ge \|\xi_S\|^2$

•
$$S^q$$
 is compact \Longrightarrow

 $R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

•
$$S^q$$
 is compact \Longrightarrow

$$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$$

and if q is odd

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

•
$$S^q$$
 is compact \Longrightarrow

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $\mathrm{AdS}_{1+p} imes S^{2k+1}$

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u>

$R^2 M^2 \ge \|\xi_S\|^2 \ge R^2 m^2$

and if q is odd, m^2 can be > 0

• ξ can be everywhere spacelike on $\operatorname{AdS}_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is bounded below and ξ_S has no zeroes

 $R^2 \overline{M^2} \ge \|\xi_S\|^2 \ge R^2 \overline{m^2}$

and if q is odd, m^2 can be > 0

- ξ can be everywhere spacelike on $AdS_{1+p} \times S^{2k+1}$, even if ξ_A is not spacelike everywhere, provided that $\|\xi_A\|^2$ is <u>bounded below</u> and ξ_S has no zeroes
- it is convenient to distinguish Killing vectors according to norm

everywhere non-negative norm

• everywhere non-negative norm:

 $\star \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
 - $\star \oplus_i B^{(0,2)}(\varphi_i)$ $\star B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$

- $\begin{array}{l} \star \oplus_{i} B^{(0,2)}(\varphi_{i}) \\ \star B^{(1,1)}(\beta_{1}) \oplus B^{(1,1)}(\beta_{2}) \oplus_{i} B^{(0,2)}(\varphi_{i}), \text{ if } |\beta_{1}| = |\beta_{2}| \end{array}$
- everywhere non-negative norm:

- everywhere non-negative norm:

- everywhere non-negative norm:
 - $\star \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,1)}(eta_1) \oplus B^{(1,1)}(eta_2) \oplus_i B^{(0,2)}(arphi_i)$, if $|eta_1| = |eta_2|$
 - $\star B^{(1,2)} \oplus_i B^{(0,2)}(\varphi_i)$
 - $\star B^{(1,2)} \oplus B^{(1,2)} \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:

• everywhere non-negative norm:

norm bounded below

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(arphi) \oplus_i B^{(0,2)}(arphi_i)$, if p is even

- everywhere non-negative norm:
- norm bounded below:
 - $\star B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - $\begin{array}{l} \star \ B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}, \ \overline{\text{if } p \text{ is even and } |\varphi_i| \ge \varphi > 0 \text{ for all } i \\ \star \ B^{(2,2)}_{\pm}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)} \end{array}$

- everywhere non-negative norm:
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i

- everywhere non-negative norm:
- norm bounded below:
 - * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if p is even and $|\varphi_i| \ge \varphi > 0$ for all i* $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, if $|\varphi_i| \ge |\varphi| \ge 0$ for all i
- arbitrarily negative norm

- everywhere non-negative norm:
- norm bounded below:
 - $\begin{array}{l} \star \ B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\overline{\varphi_i}), \text{ if } p \text{ is even and } |\varphi_i| \geq \overline{\varphi} > 0 \text{ for all } i \\ \star \ B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i), \text{ if } |\varphi_i| \geq |\varphi| \geq 0 \text{ for all } i \end{array}$
- arbitrarily negative norm: the rest!

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star \begin{array}{c} B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array} \end{array}$

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0 \\ ★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $\overline{B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)}$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(\overline{0,2})}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes

- $★ B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i), \text{ unless } |\beta_1| = |\beta_2| > 0 \\ ★ B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i \overline{B^{(0,2)}(\varphi_i)}$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i \overline{B^{(0,2)}(\varphi_i)}$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star \begin{array}{c} B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i) \end{array}$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS

- * $B^{(1,1)}(\beta_1) \oplus B^{(1,1)}(\beta_2) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\beta_1| = |\beta_2| > 0$ * $B^{(1,2)} \oplus B^{(1,1)}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,0)}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless p is even and $|\varphi_i| \ge |\varphi|$ for all i* $B^{(2,1)} \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,2)}_{\pm}(\beta) \oplus_i B^{(0,2)}(\varphi_i)$
- * $B^{(2,2)}_{\pm}(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$, unless $|\varphi_i| \ge \varphi > 0$ for all i
- $\star B^{(2,2)}_{\pm}(\beta,\varphi) \oplus_i B^{(0,2)}(\varphi_i)$
- $\star B^{(2,3)} \oplus_i B^{(0,2)}(\varphi_i) \\ \star B^{(2,4)}_+(\varphi) \oplus_i B^{(0,2)}(\varphi_i)$

Some of these give rise to higher-dimensional BTZ-like black holes: quotient only a part of AdS and check that the boundary thus introduced lies behind a horizon.

• $\xi = \xi_A + \xi_S$ a Killing vector in $\mathrm{AdS}_{1+p} \times S^{2k+1}$

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$

• $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup Γ

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup Γ_L

Discrete quotients with CTCs

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup $\Gamma_L \cong \mathbb{Z}$

Discrete quotients with CTCs

- $\xi = \xi_A + \xi_S$ a Killing vector in $AdS_{1+p} \times S^{2k+1}$, with $\|\xi\|^2 > 0$ but $\|\xi_A\|$ not everywhere spacelike
- the corresponding one-parameter subgroup $\Gamma \cong \mathbb{R}$
- pick L > 0 and consider the cyclic subgroup $\Gamma_L \cong \mathbb{Z}$ generated by

 $\gamma = \exp(LX)$

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L

• the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$

- the "orbifold" of $\mathrm{AdS}_{1+p} imes S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N \gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N \gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N \gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive curvature

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N \gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive curvature
 - \star Bonnet-Myers Theorem $\implies N$ is compact

- the "orbifold" of $AdS_{1+p} \times S^{2k+1}$ by Γ_L contains CTCs
- idea of the proof: find a timelike curve which connects a point x to its image $\gamma^N x$ for $N\gg 1$
- e.g., a Z-quotient of a lorentzian cylinder
- the same argument applies to certain brane backgrounds, and also to any Freund–Rubin background $M \times N$, where M is lorentzian admitting such isometries and N is complete:
 - $\star N$ is Einstein with positive curvature
 - * Bonnet-Myers Theorem $\implies N$ is compact \implies has bounded diameter

- geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$

• geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$, where M is lorentzian Einstein–Sasaki

• geometrical CTCs are also natural in certain kinds of supersymmetric Freund–Rubin backgrounds $M \times N$, where M is lorentzian Einstein–Sasaki: timelike circle bundles over Kähler-Einstein spin manifolds

[FO-Leitner-Simón, to appear]

- there are many families of smooth supersymmetric reductions of ${\rm AdS}_4 \times S^7$

• there are many families of smooth supersymmetric reductions of ${
m AdS}_4 imes S^7$, $S^4 imes {
m AdS}_7$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3$

• there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

• $\frac{9}{16}$ -BPS IIA backgrounds

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS AdS₄ × \mathbb{CP}^3 background of IIA [Duff-Lü-Pope, hep-th/9704186]
- $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA

[Duff-Lü-Pope, hep-th/9704186]

• $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$ by

 $B^{(2,2)}_{+}$

- there are many families of smooth supersymmetric reductions of $AdS_4 \times S^7$, $S^4 \times AdS_7$, $AdS_5 \times S^5$, and $AdS_3 \times S^3 \times \mathbb{R}^4$.
- $\frac{3}{4}$ -BPS $AdS_4 \times \mathbb{CP}^3$ background of IIA [Duff-Lü-Pope, hep-th/9704186]
- $\frac{9}{16}$ -BPS IIA backgrounds: reductions of $AdS_4 \times S^7$ by

$$B_{+}^{(2,2)} \oplus \varphi(R_{12} + R_{34} + R_{56} - R_{78})$$

• a half-BPS IIA background: reduction of $S^4 imes { m AdS}^7$

• a half-BPS IIA background: reduction of $S^4 \times AdS^7$ by a double null rotation

• a half-BPS IIA background: reduction of $S^4 \times AdS^7$ by a double null rotation

 $B^{(1,2)}\oplus B^{(1,2)}$

• a half-BPS IIA background: reduction of $S^4 \times \text{AdS}^7$ by a double null rotation

 $B^{(1,2)} \oplus B^{(1,2)}$

• a family of half-BPS IIA backgrounds

• a half-BPS IIA background: reduction of $S^4 \times \mathrm{AdS}^7$ by a double null rotation

 $B^{(1,2)} \oplus B^{(1,2)}$

• a family of half-BPS IIA backgrounds: reductions of $S^4 imes {
m AdS}^7$

• a half-BPS IIA background: reduction of $S^4 \times \text{AdS}^7$ by a double null rotation

$$B^{(1,2)}\oplus B^{(1,2)}$$

• a family of half-BPS IIA backgrounds: reductions of $S^4 imes ext{AdS}^7$ by $B^{(1,1)}(eta) \oplus B^{(1,1)}(eta) \oplus B^{(0,2)}(arphi) \oplus B^{(0,2)}(-arphi)$ • a half-BPS IIA background: reduction of $S^4 \times \text{AdS}^7$ by a double null rotation

$$B^{(1,2)}\oplus B^{(1,2)}$$

 a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇ /Γ)
 • a half-BPS IIA background: reduction of $S^4 \times \text{AdS}^7$ by a double null rotation

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇/Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$

• a half-BPS IIA background: reduction of $S^4 \times \text{AdS}^7$ by a double null rotation

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇/Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$: near-horizon geometries of the supersymmetric rotating black holes

• a half-BPS IIA background: reduction of $S^4 \times AdS^7$ by a double null rotation

$$B^{(1,2)}\oplus B^{(1,2)}$$

- a family of half-BPS IIA backgrounds: reductions of S⁴ × AdS⁷ by
 B^(1,1)(β) ⊕ B^(1,1)(β) ⊕ B^(0,2)(φ) ⊕ B^(0,2)(-φ)
 Both these half-BPS quotients are of the form S⁴ × (AdS₇ /Γ)
- a number of maximally supersymmetric reductions of $AdS_3 \times S^3$: near-horizon geometries of the supersymmetric rotating black holes, including over-rotating cases

reductions which break no supersymmetry are rare

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group, and the Killing vectors are left-invariant

• reductions which break no supersymmetry are rare: this is intimately linked to the fact that $AdS_3 \times S^3$ is a lorentzian Lie group, and the Killing vectors are left-invariant

[Chamseddine-FO-Sabra, hep-th/0306278]

• yields Freund–Rubin background of IIB

 $\overline{\mathrm{AdS}}_3 \times S^3 \times X^4$

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

equations of motion

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

• supersymmetry

• yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

• supersymmetry $\implies X$ admits parallel spinors

yields Freund–Rubin background of IIB

 $\mathrm{AdS}_3 \times S^3 \times X^4$

• equations of motion $\implies X$ Ricci-flat

• supersymmetry $\implies X$ admits parallel spinors $\implies X$ flat or hyperkähler

• only consider actions on $AdS_3 \times S^3$

- only consider actions on $AdS_3 imes S^3$
- $\xi = \xi_A + \xi_S$

- only consider actions on $AdS_3 \times S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike

- only consider actions on $AdS_3 \times S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ★ smooth quotients

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ***** smooth quotients
 - ★ supersymmetric quotients

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ***** smooth quotients
 - * supersymmetric quotients
- there are two classes

- only consider actions on $\mathrm{AdS}_3 imes S^3$
- $\xi = \xi_A + \xi_S$, with
 - $\star \xi$ spacelike
 - ★ smooth quotients
 - ★ supersymmetric quotients
- there are two classes: having 8 or 4 supersymmetries

•
$$\xi = \xi_S = R_{12} \pm R_{34}$$

•
$$\xi = \xi_S = R_{12} \pm R_{34}$$

•
$$\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$, $\theta > 0$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34})$, $\theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$
- $e_{13} \pm e_{34} + \theta(R_{12} \pm R_{34})$

- $\xi = \xi_S = R_{12} \pm R_{34}$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \mp R_{34}), \ \theta > 0$
- $\xi = e_{12} \pm e_{34} + \theta(R_{12} \pm R_{34})$, with $|\theta| > 1$
- $e_{13} \pm e_{34} + \theta(R_{12} \pm R_{34})$, $\theta \ge 0$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

•
$$\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34})$$

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

• $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$

> 0

•
$$\xi = 2e_{34} + R_{12} \pm R_{34}$$

• $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \theta$
• $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34})$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} \pm \theta(R_{12} \pm R_{34}), \ \theta > 0$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34})$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \theta > \varphi$

• $\xi = 2e_{34} + R_{12} \pm R_{34}$ • $\xi = e_{12} - e_{13} - e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \theta(R_{12} \pm R_{34}), \ \theta > 0$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \ \theta > \varphi$ • $\xi = \mp e_{12} - e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34}$

$\frac{1}{8}$ -BPS quotients

- $\xi = 2e_{34} + R_{12} \pm R_{34}$
- $\overline{\xi} = e_{12} e_{13} e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$
- $\overline{\xi} = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \overline{\theta}(R_{12} \pm R_{34}), \ \overline{\theta} > 0$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \ \theta > \varphi$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34},$ $\theta_1 > -\theta_2 > 0$

$\frac{1}{8}$ -BPS quotients

- $\xi = 2e_{34} + R_{12} \pm R_{34}$
- $\overline{\xi} = e_{12} e_{13} e_{24} + e_{34} + \theta(R_{12} + R_{34}), \ \theta > 0$
- $\overline{\xi} = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \overline{\theta}(R_{12} \pm R_{34}), \ \overline{\theta} > 0$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \varphi(e_{34} \mp e_{12}) + \theta(R_{12} \pm R_{34}), \ \theta > \varphi$
- $\xi = \mp e_{12} e_{13} \pm e_{24} + e_{34} + \frac{1}{2}(\theta_1 \pm \theta_2)(e_{34} \mp e_{12}) + \theta_1 R_{12} + \theta_2 R_{34},$ $\theta_1 > -\theta_2 > 0$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$

associated discrete quotients are cyclic orbifolds

• $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$

• associated discrete quotients are cyclic orbifolds $(\mathbb{Z}_N \text{ or } \mathbb{Z})$

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$

• most are time-dependent

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$
- most are time-dependent, and many have closed timelike curves

- $\xi = e_{12} + \varphi e_{34} + \theta_1 R_{12} + \theta_2 R_{34}$, where $1 \ge |\varphi|$, $\theta_1 \ge |\theta_2| > |\varphi|$, and $1 \mp \varphi = \theta_1 \mp \theta_2$
- associated discrete quotients are cyclic orbifolds (\mathbb{Z}_N or \mathbb{Z}) of a WZW model with group $\widetilde{\mathrm{SL}}(2,\mathbb{R}) \times \mathrm{SU}(2)$
- most are time-dependent, and many have closed timelike curves
- all are amenable to conformal field theory!

Go forth and calculate!

Thank you.

Thank you.