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Supersymmetry

@ Supersymmetry relates
o fermions: (usually) satisfy 1st order field equations
e bosons: (usually) satisfy 2nd order field equations
@ It should not come as a surprise to find supersymmetry
whenever 1st-order equations imply 2nd-order equations

A metamathematical principle?

Supersymmetry underlies any situation where
@ 1st order PDE implies 2nd order PDE

@ solutions of the 1st order PDE are optimal among all
solutions of the 2nd order PDE
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Well-known examples
@ calibrated geometry

calibrated = minimal

and calibrated submanifolds are volume-minimizing in
their homology class

@ instantons
(anti)self-dual = Yang—Mills

and (A)SD gauge fields saturate the topological bound
@ monopoles

Bogomol'nyi = Yang-Mills—Higgs
and Bogomol’nyi monopoles saturate the topological bound
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In this talk

@ Bogomol’nyi monopoles in hyperbolic space

@ Reformulation as BPS configurations in a supersymmetric
Yang—Mills—Higgs theory on hyperbolic space

@ Determination of the geometry of the monopole moduli
space

@ Based on joint work (1311.3588) with

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 4/45



Outline of talk

o Hyperbolic monopoles

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 5/45



Outline of talk

o Hyperbolic monopoles

e Supersymmetric Yang—Mills—Higgs in hyperbolic space

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 5/45



Outline of talk

o Hyperbolic monopoles
e Supersymmetric Yang—Mills—Higgs in hyperbolic space

Q The geometry of the monopole moduli space

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 5/45



Outline of talk

o Hyperbolic monopoles
e Supersymmetric Yang—Mills—Higgs in hyperbolic space
e The geometry of the monopole moduli space

0 Conclusions and future directions
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Hyperbolic monopoles

Monopoles
@ The Bogomol'nyi equation in R3 is

qu):**FA

where
e A is a connection on a principal G bundle P over R® and
Fa = dA + J[A, Al its curvature
e The Higgs field ¢ is a section of the adjoint bundle ad P over
R3 satisfying suitable boundary conditions which ensure
that the L2 norm of F, is finite
o dadp =dd +[A, Pl
@ x is the Hodge star operator
@ A pair (A, ¢) satisfying the Bogomol'nyi equation is called a
euclidean monopole
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Hyperbolic monopoles

Translationally invariant instantons

@ Interpret ¢ as the fourth component of a connection 7 in
R4
@ If &7 is now independent of the 4th coordinate, the
Bogomol’'nyi equation becomes the self-duality equation on
R4
FQ/ = *FM/
where « is now the Hodge star in R*

@ In other words, euclidean monopoles are translationally
invariant instantons
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Hyperbolic monopoles

Hyperbolic monopoles
@ Hyperbolic monopoles are solutions to the Bogomol'nyi
equation in hyperbolic space H?3
@ They can be constructed from rotationally invariant
instantons
@ Write the euclidean metric in R*

ds? = dx? + dxg + dxg + dxi

using polar coordinates in the (x3, x4) plane:

dx2 + dx2 + dr?
2_ 1.2 2 2, 202 2 1 2 2
ds® = dx{+dx5+dr°+1r°d0° =1 2 +i9/

N

H3
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Hyperbolic monopoles

Rotationally invariant instantons

@ This description is valid in the complement of the 2-plane
X3 = X4 = 0
@ We see that R* \ R? is conformal to H3 x S

@ The self-duality equation is conformally invariant, so
instantons on R* \ R? are in one-to-one correspondence
with instantons on H2 x S'

@ Instantons on R*\ R? invariant under rotations in the (x3, x4)
plane give solutions of the Bogomol'nyi equation in H®

dAd):_*FA

where ¢ is the 6-component of &
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Hyperbolic monopoles

Mass and charge

@ Hyperbolic monopoles are determined by their mass
meRT
m = lim |(r)]

T—00
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meRT
m = lim |(r)]

T—00
@ and their charge k € Z*

. 1

@ They exist for all values of m and k

@ We can rescale the mass to unity, but this changes the
curvature of H3 from —1 to —1/m?
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Hyperbolic monopoles

Mass and charge

@ Hyperbolic monopoles are determined by their mass
meRT
m = lim |(r)]
T—00

@ and their charge k € Z*

. 1

@ They exist for all values of m and k

@ We can rescale the mass to unity, but this changes the
curvature of H3 from —1 to —1/m?

@ a hyperbolic monopole extends to a rotationally invariant
instanton on all of R* if and only if m € Z
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Hyperbolic monopoles

Moduli space of euclidean monopoles

@ Low-energy dynamics of euclidean monopoles = geodesic
motion on the moduli space .#
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Hyperbolic monopoles

Moduli space of euclidean monopoles

@ Low-energy dynamics of euclidean monopoles = geodesic
motion on the moduli space .#

@ ./ is the space of solutions modulo gauge equivalence

@ ./ inherits a metric from the L2 metric on the space of
solutions of the linearised Bogomol’nyi equation

@ this metric is hyperkahler

@ the metric for k = 2 is known explicitly, as is the metric for
well-separated monopoles
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (I)

@ Let ./, ., be the moduli space of monopoles on H3 with
charge k and mass m
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (I)

@ Let ./, ., be the moduli space of monopoles on H3 with
charge k and mass m

@ The moduli space .#y ., is diffeomorphic to the space of
rational maps (for k > 1)

a1zk*1 + aQ:Lk*2 +--+ax
2K+ bz 4+ by

where numerator and denominator polynomials are
coprime
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (I)

@ Let ./, ., be the moduli space of monopoles on H3 with
charge k and mass m

@ The moduli space .#y ., is diffeomorphic to the space of
rational maps (for k > 1)

a1zk*1 + aQ:Lk*2 +--+ax
2K+ bz 4+ by

where numerator and denominator polynomials are
coprime

@ Since ay,...,ax, by,..., by are complex numbers, .#y ., is
a real 4k-dimensional manifold
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (Il)

@ The 12 metric for linearised monopoles does not
converge in H3
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (Il)

@ The 12 metric for linearised monopoles does not
converge in H3

@ Therefore .#y ., does not (seem to) inherit a metric from
the gauge theory

@ This suggests that the geometry of .# . is hot riemannian

@ Nevertheless .#5 ,,, admits a self-dual Einstein metric (for
m € Z) whose m — oo limit is the Atiyah—Hitchin metric for
euclidean monopoles

@ |t is still an open problem to relate the Hitchin family of
metrics to the gauge theory
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Hyperbolic monopoles

Moduli space of hyperbolic monopoles (lll)

@ The geometry of .#, ., has been investigated using twistor
methods

@ Using this, it was recently identified as a pluricomplex
geometry

@ Pluricomplex manifolds have a 2-sphere worth of
integrable complex structures, but no compatible metric

@ Neither are they hypercomplex; although they can be
characterised as admitting a complex-linear hypercomplex
structure on the complexification of the tangent bundle

@ In the euclidean limit, the pluricomplex structure gives rise
to a hyperkahler structure
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Hyperbolic monopoles

Supersymmetry

@ In this talk we will show how the pluricomplex structure
arises naturally from supersymmetry
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Hyperbolic monopoles

Supersymmetry

In this talk we will show how the pluricomplex structure
arises naturally from supersymmetry

We will construct a supersymmetric gauge theory on
hyperbolic space, whose BPS configurations are precisely
the hyperbolic monopoles

The lack of L2 metric means that there is no effective action
for the moduli

But we can constrain the geometry by demanding the
closure of the supersymmetry algebra

This is reminiscent of 4d Wess—Zumino sigma models
without actions, in which case the target space geometry
need not be Kahler
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

9 Supersymmetric Yang—Mills—Higgs in hyperbolic space
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Supersymmetric Yang—Mills theories

We construct a supersymmetric Yang—Mills—Higgs theory in
hyperbolic space as follows:

@ Start with d =4 N = 1 supersymmetric Yang—Mills theory
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We construct a supersymmetric Yang—Mills—Higgs theory in
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@ Start with d =4 N = 1 supersymmetric Yang—Mills theory
@ Euclideanise it using the approach of
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Supersymmetric Yang—Mills theories

We construct a supersymmetric Yang—Mills—Higgs theory in
hyperbolic space as follows:

@ Start with d =4 N = 1 supersymmetric Yang—Mills theory
@ Euclideanise it using the approach of

@ This complexifies the fields: spinors in R* are not real
@ Dimensionally reduce to R®
@ Deform the theory from R3 to H3
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

The lagrangian
The lagrangian density is given by
& = —ix' D X[, 0] — idx"b — §F2 — J|1Z0f* — JD?

where all fields are Lie algebra valued (Tr is implicit)
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

The lagrangian

The lagrangian density is given by
L =i DY — X1, 0] — N — §F2 — J| 22 — JD?

where all fields are Lie algebra valued (Tr is implicit) and
@ x, ) are two-component complex spinor fields on H3
@ ¢ is a complexified Higgs
@ Fis the curvature of the complexified gauge field A
@ D is an auxiliary field for off-shell closure of supersymmetry
@ Z s the fully covariant derivative: 2; = V; + [Ay, —]
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

The lagrangian

The lagrangian density is given by
L =i DY — X1, 0] — N — §F2 — J| 22 — JD?

where all fields are Lie algebra valued (Tr is implicit) and
@ x, ) are two-component complex spinor fields on H3
@ ¢ is a complexified Higgs
@ Fis the curvature of the complexified gauge field A
@ D is an auxiliary field for off-shell closure of supersymmetry
@ Z s the fully covariant derivative: 2; = V; + [Ay, —]
@ and —\? is proportional to the scalar curvature of H3
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Supersymmetry transformations (1)
£ transforms as

512 = Vi (—ix! ("D + oF —i%'9) ey )

under
SLA; = i.XTO'ieL
S =xler
6LXT =0

51 = Dep + i(FeijF9 — Zid)o®er
. % .
51D =ix! Zer + (b, xTler —irxTer

provided that
Vi €L = 7\(71 €L
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Supersymmetry transformations (Il)
& also transforms as

5v 2 = Vi (el (~3Fj + %00k ) ¥)

under
5RA1 = —ieLO‘i‘LI)
SR = —ehwb
Srx = —DeJ{z —i(FeyFY + .@kcb)e;gcrk
S =0

S5rD = ek P + eh b, W] + ireh

provided that
Vie,g = —)\e]zai
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Closure
The above supersymmetry transformations obey the following
superalgebra:
51, 81) =0 = ok, &l (81, O8] = L + 5% + 8%
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Closure
The above supersymmetry transformations obey the following
superalgebra:
(51,81 =0 = [6g, OR] 51, 8R] = . % + 6g/1\auge 4+ 5%
where

o & =2ieloter is aKilling vector field: Vi&; = —2iAeijEX
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Closure
The above supersymmetry transformations obey the following
superalgebra:
(51,81 =0 = [6g, OR] 51, 8R] = . % + 6g/1\auge 4+ 5%
where

o & =2ieloter is aKilling vector field: Vi&; = —2iAeijEX
@ A=¢EA;+2eherd
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Closure
The above supersymmetry transformations obey the following
superalgebra:
(51,81 =0 = [6g, OR] 51, 8R] = . % + 6g/1\auge 4+ 5%
where

o & =2ieloter is aKilling vector field: Vi&; = —2iAeijEX
@ A=EA; +2eherd
@ 5R is an R-symmetry transformation:

SRp=iop and R x! = —ioy!

with @ = —4Aefer, which is indeed constant
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

Some remarks

@ All fields are complex and the lagrangian as written is not
real

@ The theory has 8 real supercharges, because ¢  are
Killing spinors on H3, which admits the maximum number
of Killing spinors with either sign of the Killing constant

@ Similar (but not identical) to supersymmetric theories in
“Family A” in work of
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

BPS configurations

@ The bosonic BPS configurations are precisely the
hyperbolic monopoles with D = 0

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 24 /45



Supersymmetric Yang—Mills-Higgs in hyperbolic space

BPS configurations

@ The bosonic BPS configurations are precisely the
hyperbolic monopoles with D = 0

@ Write 511 = (D + i(3eijF9 — Zid)o®)er
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

BPS configurations

@ The bosonic BPS configurations are precisely the
hyperbolic monopoles with D = 0

@ Write 511 = (D + i(3eijF9 — Zid)o®)er

@ Then det(D + i(3 aukF” — Zd)ok)=0ifandonlyif D =0
and 181)kF ) — Db =0
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

BPS configurations

@ The bosonic BPS configurations are precisely the
hyperbolic monopoles with D = 0

@ Write ;¢ = (D +1i(3 5€ijkFY — Zicd)oM)er
@ Then det(D + i(3 aukF” — Zd)ok)=0ifandonlyif D =0
and 181)kF ) — Db =0

@ Similarly, bosonic configurations with ¢ = —%aiijii and
D = 0 are precisely the ones which preserve the 5y
supersymmetries
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Supersymmetric Yang—Mills-Higgs in hyperbolic space

BPS configurations

@ The bosonic BPS configurations are precisely the
hyperbolic monopoles with D = 0

@ Write 51 = (D + l( EL]kFU — 9d)o )

@ Then det(D + i(3 aukF” — Zd)ok)=0ifandonlyif D =0
and 181)kF ) — Db =0

@ Similarly, bosonic configurations with ¢ = —%aiijii and
D = 0 are precisely the ones which preserve the 5y
supersymmetries

@ We will study the moduli space .# of bosonic
configurations preserving the &g supersymmetries
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The geometry of the monopole moduli space

e The geometry of the monopole moduli space
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The geometry of the monopole moduli space

Bosonic zero modes

@ Let (A(t), d(t)) be a family of bosonic BPS configurations:

Zi(1)d(t) + e P*(t) =0
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The geometry of the monopole moduli space

Bosonic zero modes

@ Let (A(t), d(t)) be a family of bosonic BPS configurations:

Zi(1)d(t) + e P*(t) =0

@ Differentiating w.r.t. t at t = 0 we obtain the linearised
Bogomol’nyi equation:

2:(0)$ — [$(0), Ai] + £45k 2 (0)A* = 0

where
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The geometry of the monopole moduli space

Bosonic zero modes

@ Let (A(t), d(t)) be a family of bosonic BPS configurations:

Zi(1)d(t) + e P*(t) =0

@ Differentiating w.r.t. t at t = 0 we obtain the linearised
Bogomol’nyi equation:

2:(0)$ — [$(0), Ai] + £45k 2 (0)A* = 0

where

i AL
° Ai= Ty |t:0
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The geometry of the monopole moduli space

Bosonic zero modes

@ Let (A(t), d(t)) be a family of bosonic BPS configurations:

Zi(1)d(t) + e P*(t) =0

@ Differentiating w.r.t. t at t = 0 we obtain the linearised
Bogomol’nyi equation:

2:(0)$ — [$(0), Ai] + £45k 2 (0)A* = 0

where
A 0A4
° A= Tt|t:0
o
° q)i Ht:O
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The geometry of the monopole moduli space

Bosonic zero modes

@ Let (A(t), d(t)) be a family of bosonic BPS configurations:

Zi(1)d(t) + e P*(t) =0

@ Differentiating w.r.t. t at t = 0 we obtain the linearised
Bogomol’nyi equation:

2:(0)$ — [$(0), Ai] + £45k 2 (0)A* = 0

where
_ 0/\
° Ay |t 0

oq)f
° j(O) v +[ 1(0), -1
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The geometry of the monopole moduli space

Gauge orbits

@ Some (A, §) are tangent to the orbit & of o7 = (A(0), $(0))
under the group of gauge transformations
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The geometry of the monopole moduli space

Gauge orbits

@ Some (A, §) are tangent to the orbit & of o7 = (A(0), $(0))
under the group of gauge transformations

@ We identify T ,.# with a suitable complement to T ;)0
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The geometry of the monopole moduli space

Gauge orbits

@ Some (A, §) are tangent to the orbit & of o7 = (A(0), $(0))
under the group of gauge transformations

@ We identify T ,.# with a suitable complement to T ;)0

@ For euclidean monopoles, there is a riemannian metric on
the space of solutions of the linearised Bogomol’nyi
equation, so Ty .7 = (Tﬂ/(o)ﬁ)L (i.e., Gauss’s Law)
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The geometry of the monopole moduli space

Gauge orbits

@ Some (A, §) are tangent to the orbit & of o7 = (A(0), $(0))
under the group of gauge transformations

@ We identify T ,.# with a suitable complement to T ;)0

@ For euclidean monopoles, there is a riemannian metric on
the space of solutions of the linearised Bogomol’nyi
equation, so Ty .7 = (Tﬂ/(o)ﬁ)L (i.e., Gauss’s Law)

@ For hyperbolic monopoles there is no natural riemannian
metric, so we will employ supersymmetry to define this
complement
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The geometry of the monopole moduli space

Fermionic zero modes

@ A fermionic zero mode 1) is a solution of the (already
linear) Dirac equation in the presence of the monopole
= (A(0), $(0)):

P(0)p —ild(0), ] +rp =0

(Notice that the equation has a mass term which goes to
zero in the euclidean limit.)
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The geometry of the monopole moduli space

Fermionic zero modes

@ A fermionic zero mode 1) is a solution of the (already
linear) Dirac equation in the presence of the monopole
= (A(0), $(0)):

P(0)p —ild(0), ] +rp =0

(Notice that the equation has a mass term which goes to
zero in the euclidean limit.)

@ We could determine the number of fermionic zero modes
by an index theory calculation
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The geometry of the monopole moduli space

Fermionic zero modes

@ A fermionic zero mode 1) is a solution of the (already
linear) Dirac equation in the presence of the monopole
= (A(0), $(0)):

P(0)p —ild(0), ] +rp =0

(Notice that the equation has a mass term which goes to
zero in the euclidean limit.)

@ We could determine the number of fermionic zero modes
by an index theory calculation

@ But we will instead use supersymmetry
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin
@ Let (A, §) obey the linearised Bogomol'nyi equation
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin
@ Let (A, §) obey the linearised Bogomol'nyi equation
@ Define { =1iA o' — ¢n
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin

@ Let (A, §) obey the linearised Bogomol'nyi equation

@ Define { =1iA o' — ¢n

@ Then ) is a fermionic zero mode if and only if (A, ) obey
in addition the generalised Gauss Law

DY 0)A; + [$(0), ] +4ird =0
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin

@ Let (A, §) obey the linearised Bogomol'nyi equation

@ Define { =1iA o' — ¢n

@ Then ) is a fermionic zero mode if and only if (A, ) obey
in addition the generalised Gauss Law

DY 0)A; + [$(0), ] +4ird =0

@ The last term might be surprising...
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The geometry of the monopole moduli space

Supersymmetry between zero modes (I)

@ Letn be a Killing spinor on H3 satisfying Vin = Aoin

@ Let (A, §) obey the linearised Bogomol'nyi equation

@ Define { =1iA o' — ¢n

@ Then ) is a fermionic zero mode if and only if (A, ) obey
in addition the generalised Gauss Law

DY 0)A; + [$(0), ] +4ird =0

@ The last term might be surprising...

@ The generalised Gauss Law is invariant under ¢ and
defines a complement to the tangent space to the gauge
orbits
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)

@ Conversely, let ¢ be a Killing spinor in H3 obeying
Vill = —Alloy
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)
@ Conversely, let ¢ be a Killing spinor in H3 obeying

Vill = —Alloy
@ Let ) be a fermionic zero mode
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)

@ Conversely, let ¢ be a Killing spinor in H3 obeying
Vill = —Alloy

@ Let ) be a fermionic zero mode

@ Then A; = —ifoyp and ¢ = —¢1) obey the linearised
Bogomol'nyi equation and the generalised Gauss Law
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)

@ Conversely, let ¢ be a Killing spinor in H3 obeying
Vil = —AToy

@ Let ) be a fermionic zero mode

@ Then A; = —ifoyp and ¢ = —¢1) obey the linearised
Bogomol’'nyi equation and the generalised Gauss Law

@ In summary, there are linear maps (parametrised by Killing
spinors on H3) mapping between bosonic and fermionic
zero modes
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)

Conversely, let ¢ be a Killing spinor in H3 obeying
Vil = -Alloy

@ Let ) be a fermionic zero mode
@ Then A; = —ifoyp and ¢ = —¢1) obey the linearised

Bogomol'nyi equation and the generalised Gauss Law

In summary, there are linear maps (parametrised by Killing
spinors on H3) mapping between bosonic and fermionic
zero modes

We will see these maps are isomorphisms, so that there
are 4k fermionic zero modes as well
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The geometry of the monopole moduli space

Supersymmetry between zero modes (ll)

@ Conversely, let ¢ be a Killing spinor in H3 obeying
Vill = —Alloy

@ Let ) be a fermionic zero mode

@ Then A; = —ifoyp and ¢ = —¢1) obey the linearised
Bogomol'nyi equation and the generalised Gauss Law

@ In summary, there are linear maps (parametrised by Killing
spinors on H3) mapping between bosonic and fermionic
zero modes

@ We will see these maps are isomorphisms, so that there
are 4k fermionic zero modes as well

@ But it is easier to see this in a four-dimensional formalism
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The geometry of the monopole moduli space

A four-dimensional formalism

@ We work formally in H® x S' but fields are S-invariant
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The geometry of the monopole moduli space

A four-dimensional formalism

@ We work formally in H® x S' but fields are S-invariant
@ I, are complex 4 x 4 matrices representing C¢(0, 4)
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The geometry of the monopole moduli space

A four-dimensional formalism

@ We work formally in H3 x S? but fields are S'-invariant
@ I, are complex 4 x 4 matrices representing C¢(0, 4)
@ Spinors i and ¢! in H3 lift to chiral spinors in H3 x S':

ng = <O> tk=(0 &)

n
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The geometry of the monopole moduli space

A four-dimensional formalism

@ We work formally in H3 x S? but fields are S'-invariant
@ I, are complex 4 x 4 matrices representing C¢(0, 4)
@ Spinors i and ¢! in H3 lift to chiral spinors in H3 x S':

ng = <O> tk=(0 &)

n

@ The Killing spinor equations in H3 become
Ving = —iAl IR Vil = —i?\CLQI}

in addition to Vynr =0 and V4C]T2 =
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The geometry of the monopole moduli space

Zero modes in four-dimensional formalism
@ In this formalism, a fermionic zero mode ¥ = <I(I))> obeys

PV = -V
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The geometry of the monopole moduli space

Zero modes in four-dimensional formalism
@ In this formalism, a fermionic zero mode ¥ = <l(l))> obeys
PV = -V
@ and a bosonic zero mode A, = (A;, $) obeys

-@[uAv] = —%EQVPUQPAU
DHA = —4iAA,
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The geometry of the monopole moduli space

Zero modes in four-dimensional formalism
@ In this formalism, a fermionic zero mode ¥ = <l(l))> obeys
PV = -V
@ and a bosonic zero mode A, = (A;, $) obeys

-@[uAv] = —%EQVPUQPAU
DHA = —4iAA,

@ Of course, V4% =0and V4A,, =0
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The geometry of the monopole moduli space

Supersymmetry between zero modes (lll)

@ Let Zy and Z, denote the vector space of bosonic and
fermionic zero modes
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The geometry of the monopole moduli space

Supersymmetry between zero modes (lll)

@ Let Zy and Z, denote the vector space of bosonic and
fermionic zero modes

@ Let K* denote the vector space of Killing spinors (on H3)

K = {ErIViEr = FiAMLER  and  Vyég = 0}
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The geometry of the monopole moduli space

Supersymmetry between zero modes (lll)

@ Let Zy and Z, denote the vector space of bosonic and
fermionic zero modes

@ Let K* denote the vector space of Killing spinors (on H3)

K = {ErIViEr = FiAMLER  and  Vyég = 0}

@ We have real bilinear maps

K+XZO—>Z1 d K_XZ1—>ZO
. . an . .
(MR, Ay) = 1AL TR (Cr, V1) — —iC T W
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The geometry of the monopole moduli space

Supersymmetry between zero modes (1V)
@ We can compose them:

KjL x K™ x Z-| — Z1
(MR, Cr, Y1) = ZCLHR‘PL
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The geometry of the monopole moduli space

Supersymmetry between zero modes (1V)

@ We can compose them:

KjL x K™ x Z-| — Z1
(MR, Cr, Y1) = ZCLHR‘PL

@ Normalising so that 2¢ng = 1, we see that this
composition is the identity
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The geometry of the monopole moduli space

Supersymmetry between zero modes (1V)

@ We can compose them:
KjL x K™ x Z-| — Z1
(MR, Cr, Y1) = ZCLHR‘PL

@ Normalising so that 2¢ng = 1, we see that this
composition is the identity

@ In particular, both maps are isomorphisms and hence
dim ZO =dim Z1
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I)
@ Letnr € Kt and (g € K™
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I)

@ Letnr € Kt and (g € K™
@ They define a complex-linear endomorphism of T¢(H3 x S)
by
E,Y = —ichn Y
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I)
@ Letnr € Kt and (g € K™
@ They define a complex-linear endomorphism of T¢(H3 x S)
by
E,Y = —ichn Y
@ It follows from the chirality of ng and (i that E is self-dual:

|
2€uvpoE”? =Euy
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I)
@ Letnr € Kt and (g € K™
@ They define a complex-linear endomorphism of T¢(H3 x S)
by
E,Y = —ichn Y
@ It follows from the chirality of ng and (i that E is self-dual:

|
2€uvpoE”? =Euy

@ Also it follows from Fierz identities that
F—upEpV = (CRT]R)
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I)

@ Letnr € Kt and (g € K™
@ They define a complex-linear endomorphism of T¢(H3 x S)
by
E,Y = —ichn Y

@ It follows from the chirality of ng and (i that E is self-dual:

—_

o
QEMVWE" =Eu

@ Also it follows from Fierz identities that
F—upEpV = (CRT]R)

@ If we normalise C nr = 1, then E is a complex structure
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I1)

@ Since ngr and (g are Killing spinors, V4E,» =0 and

Vil = 2AEy;  ViEjk = —2iA (8i5Eqy — dikEy)
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I1)

@ Since ngr and (g are Killing spinors, V4E,» =0 and

Vil = 2AEy;  ViEjk = —2iA (8i5Eqy — dikEy)

@ This implies that if A,, is a bosonic zero mode, so is E,, YA,
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I1)

@ Since ngr and (g are Killing spinors, V4E,» =0 and

Vil = 2AEy;  ViEjk = —2iA (8i5Eqy — dikEy)

@ This implies that if A,, is a bosonic zero mode, so is E,, YA,
@ If Ay, denotes a basis for Zg, then

E Y Agy = Ea®Apy

defines an almost complex structure & on Te.#

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 36/45



The geometry of the monopole moduli space

Complex structures from Killing spinors (I1)

@ Since ngr and (g are Killing spinors, V4E,» =0 and

Vil = 2AEy;  ViEjk = —2iA (8i5Eqy — dikEy)

@ This implies that if A,, is a bosonic zero mode, so is E,, YA,
@ If Ay, denotes a basis for Zg, then

E Y Agy = Ea®Apy

defines an almost complex structure & on Te.#

@ Varying ng and (g subject to CLnR =1, we find a 2-sphere
worth of almost complex structures
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The geometry of the monopole moduli space

Complex structures from Killing spinors (I1)

@ Since ngr and (g are Killing spinors, V4E,» =0 and

Vil = 2AEy;  ViEjk = —2iA (8i5Eqy — dikEy)

@ This implies that if A,, is a bosonic zero mode, so is E,, YA,
@ If Ay, denotes a basis for Zg, then

E Y Agy = Ea®Apy

defines an almost complex structure & on Te.#

@ Varying ng and (g subject to CLnR =1, we find a 2-sphere
worth of almost complex structures

@ Supersymmetry = they are integrable
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (l)

@ In 4d-language, the supersymmetry transformation of A, is

ScAy = —ieh MWL = 8.A, = —iel I, W
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (l)

@ In 4d-language, the supersymmetry transformation of A, is

ScAy = —ieh MWL = 8.A, = —iel I, W

@ Choose a basis A, for Z, and let ¥ , = iA,,""ng be the
corresponding basis for Z,
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (l)

@ In 4d-language, the supersymmetry transformation of A, is

ScAy = —ieh MWL = 8.A, = —iel I, W

@ Choose a basis A, for Z, and let ¥ , = iA,,""ng be the
corresponding basis for Z,

@ Expand A, = Ay, X% and ¥ =¥ ,0¢
@ Onthe one hand, 5.A, = Aqu8:X¢
@ butalso §.A, = —ie M W1 a0% = AgyelM Y ngoe
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (ll)

@ Putting both together and using the Clifford relations

AauéeXa = AaueLnRea + eLFuvnRAa\,ea
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (ll)

@ Putting both together and using the Clifford relations

AauéeXa = AaueLnRe“ + eLFuvnRAa\,ea
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where we have used E, Y Aoy = &, Apy,
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The geometry of the monopole moduli space

Linearising the supersymmetry transformations (ll)

@ Putting both together and using the Clifford relations

AauéeXa = AaueLnRe“ + eLFuvnRAa\,ea

o Let eTRnR =¢'and GLFHVnR = £2EHV, so that
Aauéexa = Aaus1e“ + szgabAbuea

where we have used E, Y Aoy = &, Apy,
@ Since the A, are a basis,

5 X* =¢'0% 4 ¢24,%0°
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The geometry of the monopole moduli space

A one-dimensional supersymmetric sigma model

@ By analogy with the case of euclidean monopoles, we will
explore the geometry of .# by considering a
one-dimensional sigma model with fields X* and 0¢
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The geometry of the monopole moduli space

A one-dimensional supersymmetric sigma model

@ By analogy with the case of euclidean monopoles, we will
explore the geometry of .# by considering a
one-dimensional sigma model with fields X* and 0¢

@ In contrast with the case of euclidean monopoles, there is
no action for this sigma model due to the lack of natural
riemannian metric on .#

@ Since hyperbolic monopoles are %-BPS, we expect that this
sigma model should have 4 real supercharges, although
(in this talk) | work with two supercharges at a time
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The geometry of the monopole moduli space

Closing the supersymmetry algebra (I)
@ Introduce odd derivations &1 and &, by

§eX® = e85 X% + e25,X9
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The geometry of the monopole moduli space

Closing the supersymmetry algebra (I)
@ Introduce odd derivations &1 and &, by

§eX® = e85 X% + e25,X9

@ Explicitly,
51X =09 5oX = &, %00

@ We demand that they obey the supersymmetry algebra
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The geometry of the monopole moduli space

Closing the supersymmetry algebra (I)
@ Introduce odd derivations &1 and &, by

§eX® = e85 X% + e25,X9

@ Explicitly,
51X =09 5oX = &, %00

@ We demand that they obey the supersymmetry algebra

d
— 2. —_—
OAdB + 0BOA 1daB at

@ This implies that 5;60¢ = iX’® and
5,09 = —iX'°&, ¢ +0%0°0. 5, ¢
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The geometry of the monopole moduli space

Closing the supersymmetry algebra (II)

@ Closure also requires

dp&® — 0480464 =0

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 41/45



The geometry of the monopole moduli space

Closing the supersymmetry algebra (II)

@ Closure also requires

dp&® — 0480464 =0

@ This is equivalent to

a[béac]aé"af + adéa[b rgcjd =0

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 41/45



The geometry of the monopole moduli space

Closing the supersymmetry algebra (II)

@ Closure also requires

dp&® — 0480464 =0

@ This is equivalent to

a[bé"c]aé"ar + adéa[b rgcjd =0

@ In terms of the Frélicher—Nijenhuis bracket: [£, 8] =0

José Miguel Figueroa O’Farrill Hyperbolic monopoles and supersymmetry 41/45



The geometry of the monopole moduli space

Closing the supersymmetry algebra (II)

@ Closure also requires

dp&® — 0480464 =0

@ This is equivalent to

a[bé"c]aé"af + adéjb rgcjd =0

@ In terms of the Frélicher—Nijenhuis bracket: [£, 8] =0
@ This is equivalent to the integrability of &
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The geometry of the monopole moduli space

Closing the supersymmetry algebra (II)

@ Closure also requires

dp&® — 0480464 =0

@ This is equivalent to

a[bé"c]aé"af + adéjb rgcjd =0

@ In terms of the Frélicher—Nijenhuis bracket: [£, 8] =0
@ This is equivalent to the integrability of &
@ The closure on the 6¢ gives no further constraints
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The geometry of the monopole moduli space

The pluricomplex structure

@ We have shown that for allmg € K* and (g € K~ such that
CEHR =1, there is an integrable complex structure & on
Te.# acting complex linearly
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The geometry of the monopole moduli space

The pluricomplex structure

@ We have shown that for allmg € K* and (g € K~ such that
CEHR =1, there is an integrable complex structure & on
Te.# acting complex linearly

@ By varying nr and (g, one can exhibit complex structures
&, 7 and ¢ obeying a quaternion algebra

@ This gives a 2-sphere worth of integrable complex
structures acting complex-linearly on Te.#

@ This defines a pluricomplex structure on .#

@ This means that the moduli X® and 8¢ belong to a multiplet
of the d =1 N = 4 supersymmetry algebra, as expected
for 3-BPS configurations
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Conclusions and future directions

0 Conclusions and future directions
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Conclusions

@ We have presented a construction of a supersymmetric
Yang—Mills—Higgs theory in H3
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Conclusions and future directions

Conclusions

@ We have presented a construction of a supersymmetric
Yang—Mills—Higgs theory in H3

@ whose bosonic BPS configurations are in one-to-one
correspondence with (complexified) hyperbolic monopoles

@ We have shown that there is a supersymmetry relating the
bosonic and fermionic moduli

@ Closing the algebra requires a pluricomplex structure on
the moduli space
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Conclusions and future directions

Future directions

@ It would be good to have a more direct construction of the
theory: perhaps coupling supersymmetric Yang—Mills to a
conformal supergravity theory in R*
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Conclusions and future directions

Future directions

@ It would be good to have a more direct construction of the
theory: perhaps coupling supersymmetric Yang—Mills to a
conformal supergravity theory in R*

@ What r6le do the Hitchin metrics play? Are they perhaps
regularised metrics?

@ Can the pluricomplex structure be used to analyse the
dynamics of hyperbolic monopoles?

@ Pluricomplex manifolds have a unique torsion-free
connection leaving the complex structures invariant. Are
geodesics with respect to that connection perhaps the
trajectories of low-energy hyperbolic monopoles?
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