Deformation Theory of 3-Algebras

José Figueroa-O'Farrill

Maxwell Institute and School of Mathematics

Trinity College Dublin, 2 March 2009

Last October in Japan, one Taichi Takashita launched a campaign for the right to marry manga characters.

Telegraph.co.uk

Japanese launch campaign to marry comic book characters

イロト イポト イヨト イヨト

Last October in Japan, one Taichi Takashita launched a campaign for the right to marry manga characters.

Telegraph.co.uk

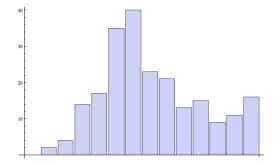
Japanese launch campaign to marry comic book characters

His main reason:

"I am no longer interested in three dimensions."

イロト イポト イヨト イヨト

For a while it seemed he was not alone:



э

Motivation

"One can learn a lot about a mathematical object by studying how it behaves under small perturbations." Barry Mazur

Motivation

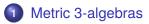
"One can learn a lot about a mathematical object by studying how it behaves under small perturbations." Barry Mazur

Metric 3-Lie algebras have entered the collective consciousness as a result of the work of Bagger–Lambert and Gustavsson.

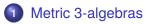
They are a natural language in which to formulate superconformal Chern–Simons + matter theories in 3 dimensions.

This talk will be about 3-algebra **deformations** in the sense of Gerstenhaber.

Deformations are always controlled by a cohomology theory — in this case, that of a Leibniz algebra.



- 2 Cohomology of Leibniz algebras
- 3 Deformations of 3-Leibniz algebras
- An explicit example



- 2 Cohomology of Leibniz algebras
- 3 Deformations of 3-Leibniz algebras
- An explicit example

Metric Lie algebras

Definition

A (real) Lie algebra is a real vector space \mathfrak{g} together with a bilinear alternating bracket $[-, -] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the Jacobi identity for all $x, y, z \in \mathfrak{g}$:

[x, [y, z]] = [[x, y], z] + [y, [x, z] .

It is said to be **metric** if \mathfrak{g} possesses a symmetric inner product $\langle -, - \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ obeying

```
\langle [\mathbf{x},\mathbf{y}],\mathbf{z} \rangle = - \langle \mathbf{y}, [\mathbf{x},\mathbf{z}] \rangle .
```

Metric 3-Lie algebras

Definition

A (real) **3-Lie algebra** is a real vector space V together with a trilinear alternating bracket $[-, -, -] : V \times V \times V \rightarrow V$ satisfying the **fundamental identity** for all $x, y, z_i \in V$:

$$\begin{split} [\mathbf{x},\mathbf{y},[z_1,z_2,z_3]] &= [[\mathbf{x},\mathbf{y},z_1],z_2,z_3] \\ &\quad + [z_1,[\mathbf{x},\mathbf{y},z_2],z_3] + [z_1,z_2,[\mathbf{x},\mathbf{y},z_3]] \;. \end{split}$$

It is said to be **metric** if V possesses a symmetric inner product $\langle -, - \rangle : V \times V \to \mathbb{R}$ obeying

$$\langle [\mathbf{x}, \mathbf{y}, \mathbf{z_1}], \mathbf{z_2} \rangle = - \langle \mathbf{z_1}, [\mathbf{x}, \mathbf{y}, \mathbf{z_2}] \rangle$$
.

The fundamental identity

Define $D : \Lambda^2 V \to End V$ by

 $\mathsf{D}(\mathsf{x} \land \mathsf{y})z = [\mathsf{x}, \mathsf{y}, z] .$

The fundamental identity becomes

 $[D(X), D(Y)] = D(D(X) \cdot Y) ,$

which says that im $D < \mathfrak{gl}(V)$. But why?

cf. The adjoint representation

The Jacobi identity for ${\mathfrak g}$ may be written as

 $[\operatorname{ad} x, \operatorname{ad} y] = \operatorname{ad}[x, y],$

where $ad : \mathfrak{g} \to End \mathfrak{g}$ is defined by ad(x)y := [x, y].

ad is a Lie algebra homomorphism, hence im $ad < \mathfrak{gl}(\mathfrak{g})$.

Similarly, the most natural explanation for the image of D to be a Lie subalgebra would be for D to be a Lie algebra homomorphism.

くロン (雪) (ヨ) (ヨ)

= nar

Not quite a Lie bracket

It is therefore tempting to define a bracket on $\Lambda^2 V$ by

 $[X,Y] = D(X) \cdot Y ,$

in terms of which the fundamental identity reads

[D(X), D(Y)] = D([X, Y]).

However,

 $[\mathbf{X},\mathbf{Y}] \neq -[\mathbf{Y},\mathbf{X}] ;$

although

 $[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]] \; .$

In other words, $\Lambda^2 V$ becomes a (left) Leibniz algebra and the fundamental identity says that D is a Leibniz algebra homomorphism.

The associated metric Lie algebra

If V is a metric 3-Lie algebra, the map $D : \Lambda^2 V \to \mathfrak{so}(V)$. Its image is not just a Lie subalgebra of $\mathfrak{so}(V)$, but is actually **metric**, with inner product

$$(D(x \wedge y), D(z \wedge w)) = \langle [x, y, z], w \rangle$$
.

In fact, associated to every metric Lie subalgebra of $\mathfrak{so}(V)$ there is a metric 3-algebra, whose bracket need not be alternating.

The Faulkner construction

Let $\mathfrak g$ be a metric Lie algebra with inner product (-,-) and V a faithful representation. Transposing the $\mathfrak g$ action on V, we obtain a map

 $\mathscr{D}: V \times V^* \to \mathfrak{g}$

defined by

 $(\mathscr{D}(\nu, w^*), X) = \langle w^*, X \cdot \nu \rangle$ for all $X \in \mathfrak{g}$.

This defines a trilinear map $[-, -, -] : V \times V^* \times V \to V$ by

$$[\mathfrak{u},\mathfrak{v}^*,\mathfrak{w}] := \mathscr{D}(\mathfrak{u},\mathfrak{v}^*)\cdot\mathfrak{w}$$
.

(日)

= nar

The unitary case

An important special case is when V is a (real, complex or quaternionic) unitary representation of \mathfrak{g} . This identifies V* with either V or \overline{V} and hence the bracket defines a map

$$[-,-,-]: \mathbf{V} imes rac{\mathbf{V}}{\mathbf{V}} imes \mathbf{V} o \mathbf{V} \qquad \overset{\mathbb{R},\mathbb{H}}{\mathbb{C}}.$$

The real case corresponds to the generalised 3-Lie algebras of CHERKIS+SÄMANN (2008), whereas the complex case contains the hermitian 3-algebras of BAGGER+LAMBERT (2008). These 3-algebras share the fundamental identity as well as the metricity condition, suggesting the following definition.

Metric 3-Leibniz algebras

Definition

A (real, left) **3-Leibniz algebra** is a real vector space V together with a trilinear bracket $[-, -, -] : V \times V \times V \rightarrow V$ satisfying the **Leibniz identity** for all $x, y, z_i \in V$:

$$\begin{split} [\mathbf{x},\mathbf{y},[z_1,z_2,z_3]] &= [[\mathbf{x},\mathbf{y},z_1],z_2,z_3] \\ &\quad + [z_1,[\mathbf{x},\mathbf{y},z_2],z_3] + [z_1,z_2,[\mathbf{x},\mathbf{y},z_3]] \;. \end{split}$$

It is said to be **metric** if V possesses a symmetric inner product $\langle -, - \rangle : V \times V \to \mathbb{R}$ obeying

$$\langle [\mathbf{x}, \mathbf{y}, \mathbf{z_1}], \mathbf{z_2} \rangle = - \langle \mathbf{z_1}, [\mathbf{x}, \mathbf{y}, \mathbf{z_2}] \rangle$$
.

The associated Leibniz algebra

Let now $D: V \otimes V \rightarrow End V$ be defined by

 $D(x \otimes y)z = [x, y, z]$.

In terms of D, the Leibniz identity becomes

 $[D(X), D(Y)] = D(D(X) \cdot Y) ,$

for all $X, Y \in V \otimes V$. We introduce on $L(V) := V \otimes V$ the bracket

 $[X,Y] = D(X) \cdot Y ,$

which turns L(V) into a left Leibniz algebra.

(日)

э.

The Daletskii functor

The assignment $V \mapsto L(V)$ is a **covariant functor** from the category of 3-Leibniz algebras to the category of Leibniz algebras.

Indeed, if $\phi: V \to W$ is a homomorphism of 3-Leibniz algebras, so that

$$\varphi[\mathbf{x},\mathbf{y},z] = [\varphi \mathbf{x},\varphi \mathbf{y},\varphi z] ,$$

then $L\phi: L(V) \to L(W)$ defined by

 $L\phi(x\otimes y)=\phi x\otimes \phi y \ ,$

is a homomorphism of Leibniz algebras.

(日)

э.

The metric version

Let V be a metric 3-Leibniz algebra. On $L(V) = V \otimes V$ we have a natural inner product:

$$\left\langle x_{1}\otimes y_{1}, x_{2}\otimes y_{2}\right\rangle = \left\langle x_{1}, x_{2}\right\rangle \left\langle y_{1}, y_{2}\right\rangle \;.$$

It follows that

$$\langle [X,Y],Z \rangle = - \langle Y,[X,Z] \rangle$$

making L(V) into a **metric Leibniz algebra**. $V \mapsto L(V)$ is also functorial in the metric subcategory.

2 Cohomology of Leibniz algebras

- 3 Deformations of 3-Leibniz algebras
- An explicit example

Leibniz algebras

Definition

A (real) Leibniz algebra L is a real vector space with a bilinear bracket $[-, -] : L \times L \rightarrow L$ satisfying the Leibniz identity

[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]] ,

for all $X, Y, Z \in L$.

If in addition [X, Y] = -[Y, X] then L is a Lie algebra. (Strictly speaking the above defines a **left** Leibniz algebra.) Leibniz algebras were introduced by LODAY (1992).

(日)

э.

The reduced Lie algebra

The subspace $K \subset L$ spanned by elements of the form [X, X] is a 2-sided ideal:

[K, L] = 0 and $[L, K] \subset K$

Therefore $\mathfrak{g}_L := L/K$ is a Leibniz algebra which is Lie by construction. It is called the **reduced Lie algebra** of L.

イロト イポト イヨト イヨト

Representations

The notion of representation of a Leibniz algebra is more subtle than for a Lie algebra.

As L itself shows, representations admit both left and right actions, which must obey some compatibility conditions.

We follow the treatment in LODAY+PIRASHVILI (1993).

ヘロン 人間と 人目と 人口と

Another look at Lie algebra representations

A representation of a Lie algebra \mathfrak{g} is the same thing as a short exact sequence of Lie algebras

$$0 \longrightarrow V \longrightarrow \tilde{\mathfrak{g}} \longrightarrow \mathfrak{g} \longrightarrow 0$$

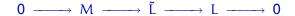
with V abelian.

The Lie bracket in $\tilde{\mathfrak{g}}$ gives an action of \mathfrak{g} on V, by lifting \mathfrak{g} to a *subspace* of $\tilde{\mathfrak{g}}$.

イロト イポト イヨト イヨト

Abelian extensions of a Leibniz algebra

An **abelian extension** of a Leibniz algebra L is a short exact sequence of Leibniz algebras



with [M, M] = 0. M admits both left and right actions of L:

 $\begin{array}{ll} L\times M\to M & \qquad M\times L\to M \\ (X,\mathfrak{m})\mapsto [X,\mathfrak{m}] & \qquad (\mathfrak{m},X)\mapsto [\mathfrak{m},X] \end{array}$

subject to the Leibniz identity in L.

イロト 不得 トイヨト イヨト

= nar

Representations

The Leibniz identity implies the following:

$$\begin{split} & [[X, Y], m] = [X, [Y, m]] - [Y, [X, m]] \\ & [[X, m], Y] = [X, [m, Y]] - [m, [X, Y]] \\ & [[m, X], Y] = [m, [X, Y]] - [X, [m, Y]] \end{split}$$

A **representation** of L is a vector space M admitting left and right actions of L subject to the above three conditions.

If [m, X] = -[X, m], M is **symmetric** and only the first of the above conditions suffices. M is then induced from a representation of g_L .

э.

The universal enveloping algebra

There is a categorical equivalence between representations of L and left modules over its **universal enveloping algebra** UL(L), which is the quotient of the tensor algebra $T(L \oplus L)$ by the 2-sided ideal generated by

$$\begin{split} \ell_{[X,Y]} &- \ell_X \otimes \ell_Y + \ell_Y \otimes \ell_X \\ r_{[X,Y]} &- \ell_X \otimes r_Y - r_Y \otimes \ell_X \\ r_Y \otimes (\ell_X + r_X) \end{split}$$

where $\ell_X = X \oplus 0$ and $r_X = 0 \oplus X$.

(日)

Cohomology

On the graded space

$$CL^{\bullet}(L, M) = \bigoplus_{p \ge 0} Hom(L^{\otimes p}, M)$$

we define a differential $d: CL^{p}(L, M) \rightarrow CL^{p+1}(L, M)$ by

$$(d\phi)(X_1, \dots, X_{p+1}) = \sum_{i=1}^{p} (-1)^{i-1} [X_i, \phi(X_1, \dots, \widehat{X_i}, \dots, X_{p+1})] + (-1)^{p+1} [\phi(X_1, \dots, X_p), X_{p+1}] + \sum_{1 \le i < j \le p+1} (-1)^i \phi(X_1, \dots, \widehat{X_i}, \dots, [X_i, X_j], \dots, X_{p+1})$$

 $d^2 = 0$ because M is a representation and L a Leibniz algebra. The cohomology is denoted HL[•](L; M).

cf. Lie algebra cohomology

If M is a symmetric representation, then

$$d\phi)(X_1, \dots, X_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i-1} [X_i, \phi(X_1, \dots, \widehat{X_i}, \dots, X_{p+1})] \\ + \sum_{1 \leq i < j \leq p+1} (-1)^i \phi(X_1, \dots, \widehat{X_i}, \dots, [X_i, X_j], \dots, X_{p+1})$$

which is reminiscent of the Chevalley–Eilenberg differential computing Lie algebra cohomology.

イロト イポト イヨト イヨト

The first few differentials

 $d\mathfrak{m}(X) = -[\mathfrak{m}, X]$

 $d\phi(X,Y)=[X,\phi(Y)]+[\phi(X),Y]-\phi([X,Y])$

 $\begin{aligned} d\theta(X, Y, Z) &= [X, \theta(Y, Z)] - [Y, \theta(X, Z)] - [\theta(X, Y), Z] \\ &+ \theta(X, [Y, Z]) - \theta(Y, [X, Z]) - \theta([X, Y], Z) \end{aligned}$

くロン (雪) (ヨ) (ヨ)

Metric 3-algebras

2 Cohomology of Leibniz algebras

- 3 Deformations of 3-Leibniz algebras
- An explicit example

Deformations

A complex governing infinitesimal deformations of an n-Lie algebra was successfully defined by GAUTHERON (1996) after an initial attempt by TAKHTAJAN (1994).

DALETSKII+TAKHTAJAN (1997) rewrote Gautheron's work in terms of a subcomplex of $CL^{\bullet}(L; L)$.

We will see that the proper complex to study deformations is $CL^{\bullet}(L; End V)$.

The deformation complex

Let V be an 3-Leibniz algebra and L:=L(V) the associated Leibniz alebra. Both algebraic structures are determined by a map $D:L\to \mathfrak{gl}(V).$

A **deformation** of V is an analytic one-parameter family of 3-Leibniz algebras on the same underlying vector space:

$$[x,y,z]_t := [x,y,z] + \sum_{k \ge 1} t^k \Phi_k(x,y,z) ,$$

or equivalent a family D_t of maps

$$D_t = D + \sum_{k \geqslant 1} t^k \phi_k ,$$

where $\phi_k: L \to \text{End}\, V$ are defined by

$$\varphi_k(x,y) \cdot z = \Phi_k(x,y,z).$$

イロト イポト イヨト イヨト

Infinitesimal deformations

The fundamental identity for D_t becomes an infinite number of equations for the φ_k , one per power of t. The equation of order t^0 is the fundamental identity for D. The equation of order t is a linear equation on φ_1 :

 $[D(X), \phi_1(Y)] + [\phi_1(X), D(Y)] - D(\phi_1(X) \cdot Y) - \phi_1(D(X) \cdot Y) = \mathbf{0},$

which, comparing with the ${\rm relibriz differential}$ is simply $d\phi_1=0$ for $\phi_1\in CL^1(L;End\,V)$ where

 $[X,\psi] = [D(X),\psi] \qquad \text{and} \qquad [\psi,X] = [\psi,D(X)] - D(\psi\cdot X) \;,$

for $\psi \in \text{End } V$. (One checks that End V becomes a representation of L in this way.)

くロン (雪) (ヨ) (ヨ)

= nar

Trivial deformations

A deformation is **trivial** if it is the result of a one-parameter subgroup g_t of GL(V):

$$[\mathbf{x},\mathbf{y},z]_{t} = g_{t}^{-1}[g_{t}\mathbf{x},g_{t}\mathbf{y},g_{t}z]$$

or, equivalently,

$$D_t(X) = g_t^{-1} \circ D(g_t X) \circ g_t .$$

If $g_t(x) = x + t\gamma(x) + \dots$, then at order t^0 the equation is trivially satisfied, whereas at order t^1 , one finds

 $\phi_1(X)=-[\gamma,D(X)]+D(\gamma\cdot X)=-[\gamma,X]=d\gamma(X),$

for $\gamma \in CL^0(L; End V)$.

(日)

Deformations and Leibniz cohomology

Theorem

Isomorphism classes of infinitesimal deformations of a 3-Leibniz algebra V are classified by $HL^{1}(L; End V)$, with

 $[X,\psi] = [D(X),\psi] \qquad \text{and} \qquad [\psi,X] = [\psi,D(X)] - D(\psi\cdot X) \;,$

for $\psi \in \text{End } V$ and $X \in L$.

Obstructions

Similarly one can show that obstructions to integrating an infinitesimal deformation live in $HL^2(L; End V)$. For example, to order t^2 , the fundamental identity for D_t says that

$$\begin{split} [D(X), \phi_2(Y)] + [\phi_2(X), D(Y)] + [\phi_1(X), \phi_1(Y)] \\ &= D(\phi_2(X) \cdot Y) + \phi_2(D(X) \cdot Y) + \phi_1(\phi_1(X) \cdot Y) \;, \end{split}$$

which we recognise as

 $d\phi_2(X,Y) = \phi_1(\phi_1(X) \cdot Y) - [\phi_1(X),\phi_1(Y)] \; .$

The RHS is a cocycle in $CL^2(L; End V)$ which for the deformation to integrate to second order needs to be a coboundary.

くロン (雪) (ヨ) (ヨ)

Deformations of V vs. deformations of L

Deformations of V induce deformations of L and vice versa. However, trivial deformations differ: GL(V) vs. GL(L)! One can study deformations of V in terms of $CL^{\bullet}(L;L)$, as do Daletskii and Takhtajan, but they are forced to restrict to a subcomplex. Neither do they go beyond infinitesimal deformations.

To consider obstructions it is computationally convenient to exhibit the structure of a graded Lie algebra on the relevant complex. This follows from work of BALAVOINE (1995) for $CL^{\bullet}(L;L)$ or of ROTKIEWICZ (2005) for a complex isomorphic to $CL^{\bullet}(L;End V)$ for V an n-Lie algebra.

The deformation complex as a graded Lie algebra

The following is analogous to the celebrated theorem of NIJENHUIS+RICHARDSON (1967) for Lie algebra cohomology.

Theorem (Rotkiewicz, 2005)

The complex $CL^{\bullet}(L; End V)$ admits the structure of a graded Lie algebra in such a way that d = [D, -] and the fundamental identity becomes [D, D] = 0.

The deformation equation The fundamental identity for D_{t} is

 $[D_t,D_t]=\pmb{0}\;.$

Suppose we have found a solution to order t^N , so that we have

$$D_N = D + \sum_{k=1}^N t^k \phi_k$$

satisfying

$$[D_N, D_N] = t^{N+1}\xi + \dots$$

Then ξ is a cocycle:

 $[D, [D_N, D_N]] = [D - D_N, [D_N, D_N]] + [D_N, [D_N, D_N]] = O(t^{N+2})$

Obstructions revisited

The deformation can be extended to D_{N+1} provided that $[\xi] = 0$ in $HL^2(L; End V)$, so that $\xi = -2d\phi_{N+1}$. This leads to an infinite number of obstructions in $HL^2(L; End V)$.

Theorem

Infinitesimal deformations of a 3-Leibniz algebra V are classified by $HL^{1}(L; End V)$ and the obstructions to integrating an infinitesimal deformation live in $HL^{2}(L; End V)$.

イロト イポト イヨト イヨト

3-Lie algebra deformations

If V is a 3-Lie algebra, $L(V) = \Lambda^2 V$ is the associated Leibniz algebra.

We again have $CL^{\bullet}(L; End V),...$

However not every cocycle in $CL^1(L; End V)$ gives rise to a deformation of the 3-Lie algebra: the corresponding bracket need not be totally skewsymmetric.

We must restrict to a subcomplex C[•] agreeing with $CL^{\bullet}(L; End V)$ except in dimension 1, where $C^{1} \subset CL^{1}(L; End V)$ consists of all $\phi \in CL^{1}(L; End V)$ such that

$$\varphi(\mathbf{x},\mathbf{y})\cdot z = -\varphi(\mathbf{x},z)\cdot \mathbf{y}$$
 .

C• is indeed a subcomplex.

イロト イポト イヨト イヨト

Theorem

Infinitesimal deformations of a 3-Lie algebra V are classified by $H^1(C^{\bullet})$ and the obstructions to integrating an infinitesimal deformation live in $H^2(C^{\bullet})$.

Metric 3-Leibniz algebra deformations

Here $D: L \to \mathfrak{so}(V)$, so we consider the subcomplex $CL^{\bullet}(L;\mathfrak{so}(V))$, which is also a graded Lie subalgebra.

Theorem

Infinitesimal deformations of a metric 3-Leibniz algebra V are classified by $HL^1(L; \mathfrak{so}(V))$ and the obstructions to integrating an infinitesimal deformation live in $HL^2(L; \mathfrak{so}(V))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Metric 3-Lie algebra deformations

We restrict the complex C[•] from End V to $\mathfrak{so}(V)$. This yields a subcomplex \tilde{C}^{\bullet} which is also a graded Lie subalgebra.

Theorem

Infinitesimal deformations of a metric 3-Lie algebra V are classified by $H^1(\tilde{C}^{\bullet})$ and the obstructions to integrating an infinitesimal deformation live in $H^2(\tilde{C}^{\bullet})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 Cohomology of Leibniz algebras
- 3 Deformations of 3-Leibniz algebras

The unique simple 3-Lie algebra

Let $V = \mathbb{R}^4$ with the standard euclidean inner product and elementary vectors e_i . Then FILIPPOV (1980) showed that

 $[e_i, e_k, e_k] = \varepsilon_{ijkl}e_l$

defines a 3-Lie algebra, denoted S₄. Its complexification is the unique simple 3-Lie algebra, as shown by LING (1993). It is also the unique nonabelian positive-definite indecomposable metric 3-Lie algebra, as shown by NAGY (2007) and also by PAPADOPOULOS (2008) and GAUNTLETT-GUTOWSKI (2008). (This had been conjectured by FO+PAPADOPOULOS (2003).)

The Leibniz algebra

The associated Leibniz algebra is $\Lambda^2 \mathbb{R}^4$ with basis $e_{ij} := e_i \wedge e_j$ and bracket

$$[e_{ij}, e_{kl}] = \varepsilon_{ijkm} e_{ml} + \varepsilon_{ijlm} e_{km} .$$

The image \mathfrak{g} of D is all of $\mathfrak{so}(4)$, whence D is an isomorphism. The Leibniz algebra is Lie and isomorphic to $\mathfrak{so}(4)$, but **not** as metric Lie algebras! In \mathfrak{g} the inner product is

 $(D(e_{ij}), D(e_{kl})) = \varepsilon_{ijkl},$

whereas in L, it is

$$\langle e_{ij}, e_{kl} \rangle = \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}.$$

(日)

Deformations

It follows from an explicit computation that S_4 is **rigid** as a 3-Lie algebra, whereas it admits a one-parameter deformation as a 3-Leibniz algebra

$$[e_{i}, e_{j}, e_{k}]_{t} = \varepsilon_{ijkl}e_{l} + t\left(\delta_{jk}e_{i} - \delta_{ik}e_{j}\right)$$

which is metric and already of Cherkis–Sämann type, whence it can be understood from the Faulkner construction.

・ロト ・四ト ・ヨト・

Interpretation

The metric Lie algebra in the Faulkner construction of S_4 is $\mathfrak{g} \cong \mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$, which is metric relative to a one-parameter family of inner products, up to rescalings.

- t=0~ This corresponds to ${\tt S_4}$ and to an inner product on ${\tt g}$ which has split signature.
- $t = \pm 1$ This is "singular" from the Faulkner perspective: the inner product on g becomes degenerate: it vanishes on one of the $\mathfrak{so}(3)$ factors. Actually the Faulkner Lie algebra should also be $\mathfrak{so}(3)$.
 - t > 1 inner product is negative-definite
 - t < 1 inner product is positive-definite
- $t^2 < 1$ inner product is split
- $t\to\pm\infty~$ 3-algebra approoaches the metric Lie triple system associated to ${\rm S}^4$ as the riemannian symmetric

SDACE SO(5)/SO(4) José Figueroa-O'Farrill

Deformation Theory of 3-Algebras

Open questions

- We need more computable examples!
- How to compute Leibniz cohomology? Are there analogous results to the Whitehead lemmas and/or the Hochschild-Serre spectral sequence?
- Systematic interpretation of the deformations of metric 3-Leibniz algebras in terms of deformations of their Faulkner data.
- How do these deformations manifest themselves in the corresponding superconformal field theory?