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Motivation

• fluxbrane backgrounds in type II string theory

• supersymmetric Clifford–Klein space form problem

• string theory in

? time-dependent backgrounds, and

? causally singular backgrounds
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Melvin universe and fluxbranes

• axisymmetric solution of d=4 Einstein–Maxwell theory

[Melvin (1964)]

• describes a gravitationally stable universe of flux

• dilatonic version in supergravity [Gibbons–Maeda (1988)]

• Kaluza–Klein reduction of a flat five-dimensional spacetime

[F. Dowker et al. (1994)]

• R1,4/Γ, with Γ ∼= R, or R1,10/Γ =⇒ IIA fluxbranes
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• (M, g, F, ...) a supergravity background

• symmetry group G— not just isometries, but also preserving F, ...

• determine all quotient supergravity backgrounds M/Γ, where

Γ ⊂ G is a one-parameter subgroup, paying close attention to:

? smoothness,

? causal regularity,

? spin structure,

? supersymmetry,...
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One-parameter subgroups

• (M, g, F, ...)

• symmetries

f : M
∼=−→ M f∗g = g f∗F = F . . .

define a Lie group G, with Lie algebra g

• X ∈ g defines a one-parameter subgroup

Γ = {exp(tX) | t ∈ R}
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• X ∈ g also defines a Killing vector ξX:

LξX
g = 0 LξX

F = 0 . . .

whose integral curves are the orbits of Γ

• two possible topologies:

? Γ ∼= S1, if and only if ∃T > 0 such that exp(TX) = 1
? Γ ∼= R, otherwise

• we are interested in the orbit space M/Γ
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Kaluza–Klein and discrete quotients

• Γ ∼= S1: M/Γ is standard Kaluza–Klein reduction

• Γ ∼= R: quotient performed in two steps:

? discrete quotient M/ΓL, where L > 0 and

ΓL = {exp(nLX) | n ∈ Z} ∼= Z

? Kaluza–Klein reduction by Γ/ΓL
∼= R/Z ∼= S1



8

• we may stop after the first step



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry

• M an exact string background



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry

• M an exact string background =⇒ so is the “orbifold” M/ΓL



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry

• M an exact string background =⇒ so is the “orbifold” M/ΓL

∴ can use orbifolds to study time-dependent phenomena in string

theory



8

• we may stop after the first step: obtaining backgrounds M/ΓL

locally isometric to M , but often with very different global

properties, e.g.,

? M static, but M/ΓL time-dependent

? M causally regular, but M/ΓL causally singular

? M spin, but M/ΓL not spin

? M supersymmetric, but M/ΓL breaking all supersymmetry

• M an exact string background =⇒ so is the “orbifold” M/ΓL

∴ can use orbifolds to study time-dependent phenomena in string

theory; e.g., the nullbrane [Liu–Moore–Seiberg, hep-th/0206182]
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Classifying quotients

• (M, g, F, ...) with symmetry group G, Lie algebra g

• X, X ′ ∈ g give rise to equivalent quotients if and only if

X ′ = λgXg−1 g ∈ G λ ∈ R
×



10

Supersymmetry



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε = ∇ξε + 1
8∇aξbΓabε



10

Supersymmetry

• (M, g, F, ...) a supersymmetric background

• Γ a one-parameter subgroup of symmetries, with Killing vector ξ

How much supersymmetry will the quotient M/Γ preserve?

In supergravity: Γ-invariant Killing spinors:

Lξε = ∇ξε + 1
8∇aξbΓabε = 0
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Freund–Rubin backgrounds

• purely geometric backgrounds, with product geometry

(M4 ×N7, g ⊕ h) and F ∝ dvolg

• field equations ⇐⇒ (M, g) and (N,h) are Einstein

• supersymmetry ⇐⇒ (M, g) and (N,h) admit geometric Killing

spinors:

∇aε = λΓaε where λ ∈ R
×
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• (M, g) admits geometric Killing spinors ⇐⇒ the cone (M̂, ĝ),

M̂ = R
+ ×M and ĝ = dr2 + 4λ2r2g ,

admits parallel spinors: ∇ε̂ = 0
[Bär (1993), Kath (1999)]

• equivariant under the isometry group G of (M, g)
[hep-th/9902066]
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• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS4×S7 and S4 ×AdS7 ,

the cones of each factor are flat:

? cone of Sn is Rn+1



13

• (M, g) riemannian =⇒ (M̂, ĝ) riemannian
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• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS4×S7 and S4 ×AdS7 ,

the cones of each factor are flat:

? cone of Sn is Rn+1

? cone of AdS1+p is (a domain in) R2,p



13

• (M, g) riemannian =⇒ (M̂, ĝ) riemannian

• (M1,n−1, g) lorentzian =⇒ (M̂, ĝ) has signature (2, n− 1)

• for the maximally supersymmetric Freund–Rubin backgrounds,

AdS4×S7 and S4 ×AdS7 ,

the cones of each factor are flat:

? cone of Sn is Rn+1

? cone of AdS1+p is (a domain in) R2,p

• the problem reduces to one of flat spaces!
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Normal forms for orthogonal transformations

• X ∈ so(p, q) ⇐⇒ X : Rp+q → R
p+q linear, skew-symmetric

relative to 〈−,−〉 of signature (p, q)

• X =
∑

i Xi relative to an orthogonal decomposition

R
p+q =

⊕
i

Vi with Vi indecomposable

• we need to determine the elementary blocks
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We are all familiar with the lorentzian elementary blocks:

• (0, 2) and also (2, 0), rotation

B(0,2)(ϕ) = B(2,0)(ϕ) =
[

0 ϕ

−ϕ 0

]

• (1, 1), boost

B(1,1)(β) =
[
0 −β

β 0

]
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• (1, 2) and also (2, 1), null rotation
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• (1, 2) and also (2, 1), null rotation

B(1,2) = B(2,1) =

0 −1 0
1 0 −1
0 1 0
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But there are also new ones:

• (2, 2), “rotation” in a totally null plane

B
(2,2)
± =


0 ∓1 1 0
±1 0 0 ∓1
−1 0 0 1
0 ±1 −1 0
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• (2, 2), deformation of B
(2,2)
± by a (anti)selfdual boost

B
(2,2)
± (β > 0) =


0 ∓1 1 −β

±1 0 ±β ∓1
−1 ∓β 0 1
β ±1 −1 0



The associated discrete quotient of AdS3 yields the extremal

BTZ black hole; the non-extremal black hole is obtained from

B(1,1)(β1)⊕B(1,1)(β2), for |β1| 6= |β2|
[Bañados–Henneaux–Teitelboim–Zanelli, gr-qc/9302012]
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• (2, 2), deformation of B
(2,2)
± by a (anti)self-dual rotation

B
(2,2)
± (ϕ) =


0 ∓1± ϕ 1 0

±1∓ ϕ 0 0 ∓1
−1 0 0 1 + ϕ

0 ±1 −1− ϕ 0
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• (2, 2), self-dual boost + antiself-dual rotation

B
(2,2)
± (β > 0, ϕ > 0) =


0 ±ϕ 0 −β

∓ϕ 0 ±β 0
0 ∓β 0 −ϕ

β 0 ϕ 0
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• (2, 3), deformation of B
(2,2)
+ by a null rotation in a perpendicular

direction

B(2,3) =


0 1 −1 0 −1
−1 0 0 1 0
1 0 0 −1 0
0 −1 1 0 −1
1 0 0 1 0
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• (2, 4), double null rotation + simultaneous rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0
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• (2, 4), double null rotation + simultaneous rotation

B
(2,4)
± (ϕ) =



0 ∓ϕ 0 0 −1 0
±ϕ 0 0 0 0 ∓1
0 0 0 ϕ −1 0
0 0 −ϕ 0 0 −1
1 0 1 0 0 ϕ

0 ±1 0 1 −ϕ 0



• and now we simply play !
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Causal properties

• Killing vectors on AdS1+p×Sq decompose

ξ = ξA + ξS

whose norms add

‖ξ‖2 = ‖ξA‖2 + ‖ξS‖2
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• Sq is compact =⇒

R2M2 ≥ ‖ξS‖2 ≥ R2m2

and if q is odd, m2 can be > 0

• ξ can be everywhere spacelike on AdS1+p×S2k+1, even if ξA is

not spacelike everywhere, provided that ‖ξA‖2 is bounded below

and ξS has no zeroes

• it is convenient to distinguish Killing vectors according to norm
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? B(2,0)(ϕ)⊕i B(0,2)(ϕi), if p is even and |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), if |ϕi| ≥ |ϕ| ≥ 0 for all i

• arbitrarily negative norm: the rest!
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(2,2)
± (β)⊕i B(0,2)(ϕi)

? B
(2,2)
± (ϕ)⊕i B(0,2)(ϕi), unless |ϕi| ≥ ϕ > 0 for all i

? B
(2,2)
± (β, ϕ)⊕i B(0,2)(ϕi)

? B(2,3) ⊕i B(0,2)(ϕi)
? B

(2,4)
± (ϕ)⊕i B(0,2)(ϕi)

Some of these give rise to higher-dimensional BTZ-like black

holes: quotient only a part of AdS and check that the boundary

thus introduced lies behind a horizon.
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Discrete quotients with CTCs

• ξ = ξA + ξS a Killing vector in AdS1+p×S2k+1, with ‖ξ‖2 > 0
but ‖ξA‖ not everywhere spacelike

• the corresponding one-parameter subgroup Γ ∼= R

• pick L > 0 and consider the cyclic subgroup ΓL
∼= Z generated

by

γ = exp(LX)
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• the “orbifold” of AdS1+p×S2k+1 by ΓL contains CTCs

• idea of the proof: find a timelike curve which connects a point x

to its image γNx for N � 1

• e.g., a Z-quotient of a lorentzian cylinder

• the same argument applies to certain brane backgrounds, and also

to any Freund–Rubin background M ×N , where M is lorentzian

admitting such isometries and N is complete:

? N is Einstein with positive curvature

? Bonnet-Myers Theorem =⇒ N is compact =⇒ has bounded

diameter
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• geometrical CTCs are also natural in certain kinds of

supersymmetric Freund–Rubin backgrounds M × N , where M

is lorentzian Einstein–Sasaki: timelike circle bundles over Kähler-

Einstein spin manifolds

[FO–Leitner–Simón, to appear]
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[Duff–Lü–Pope, hep-th/9704186]

• 9
16-BPS IIA backgrounds: reductions of AdS4×S7 by

B
(2,2)
+



30

Some interesting reductions

• there are many families of smooth supersymmetric reductions of

AdS4×S7, S4 ×AdS7, AdS5×S5, and AdS3×S3 × R
4.

• 3
4-BPS AdS4×CP3 background of IIA

[Duff–Lü–Pope, hep-th/9704186]

• 9
16-BPS IIA backgrounds: reductions of AdS4×S7 by

B
(2,2)
+ ⊕ ϕ(R12 + R34 + R56 −R78)
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• a half-BPS IIA background: reduction of S4 ×AdS7 by a double

null rotation

B(1,2) ⊕B(1,2)

• a family of half-BPS IIA backgrounds: reductions of S4 × AdS7

by

B(1,1)(β)⊕B(1,1)(β)⊕B(0,2)(ϕ)⊕B(0,2)(−ϕ)

Both these half-BPS quotients are of the form S4 × (AdS7 /Γ)

• a number of maximally supersymmetric reductions of AdS3×S3:

near-horizon geometries of the supersymmetric rotating black

holes, including over-rotating cases
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• reductions which break no supersymmetry are rare: this is

intimately linked to the fact that AdS3×S3 is a lorentzian Lie

group, and the Killing vectors are left-invariant

[Chamseddine–FO–Sabra, hep-th/0306278]
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Supersymmetric quotients of AdS3×S3

• yields Freund–Rubin background of IIB

AdS3×S3 ×X4

• equations of motion =⇒ X Ricci-flat

• supersymmetry =⇒ X admits parallel spinors

=⇒ X flat or hyperkähler
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Regular one-parameter subgroups

• only consider actions on AdS3×S3

• ξ = ξA + ξS, with

? ξ spacelike

? smooth quotients

? supersymmetric quotients

• there are two classes: having 8 or 4 supersymmetries
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• ξ = e12 + ϕe34 + θ1R12 + θ2R34, where 1 ≥ |ϕ|, θ1 ≥ |θ2| > |ϕ|,
and 1∓ ϕ = θ1 ∓ θ2

• associated discrete quotients are cyclic orbifolds (ZN or Z) of a

WZW model with group S̃L(2,R)× SU(2)

• most are time-dependent, and many have closed timelike curves

• all are amenable to conformal field theory!
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Go forth and calculate!
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Thank you.


