Hyperbolic monopoles and supersymmetry

José Miguel Figueroa O'Farrill

hep-th **seminar** Tōkyō, 12 December 2013

Supersymmetry

Supersymmetry relates

イロト イポト イヨト イヨト

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations
 - bosons: (usually) satisfy 2nd order field equations

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations
 - bosons: (usually) satisfy 2nd order field equations
- It should not come as a surprise to find supersymmetry whenever 1st-order equations imply 2nd-order equations

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations
 - bosons: (usually) satisfy 2nd order field equations
- It should not come as a surprise to find supersymmetry whenever 1st-order equations imply 2nd-order equations

A metamathematical principle?

Supersymmetry underlies any situation where

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations
 - bosons: (usually) satisfy 2nd order field equations
- It should not come as a surprise to find supersymmetry whenever 1st-order equations imply 2nd-order equations

A metamathematical principle?

Supersymmetry underlies any situation where

1st order PDE implies 2nd order PDE

Supersymmetry

- Supersymmetry relates
 - fermions: (usually) satisfy 1st order field equations
 - bosons: (usually) satisfy 2nd order field equations
- It should not come as a surprise to find supersymmetry whenever 1st-order equations imply 2nd-order equations

A metamathematical principle?

Supersymmetry underlies any situation where

- 1st order PDE implies 2nd order PDE
- solutions of the 1st order PDE are optimal among all solutions of the 2nd order PDE

Well-known examples

calibrated geometry

calibrated \implies minimal

and calibrated submanifolds are **volume-minimizing** in their homology class

イロト イポト イヨト イヨト

Well-known examples

```
 calibrated geometry
```

calibrated \implies minimal

and calibrated submanifolds are **volume-minimizing** in their homology class

instantons

(anti)self-dual \implies Yang-Mills

and (A)SD gauge fields saturate the topological bound

(日)

= nar

Well-known examples

```
 calibrated geometry
```

calibrated \implies minimal

and calibrated submanifolds are **volume-minimizing** in their homology class

instantons

(anti)self-dual \implies Yang-Mills

and (A)SD gauge fields saturate the topological bound

• monopoles

Bogomol'nyi \implies Yang-Mills-Higgs

and Bogomol'nyi monopoles saturate the topological bound

In this talk

Bogomol'nyi monopoles in hyperbolic space

イロト イポト イヨト イヨト

In this talk

- Bogomol'nyi monopoles in hyperbolic space
- Reformulation as BPS configurations in a supersymmetric Yang–Mills–Higgs theory on hyperbolic space

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In this talk

- Bogomol'nyi monopoles in hyperbolic space
- Reformulation as BPS configurations in a supersymmetric Yang–Mills–Higgs theory on hyperbolic space
- Determination of the geometry of the monopole moduli space

In this talk

- Bogomol'nyi monopoles in hyperbolic space
- Reformulation as BPS configurations in a supersymmetric Yang–Mills–Higgs theory on hyperbolic space
- Determination of the geometry of the monopole moduli space
- Based on joint work (1311.3588) with MOUSTAFA GHARAMTI

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline of talk

Outline of talk

Supersymmetric Yang–Mills–Higgs in hyperbolic space

Outline of talk

Hyperbolic monopoles

The geometry of the monopole moduli space 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline of talk

Hyperbolic monopoles

The geometry of the monopole moduli space 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

2 Supersymmetric Yang–Mills–Higgs in hyperbolic space

3 The geometry of the monopole moduli space

4 Conclusions and future directions

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

 $d_A \varphi = -\star F_A$

where

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

$$\mathbf{d}_A \mathbf{\phi} = - \star \mathbf{F}_A$$

where

• A is a connection on a principal G bundle P over \mathbb{R}^3 and $F_A = dA + \frac{1}{2}[A, A]$ its curvature

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

 $\mathbf{d}_A \mathbf{\phi} = - \star \mathbf{F}_A$

where

- A is a connection on a principal G bundle P over \mathbb{R}^3 and $F_A = dA + \frac{1}{2}[A, A]$ its curvature
- The Higgs field ϕ is a section of the adjoint bundle ad P over \mathbb{R}^3 satisfying suitable boundary conditions which ensure that the L² norm of F_A is finite

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

 $\mathbf{d}_A \mathbf{\phi} = - \star \mathbf{F}_A$

where

- A is a connection on a principal G bundle P over \mathbb{R}^3 and $F_A = dA + \frac{1}{2}[A, A]$ its curvature
- The Higgs field ϕ is a section of the adjoint bundle ad P over \mathbb{R}^3 satisfying suitable boundary conditions which ensure that the L² norm of F_A is finite
- $d_A \phi = d\phi + [A, \phi]$

イロト イポト イヨト イヨト

э

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

 $\mathbf{d}_A \mathbf{\phi} = - \star \mathbf{F}_A$

where

- A is a connection on a principal G bundle P over \mathbb{R}^3 and $F_A = dA + \frac{1}{2}[A, A]$ its curvature
- The Higgs field ϕ is a section of the adjoint bundle ad P over \mathbb{R}^3 satisfying suitable boundary conditions which ensure that the L² norm of F_A is finite
- $d_A \phi = d\phi + [A, \phi]$
- * is the Hodge star operator

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Monopoles

• The Bogomol'nyi equation in \mathbb{R}^3 is

 $\mathbf{d}_A \mathbf{\Phi} = - \star \mathbf{F}_A$

where

- A is a connection on a principal G bundle P over \mathbb{R}^3 and $F_A = dA + \frac{1}{2}[A, A]$ its curvature
- The Higgs field ϕ is a section of the adjoint bundle ad P over \mathbb{R}^3 satisfying suitable boundary conditions which ensure that the L² norm of F_A is finite
- $d_A \phi = d\phi + [A, \phi]$
- $\bullet \star$ is the Hodge star operator
- A pair (A, φ) satisfying the Bogomol'nyi equation is called a euclidean monopole

(日)

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Translationally invariant instantons

• Interpret φ as the fourth component of a connection \mathscr{A} in \mathbb{R}^4

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Translationally invariant instantons

- Interpret φ as the fourth component of a connection \mathscr{A} in \mathbb{R}^4
- If \mathscr{A} is now independent of the 4th coordinate, the Bogomol'nyi equation becomes the self-duality equation on \mathbb{R}^4

 $F_{\mathscr{A}} = \star F_{\mathscr{A}}$

where \star is now the Hodge star in \mathbb{R}^4

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Translationally invariant instantons

- Interpret φ as the fourth component of a connection \mathscr{A} in \mathbb{R}^4
- If \mathscr{A} is now independent of the 4th coordinate, the Bogomol'nyi equation becomes the self-duality equation on \mathbb{R}^4

$$F_{\mathscr{A}} = \star F_{\mathscr{A}}$$

where \star is now the Hodge star in \mathbb{R}^4

 In other words, euclidean monopoles are translationally invariant instantons

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

 Hyperbolic monopoles are solutions to the Bogomol'nyi equation in hyperbolic space H³

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

- Hyperbolic monopoles are solutions to the Bogomol'nyi equation in hyperbolic space H³
- They can be constructed from rotationally invariant instantons ATIYAH (1984)

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

- Hyperbolic monopoles are solutions to the Bogomol'nyi equation in hyperbolic space H³
- They can be constructed from rotationally invariant instantons ATIYAH (1984)
- Write the euclidean metric in \mathbb{R}^4

$$ds^2 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$$

using polar coordinates in the (x_3, x_4) plane:

$$ds^2 = dx_1^2 + dx_2^2 + dr^2 + r^2 d\theta^2$$

くロン (雪) (ヨ) (ヨ)

э.

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

- Hyperbolic monopoles are solutions to the Bogomol'nyi equation in hyperbolic space H³
- They can be constructed from rotationally invariant instantons ATIYAH (1984)
- Write the euclidean metric in \mathbb{R}^4

$$ds^2 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$$

using polar coordinates in the (x_3, x_4) plane:

$$ds^2 = dx_1^2 + dx_2^2 + dr^2 + r^2 d\theta^2$$

くロン (雪) (ヨ) (ヨ)

э.

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Hyperbolic monopoles

- Hyperbolic monopoles are solutions to the Bogomol'nyi equation in hyperbolic space H³
- They can be constructed from rotationally invariant instantons ATIYAH (1984)
- Write the euclidean metric in \mathbb{R}^4

$$\mathrm{d}s^2 = \mathrm{d}x_1^2 + \mathrm{d}x_2^2 + \mathrm{d}x_3^2 + \mathrm{d}x_4^2$$

using polar coordinates in the (x_3, x_4) plane:

$$ds^{2} = dx_{1}^{2} + dx_{2}^{2} + dr^{2} + r^{2}d\theta^{2} = r^{2} \left(\underbrace{\frac{dx_{1}^{2} + dx_{2}^{2} + dr^{2}}{r^{2}}}_{H^{3}} + \underbrace{\frac{d\theta^{2}}{s^{1}}}_{S^{1}} \right)$$

イロト 不得 トイヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Rotationally invariant instantons

• This description is valid in the complement of the 2-plane $x_3 = x_4 = 0$

э.

Rotationally invariant instantons

- This description is valid in the complement of the 2-plane $x_3 = x_4 = 0$
- We see that $\mathbb{R}^4 \setminus \mathbb{R}^2$ is conformal to $H^3 \times S^1$

イロト イポト イヨト イヨト

э.

Hyperbolic monopoles Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space

Conclusions and future directions

Rotationally invariant instantons

- This description is valid in the complement of the 2-plane $x_3 = x_4 = 0$
- We see that $\mathbb{R}^4 \setminus \mathbb{R}^2$ is conformal to $H^3 \times S^1$
- The self-duality equation is conformally invariant, so instantons on $\mathbb{R}^4 \setminus \mathbb{R}^2$ are in one-to-one correspondence with instantons on $\mathbb{H}^3 \times S^1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Rotationally invariant instantons

- This description is valid in the complement of the 2-plane $x_3 = x_4 = 0$
- We see that $\mathbb{R}^4 \setminus \mathbb{R}^2$ is conformal to $H^3 \times S^1$
- The self-duality equation is conformally invariant, so instantons on $\mathbb{R}^4 \setminus \mathbb{R}^2$ are in one-to-one correspondence with instantons on $\mathbb{H}^3 \times S^1$
- Instantons on $\mathbb{R}^4 \setminus \mathbb{R}^2$ invariant under rotations in the (x_3, x_4) plane give solutions of the Bogomol'nyi equation in H^3

 $\mathbf{d}_A \mathbf{\phi} = - \star \mathbf{F}_A$

where φ is the $\theta\text{-component}$ of \mathscr{A}

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Mass and charge

• Hyperbolic monopoles are determined by their mass $\mathfrak{m} \in \mathbb{R}^+$

 $\mathfrak{m} = \lim_{r \to \infty} |\varphi(r)|$

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Mass and charge

• Hyperbolic monopoles are determined by their mass $\mathfrak{m} \in \mathbb{R}^+$

 $\mathfrak{m} = \lim_{r \to \infty} |\varphi(r)|$

• and their charge $k \in \mathbb{Z}^+$

$$k = \lim_{r \to \infty} \frac{1}{4\pi m} \int_{H^3} tr(F_A \wedge d_A \phi)$$

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Mass and charge

• Hyperbolic monopoles are determined by their mass $\mathfrak{m} \in \mathbb{R}^+$

 $\mathfrak{m} = \lim_{r \to \infty} |\varphi(r)|$

• and their charge $k \in \mathbb{Z}^+$

$$k = \lim_{r \to \infty} \frac{1}{4\pi m} \int_{H^3} tr(F_A \wedge d_A \varphi)$$

• They exist for all values of m and k SIBNER+SIBNER (2012)

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Mass and charge

• Hyperbolic monopoles are determined by their mass $\mathfrak{m} \in \mathbb{R}^+$

 $\mathfrak{m} = \lim_{r \to \infty} |\varphi(r)|$

• and their charge $k \in \mathbb{Z}^+$

$$k = \lim_{r \to \infty} \frac{1}{4\pi m} \int_{H^3} tr(F_A \wedge d_A \varphi)$$

- They exist for all values of m and k SIBNER+SIBNER (2012)
- We can rescale the mass to unity, but this changes the curvature of ${\rm H}^3$ from -1 to $-1/{\rm m}^2$

イロト イポト イヨト イヨト

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Mass and charge

• Hyperbolic monopoles are determined by their mass $\mathfrak{m} \in \mathbb{R}^+$

 $\mathfrak{m} = \lim_{r \to \infty} |\varphi(r)|$

• and their charge $k \in \mathbb{Z}^+$

$$k = \lim_{r \to \infty} \frac{1}{4\pi m} \int_{H^3} tr(F_A \wedge d_A \varphi)$$

- They exist for all values of m and k SIBNER+SIBNER (2012)
- We can rescale the mass to unity, but this changes the curvature of ${\rm H}^3$ from -1 to $-1/{\rm m}^2$
- a hyperbolic monopole extends to a rotationally invariant instanton on all of \mathbb{R}^4 if and only if $m \in \mathbb{Z}$

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of euclidean monopoles

 Low-energy dynamics of euclidean monopoles = geodesic motion on the moduli space *M* (1982)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of euclidean monopoles

- Low-energy dynamics of euclidean monopoles = geodesic motion on the moduli space *M* (1982)
- *M* is the space of solutions modulo gauge equivalence

э

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of euclidean monopoles

- Low-energy dynamics of euclidean monopoles = geodesic motion on the moduli space *M* (1982)
- *M* is the space of solutions modulo gauge equivalence
- *M* inherits a metric from the L² metric on the space of solutions of the linearised Bogomol'nyi equation

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of euclidean monopoles

- Low-energy dynamics of euclidean monopoles = geodesic motion on the moduli space *M* (1982)
- *M* is the space of solutions modulo gauge equivalence
- *M* inherits a metric from the L² metric on the space of solutions of the linearised Bogomol'nyi equation
- this metric is hyperkähler

ATIYAH+HITCHIN (1984)

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of euclidean monopoles

- Low-energy dynamics of euclidean monopoles = geodesic motion on the moduli space *M* (1982)
- *M* is the space of solutions modulo gauge equivalence
- *M* inherits a metric from the L² metric on the space of solutions of the linearised Bogomol'nyi equation
- this metric is hyperkähler

ATIYAH+HITCHIN (1984)

イロト イポト イヨト イヨト

э.

 the metric for k = 2 is known explicitly, as is the metric for well-separated monopoles
 MANTON (1985)

Moduli space of hyperbolic monopoles (I)

• Let $\mathscr{M}_{k,m}$ be the moduli space of monopoles on H^3 with charge k and mass m

- Let $\mathscr{M}_{k,\mathfrak{m}}$ be the moduli space of monopoles on H^3 with charge k and mass \mathfrak{m}
- The moduli space *M*_{k,m} is diffeomorphic to the space of rational maps (for k ≥ 1)

$$\frac{a_1 z^{k-1} + a_2 z^{k-2} + \dots + a_k}{z^k + b_1 z^{k-1} + \dots + b_k}$$

where numerator and denominator polynomials are coprime ATIYAH (1984)

くロン (雪) (ヨ) (ヨ)

= nar

- Let $\mathscr{M}_{k,\mathfrak{m}}$ be the moduli space of monopoles on H^3 with charge k and mass \mathfrak{m}
- The moduli space *M*_{k,m} is diffeomorphic to the space of rational maps (for k ≥ 1)

$$\frac{a_1 z^{k-1} + a_2 z^{k-2} + \dots + a_k}{z^k + b_1 z^{k-1} + \dots + b_k}$$

where numerator and denominator polynomials are coprime ATIYAH (1984)

Since a₁,..., a_k, b₁,..., b_k are complex numbers, *M_{k,m}* is a real 4k-dimensional manifold

イロト 不得 トイヨト イヨト

= nar

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of hyperbolic monopoles (II)

 The L² metric for linearised monopoles does not converge in H³
 BRAAM+AUSTIN (1990)

イロト イポト イヨト イヨト

Moduli space of hyperbolic monopoles (II)

- The L² metric for linearised monopoles does not converge in H³
 BRAAM+AUSTIN (1990)
- Therefore *M*_{k,m} does **not** (seem to) inherit a metric from the gauge theory

イロト イポト イヨト イヨト

- The L² metric for linearised monopoles does not converge in H³
 BRAAM+AUSTIN (1990)
- Therefore *M*_{k,m} does **not** (seem to) inherit a metric from the gauge theory
- This suggests that the geometry of $\mathcal{M}_{k,m}$ is **not** riemannian

- The L² metric for linearised monopoles does not converge in H³
 BRAAM+AUSTIN (1990)
- Therefore *M*_{k,m} does **not** (seem to) inherit a metric from the gauge theory
- This suggests that the geometry of $\mathcal{M}_{k,m}$ is **not** riemannian
- Nevertheless *M*_{2,m} admits a self-dual Einstein metric (for m ∈ ℤ) whose m → ∞ limit is the Atiyah–Hitchin metric for euclidean monopoles HITCHIN (1996)

- The L² metric for linearised monopoles does not converge in H³
 BRAAM+AUSTIN (1990)
- Therefore *M*_{k,m} does **not** (seem to) inherit a metric from the gauge theory
- This suggests that the geometry of $\mathcal{M}_{k,m}$ is **not** riemannian
- Nevertheless *M*_{2,m} admits a self-dual Einstein metric (for m ∈ Z) whose m → ∞ limit is the Atiyah–Hitchin metric for euclidean monopoles
 HITCHIN (1996)
- It is still an open problem to relate the Hitchin family of metrics to the gauge theory

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Moduli space of hyperbolic monopoles (III)

 The geometry of *M*_{k,m} has been investigated using twistor methods
 NASH (2007)

- The geometry of *M*_{k,m} has been investigated using twistor methods
 NASH (2007)
- Using this, it was recently identified as a **pluricomplex** geometry BIELAWSKI+SCHWACHHÖFER (2011)

- The geometry of *M*_{k,m} has been investigated using twistor methods
 NASH (2007)
- Using this, it was recently identified as a **pluricomplex** geometry BIELAWSKI+SCHWACHHÖFER (2011)
- Pluricomplex manifolds have a 2-sphere worth of integrable complex structures, but no compatible metric

- The geometry of *M*_{k,m} has been investigated using twistor methods
 NASH (2007)
- Using this, it was recently identified as a **pluricomplex** geometry BIELAWSKI+SCHWACHHÖFER (2011)
- Pluricomplex manifolds have a 2-sphere worth of integrable complex structures, but no compatible metric
- Neither are they hypercomplex; although they can be characterised as admitting a complex-linear hypercomplex structure on the complexification of the tangent bundle

- The geometry of *M*_{k,m} has been investigated using twistor methods
 NASH (2007)
- Using this, it was recently identified as a **pluricomplex** geometry BIELAWSKI+SCHWACHHÖFER (2011)
- Pluricomplex manifolds have a 2-sphere worth of integrable complex structures, but no compatible metric
- Neither are they hypercomplex; although they can be characterised as admitting a complex-linear hypercomplex structure on the complexification of the tangent bundle
- In the euclidean limit, the pluricomplex structure gives rise to a hyperkähler structure BIELAWSKI+SCHWACHHÖFER (2012)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric Yang–Mills–Higgs in hyperbolic space The geometry of the monopole moduli space Conclusions and future directions

Supersymmetry

 In this talk we will show how the pluricomplex structure arises naturally from supersymmetry

Supersymmetry

- In this talk we will show how the pluricomplex structure arises naturally from supersymmetry
- We will construct a supersymmetric gauge theory on hyperbolic space, whose BPS configurations are precisely the hyperbolic monopoles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Supersymmetry

- In this talk we will show how the pluricomplex structure arises naturally from supersymmetry
- We will construct a supersymmetric gauge theory on hyperbolic space, whose BPS configurations are precisely the hyperbolic monopoles
- The lack of L² metric means that there is no effective action for the moduli

Supersymmetry

- In this talk we will show how the pluricomplex structure arises naturally from supersymmetry
- We will construct a supersymmetric gauge theory on hyperbolic space, whose BPS configurations are precisely the hyperbolic monopoles
- The lack of L² metric means that there is no effective action for the moduli
- But we can constrain the geometry by demanding the closure of the supersymmetry algebra

Supersymmetry

- In this talk we will show how the pluricomplex structure arises naturally from supersymmetry
- We will construct a supersymmetric gauge theory on hyperbolic space, whose BPS configurations are precisely the hyperbolic monopoles
- The lack of L² metric means that there is no effective action for the moduli
- But we can constrain the geometry by demanding the closure of the supersymmetry algebra
- This is reminiscent of 4d Wess–Zumino sigma models without actions, in which case the target space geometry need not be Kähler
 Stelle+Van Proeyen (2003)

イロト イポト イヨト イヨト

Hyperbolic monopoles

2 Supersymmetric Yang–Mills–Higgs in hyperbolic space

3 The geometry of the monopole moduli space

4 Conclusions and future directions

Supersymmetric Yang–Mills theories

We construct a supersymmetric Yang–Mills–Higgs theory in hyperbolic space as follows:

• Start with d = 4 N = 1 supersymmetric Yang–Mills theory

э

Supersymmetric Yang–Mills theories

We construct a supersymmetric Yang–Mills–Higgs theory in hyperbolic space as follows:

- Start with d = 4 N = 1 supersymmetric Yang–Mills theory
- Euclideanise it using the approach of VAN NIEUWENHUIZEN+WALDRON (1996)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Supersymmetric Yang–Mills theories

We construct a supersymmetric Yang–Mills–Higgs theory in hyperbolic space as follows:

- Start with d = 4 N = 1 supersymmetric Yang–Mills theory
- Euclideanise it using the approach of VAN NIEUWENHUIZEN+WALDRON (1996)
- This **complexifies** the fields: spinors in \mathbb{R}^4 are not real

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric Yang–Mills theories

We construct a supersymmetric Yang–Mills–Higgs theory in hyperbolic space as follows:

- Start with d = 4 N = 1 supersymmetric Yang–Mills theory
- Euclideanise it using the approach of VAN NIEUWENHUIZEN+WALDRON (1996)
- This **complexifies** the fields: spinors in \mathbb{R}^4 are not real
- Dimensionally reduce to R³

э

Supersymmetric Yang–Mills theories

We construct a supersymmetric Yang–Mills–Higgs theory in hyperbolic space as follows:

- Start with d = 4 N = 1 supersymmetric Yang–Mills theory
- Euclideanise it using the approach of VAN NIEUWENHUIZEN+WALDRON (1996)
- This **complexifies** the fields: spinors in \mathbb{R}^4 are not real
- Dimensionally reduce to \mathbb{R}^3
- Deform the theory from \mathbb{R}^3 to \mathbb{H}^3

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \tfrac{1}{4} F^2 - \tfrac{1}{2} |\mathscr{D} \varphi|^2 - \tfrac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit)

くロン (雪) (ヨ) (ヨ)

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \frac{1}{4} F^2 - \frac{1}{2} |\mathscr{D} \varphi|^2 - \frac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

• χ , ψ are two-component complex spinor fields on H³

くロン (雪) (ヨ) (ヨ)

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \frac{1}{4} F^2 - \frac{1}{2} |\mathscr{D} \varphi|^2 - \frac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

- χ , ψ are two-component complex spinor fields on H³
- ϕ is a complexified Higgs

イロト 不得 トイヨト イヨト

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \frac{1}{4} F^2 - \frac{1}{2} |\mathscr{D} \varphi|^2 - \frac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

- χ , ψ are two-component complex spinor fields on H³
- ϕ is a complexified Higgs
- F is the curvature of the complexified gauge field A

イロト 不得 トイヨト イヨト

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \frac{1}{4} F^2 - \frac{1}{2} |\mathscr{D} \varphi|^2 - \frac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

- χ , ψ are two-component complex spinor fields on H³
- ϕ is a complexified Higgs
- F is the curvature of the complexified gauge field A
- D is an auxiliary field for off-shell closure of supersymmetry

イロト 不得 トイヨト イヨト

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \frac{1}{4} F^2 - \frac{1}{2} |\mathscr{D} \varphi|^2 - \frac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

- χ , ψ are two-component complex spinor fields on H³
- ϕ is a complexified Higgs
- F is the curvature of the complexified gauge field A
- D is an auxiliary field for off-shell closure of supersymmetry
- \mathscr{D} is the fully covariant derivative: $\mathscr{D}_i = \nabla_i + [A_i, -]$

イロト イポト イヨト イヨト

The lagrangian

The lagrangian density is given by

 $\mathscr{L} = -i\chi^{\dagger} \mathscr{D} \psi - \chi^{\dagger} [\varphi, \psi] - i\lambda \chi^{\dagger} \psi - \tfrac{1}{4} F^2 - \tfrac{1}{2} |\mathscr{D} \varphi|^2 - \tfrac{1}{2} D^2$

where all fields are Lie algebra valued (Tr is implicit) and

- χ , ψ are two-component complex spinor fields on H³
- ϕ is a complexified Higgs
- F is the curvature of the complexified gauge field A
- D is an auxiliary field for off-shell closure of supersymmetry
- \mathscr{D} is the fully covariant derivative: $\mathscr{D}_i = \nabla_i + [A_i, -]$
- and $-\lambda^2$ is proportional to the scalar curvature of H^3

イロト 不得 トイヨト イヨト

Supersymmetry transformations (I)

 \mathscr{L} transforms as

$$\delta_{L}\mathscr{L}=\nabla_{i}\left(-i\chi^{\dagger}\left(\sigma^{i}D+\sigma_{j}F^{ij}-i\mathscr{D}^{i}\varphi\right)\varepsilon_{L}\right)$$

under

$$\begin{split} \delta_{L}A_{i} &= i\chi^{\dagger}\sigma_{i}\varepsilon_{L} \\ \delta_{L}\varphi &= \chi^{\dagger}\varepsilon_{L} \\ \delta_{L}\chi^{\dagger} &= 0 \\ \delta_{L}\psi &= D\varepsilon_{L} + i(\frac{1}{2}\varepsilon_{ijk}F^{ij} - \mathscr{D}_{k}\varphi)\sigma^{k}\varepsilon_{L} \\ \delta_{L}D &= i\chi^{\dagger}\overleftarrow{\mathscr{D}}\varepsilon_{L} + [\varphi,\chi^{\dagger}]\varepsilon_{L} - i\lambda\chi^{\dagger}\varepsilon_{L} \end{split}$$

provided that

$$\nabla_{i}\varepsilon_{L} = \lambda\sigma_{i}\varepsilon_{L}$$

Supersymmetry transformations (II)

 ${\mathscr L}$ also transforms as

$$\delta_{R}\mathscr{L} = \nabla_{i} \left(\epsilon^{ijk} \varepsilon_{R}^{\dagger} \left(-\frac{1}{2} F_{jk} + i \mathscr{D}_{j} \varphi \sigma_{k} \right) \psi \right)$$

under

$$\begin{split} \delta_{R}A_{i} &= -i\varepsilon_{R}^{\dagger}\sigma_{i}\psi\\ \delta_{R}\varphi &= -\varepsilon_{R}^{\dagger}\psi\\ \delta_{R}\chi^{\dagger} &= -D\varepsilon_{R}^{\dagger} - i(\frac{1}{2}\varepsilon_{ijk}F^{ij} + \mathscr{D}_{k}\varphi)\varepsilon_{R}^{\dagger}\sigma^{k}\\ \delta_{R}\psi &= 0\\ \delta_{R}D &= i\varepsilon_{R}^{\dagger}\mathscr{D}\psi + \varepsilon_{R}^{\dagger}[\varphi,\psi] + i\lambda\varepsilon_{R}^{\dagger}\psi \end{split}$$

provided that

$$\nabla_{i}\varepsilon_{R}^{\dagger}=-\lambda\varepsilon_{R}^{\dagger}\sigma_{i}$$

Closure

The above supersymmetry transformations obey the following superalgebra:

 $[\delta_L, \delta'_L] = \mathbf{0} = [\delta_R, \delta'_R] \qquad \qquad [\delta_L, \delta_R] = \mathscr{L}_{\xi} + \delta^{\text{gauge}}_{\Lambda} + \delta^{\text{gauge}}_{\varpi}$

イロト イポト イヨト イヨト

Closure

The above supersymmetry transformations obey the following superalgebra:

 $[\delta_L, \delta'_L] = \mathbf{0} = [\delta_R, \delta'_R] \qquad \qquad [\delta_L, \delta_R] = \mathscr{L}_{\xi} + \delta^{gauge}_{\Lambda} + \delta^R_{\varpi}$

where

• $\xi^i = 2i\varepsilon_R^{\dagger}\sigma^i\varepsilon_L$ is a Killing vector field: $\nabla_i\xi_j = -2i\lambda\epsilon_{ijk}\xi^k$

(日)

Closure

The above supersymmetry transformations obey the following superalgebra:

 $[\delta_L, \delta'_L] = \mathbf{0} = [\delta_R, \delta'_R] \qquad \qquad [\delta_L, \delta_R] = \mathscr{L}_{\xi} + \delta^{gauge}_{\Lambda} + \delta^R_{\varpi}$

where

• $\xi^i = 2i\varepsilon_R^{\dagger}\sigma^i\varepsilon_L$ is a Killing vector field: $\nabla_i\xi_j = -2i\lambda\epsilon_{ijk}\xi^k$ • $\Lambda = \xi^iA_i + 2\varepsilon_R^{\dagger}\varepsilon_L\phi$

Closure

The above supersymmetry transformations obey the following superalgebra:

 $[\delta_L, \delta'_L] = \mathbf{0} = [\delta_R, \delta'_R] \qquad \qquad [\delta_L, \delta_R] = \mathscr{L}_{\xi} + \delta^{gauge}_{\Lambda} + \delta^R_{\varpi}$

where

• $\xi^{i} = 2i \varepsilon_{R}^{\dagger} \sigma^{i} \varepsilon_{L}$ is a Killing vector field: $\nabla_{i} \xi_{j} = -2i \lambda \varepsilon_{ijk} \xi^{k}$ • $\Lambda = \xi^{i} A_{i} + 2 \varepsilon_{R}^{\dagger} \varepsilon_{L} \varphi$

• δ^{R}_{∞} is an R-symmetry transformation:

 $\delta^{R}_{\varpi}\psi = i\varpi\psi$ and $\delta^{R}_{\varpi}\chi^{\dagger} = -i\varpi\chi^{\dagger}$

with $\varpi=-4\lambda\varepsilon_{R}^{\dagger}\varepsilon_{L},$ which is indeed constant

くロン (雪) (ヨ) (ヨ)

Some remarks

- All fields are complex and the lagrangian as written is not real
- The theory has 8 real supercharges, because ε_{L,R} are Killing spinors on H³, which admits the maximum number of Killing spinors with either sign of the Killing constant
- Similar (but not identical) to supersymmetric theories in "Family A" in work of BLAU (2000)

BPS configurations

 The bosonic BPS configurations are precisely the hyperbolic monopoles with D = 0

BPS configurations

- The bosonic BPS configurations are **precisely** the hyperbolic monopoles with D = 0
- Write $\delta_L \psi = (D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k \phi)\sigma^k)\epsilon_L$

イロト イポト イヨト イヨト

BPS configurations

- The bosonic BPS configurations are precisely the hyperbolic monopoles with D = 0
- Write $\delta_L \psi = (D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k \varphi)\sigma^k)\varepsilon_L$
- Then det $(D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k\varphi)\sigma^k) = 0$ if and only if D = 0and $\frac{1}{2}\epsilon_{ijk}F^{ij} - \mathscr{D}_k\varphi = 0$

イロト イポト イヨト イヨト

BPS configurations

- The bosonic BPS configurations are precisely the hyperbolic monopoles with D = 0
- Write $\delta_L \psi = (D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k \varphi)\sigma^k)\varepsilon_L$
- Then det $(D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k\varphi)\sigma^k) = 0$ if and only if D = 0and $\frac{1}{2}\epsilon_{ijk}F^{ij} - \mathscr{D}_k\varphi = 0$
- Similarly, bosonic configurations with $\mathscr{D}_k \varphi = -\frac{1}{2} \epsilon_{ijk} F^{ij}$ and D = 0 are precisely the ones which preserve the δ_R supersymmetries

(日)

BPS configurations

- The bosonic BPS configurations are precisely the hyperbolic monopoles with D = 0
- Write $\delta_L \psi = (D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k \varphi)\sigma^k)\varepsilon_L$
- Then det $(D + i(\frac{1}{2}\epsilon_{ijk}F^{ij} \mathscr{D}_k\varphi)\sigma^k) = 0$ if and only if D = 0and $\frac{1}{2}\epsilon_{ijk}F^{ij} - \mathscr{D}_k\varphi = 0$
- Similarly, bosonic configurations with $\mathscr{D}_k \varphi = -\frac{1}{2} \epsilon_{ijk} F^{ij}$ and D = 0 are precisely the ones which preserve the δ_R supersymmetries
- We will study the moduli space *M* of bosonic configurations preserving the δ_R supersymmetries

くロン (雪) (ヨ) (ヨ)

Hyperbolic monopoles

2 Supersymmetric Yang–Mills–Higgs in hyperbolic space

The geometry of the monopole moduli space

4 Conclusions and future directions

Bosonic zero modes

• Let $(A(t), \phi(t))$ be a family of bosonic BPS configurations:

 $\mathscr{D}_{i}(t)\varphi(t) + \epsilon_{ijk}F^{jk}(t) = \mathbf{0}$

イロト イポト イヨト イヨト

Bosonic zero modes

• Let $(A(t), \phi(t))$ be a family of bosonic BPS configurations:

 $\mathscr{D}_{i}(t)\varphi(t) + \epsilon_{ijk}F^{jk}(t) = 0$

 Differentiating w.r.t. t at t = 0 we obtain the linearised Bogomol'nyi equation:

 $\mathscr{D}_{i}(\mathbf{0})\dot{\boldsymbol{\varphi}} - [\boldsymbol{\varphi}(\mathbf{0}), \dot{\boldsymbol{A}}_{i}] + \epsilon_{ijk}\mathscr{D}^{j}(\mathbf{0})\dot{\boldsymbol{A}}^{k} = \mathbf{0}$

where

(日)

Bosonic zero modes

• Let $(A(t), \phi(t))$ be a family of bosonic BPS configurations:

 $\mathscr{D}_{i}(t)\varphi(t) + \epsilon_{ijk}F^{jk}(t) = \mathbf{0}$

 Differentiating w.r.t. t at t = 0 we obtain the linearised Bogomol'nyi equation:

 $\mathscr{D}_{i}(0)\dot{\varphi}-[\varphi(0),\dot{A}_{i}]+\epsilon_{ijk}\mathscr{D}^{j}(0)\dot{A}^{k}=0$

where

•
$$\dot{A}_i = \frac{\partial A_i}{\partial t}\Big|_{t=0}$$

(日)

Bosonic zero modes

• Let $(A(t), \phi(t))$ be a family of bosonic BPS configurations:

 $\mathscr{D}_{i}(t)\varphi(t) + \epsilon_{ijk}F^{jk}(t) = \mathbf{0}$

• Differentiating w.r.t. t at t = 0 we obtain the **linearised Bogomol'nyi equation**:

 $\mathscr{D}_{i}(0)\dot{\varphi} - [\varphi(0), \dot{A}_{i}] + \epsilon_{ijk}\mathscr{D}^{j}(0)\dot{A}^{k} = 0$

where

•
$$\dot{A}_{i} = \frac{\partial A_{i}}{\partial t}\Big|_{t=0}$$

• $\dot{\phi} = \frac{\partial \phi}{\partial t}\Big|_{t=0}$

(日)

Bosonic zero modes

• Let $(A(t), \phi(t))$ be a family of bosonic BPS configurations:

 $\mathscr{D}_{i}(t)\varphi(t) + \epsilon_{ijk}F^{jk}(t) = \mathbf{0}$

• Differentiating w.r.t. t at t = 0 we obtain the **linearised Bogomol'nyi equation**:

 $\mathscr{D}_{i}(0)\dot{\varphi}-[\varphi(0),\dot{A}_{i}]+\epsilon_{ijk}\mathscr{D}^{j}(0)\dot{A}^{k}=0$

where

•
$$\dot{A}_{i} = \frac{\partial A_{i}}{\partial t}\Big|_{t=0}$$

• $\dot{\phi} = \frac{\partial \phi}{\partial t}\Big|_{t=0}$

• $\mathcal{D}_i(\mathbf{0}) = \nabla_i + [A_i(\mathbf{0}), -]$

ヘロト ヘヨト ヘヨト

Gauge orbits

Some (Å, φ) are tangent to the orbit 𝒪 of 𝔄₀ = (A(0), φ(0)) under the group of gauge transformations

イロト イポト イヨト イヨト

Gauge orbits

- Some (Å, φ) are tangent to the orbit 𝒪 of 𝔄₀ = (A(0), φ(0)) under the group of gauge transformations
- We identify $T_{[\mathscr{A}_0]}\mathscr{M}$ with a suitable complement to $T_{\mathscr{A}(0)}\mathscr{O}$

Gauge orbits

- Some (Å, φ) are tangent to the orbit 𝒪 of 𝔄₀ = (A(0), φ(0)) under the group of gauge transformations
- We identify $T_{[\mathscr{A}_0]}\mathcal{M}$ with a suitable complement to $T_{\mathscr{A}(0)}\mathcal{O}$
- For euclidean monopoles, there is a riemannian metric on the space of solutions of the linearised Bogomol'nyi equation, so T_[𝒜0]𝔐 ≅ (T_{𝒜(0)}𝒴)[⊥] (i.e., Gauss's Law)

Gauge orbits

- Some (Å, φ) are tangent to the orbit 𝒪 of 𝔄₀ = (A(0), φ(0)) under the group of gauge transformations
- We identify $T_{[\mathscr{A}_0]}\mathscr{M}$ with a suitable complement to $T_{\mathscr{A}(0)}\mathscr{O}$
- For euclidean monopoles, there is a riemannian metric on the space of solutions of the linearised Bogomol'nyi equation, so T_[𝒜0]𝔐 ≅ (T_{𝒜(0)}𝒴)[⊥] (i.e., Gauss's Law)
- For hyperbolic monopoles there is no natural riemannian metric, so we will employ supersymmetry to define this complement

Fermionic zero modes

• A fermionic zero mode $\dot{\psi}$ is a solution of the (already linear) Dirac equation in the presence of the monopole $\mathscr{A}_0 = (A(0), \varphi(0))$:

 $\mathcal{D}(0)\dot{\psi} - i[\varphi(0),\dot{\psi}] + \lambda\dot{\psi} = 0$

(Notice that the equation has a mass term which goes to zero in the euclidean limit.)

< 口 > < 同 > < 回 > < 回 > .

Fermionic zero modes

• A fermionic zero mode $\dot{\psi}$ is a solution of the (already linear) Dirac equation in the presence of the monopole $\mathscr{A}_0 = (A(0), \varphi(0))$:

 $\mathcal{D}(0)\dot{\psi} - i[\varphi(0),\dot{\psi}] + \lambda\dot{\psi} = 0$

(Notice that the equation has a mass term which goes to zero in the euclidean limit.)

 We could determine the number of fermionic zero modes by an index theory calculation CALLIAS (1978), RÅDE (1994)

(日)

Fermionic zero modes

• A fermionic zero mode $\dot{\psi}$ is a solution of the (already linear) Dirac equation in the presence of the monopole $\mathscr{A}_0 = (A(0), \varphi(0))$:

 $\mathcal{D}(0)\dot{\psi} - i[\varphi(0),\dot{\psi}] + \lambda\dot{\psi} = 0$

(Notice that the equation has a mass term which goes to zero in the euclidean limit.)

- We could determine the number of fermionic zero modes by an index theory calculation CALLIAS (1978), RÅDE (1994)
- But we will instead use supersymmetry ZUMINO (1977)

(日)

Supersymmetry between zero modes (I)

• Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetry between zero modes (I)

- Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$
- Let $(\dot{A}, \dot{\varphi})$ obey the linearised Bogomol'nyi equation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetry between zero modes (I)

- Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$
- Let $(\dot{A}, \dot{\varphi})$ obey the linearised Bogomol'nyi equation
- Define $\dot{\psi} = i\dot{A}_i\sigma^i\eta \dot{\varphi}\eta$

Supersymmetry between zero modes (I)

- Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$
- Let $(\dot{A}, \dot{\varphi})$ obey the linearised Bogomol'nyi equation
- Define $\dot{\psi} = i\dot{A}_i\sigma^i\eta \dot{\varphi}\eta$
- Then $\dot{\psi}$ is a fermionic zero mode if and only if $(\dot{A},\dot{\varphi})$ obey in addition the generalised Gauss Law

 $\mathscr{D}^{\mathfrak{i}}(0)\dot{A}_{\mathfrak{i}}+[\varphi(0),\dot{\varphi}]+4\mathfrak{i}\lambda\dot{\varphi}=0$

Supersymmetry between zero modes (I)

- Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$
- Let $(\dot{A}, \dot{\varphi})$ obey the linearised Bogomol'nyi equation
- Define $\dot{\psi} = i\dot{A}_i\sigma^i\eta \dot{\varphi}\eta$
- Then $\dot{\psi}$ is a fermionic zero mode if and only if $(\dot{A},\dot{\varphi})$ obey in addition the generalised Gauss Law

 $\mathscr{D}^{\mathfrak{i}}(0)\dot{A}_{\mathfrak{i}}+[\varphi(0),\dot{\varphi}]+4\mathfrak{i}\lambda\dot{\varphi}=0$

• The last term might be surprising...

(日)

Supersymmetry between zero modes (I)

- Let η be a Killing spinor on H^3 satisfying $\nabla_i\eta=\lambda\sigma_i\eta$
- Let $(\dot{A}, \dot{\varphi})$ obey the linearised Bogomol'nyi equation
- Define $\dot{\psi} = i\dot{A}_i\sigma^i\eta \dot{\varphi}\eta$
- Then $\dot{\psi}$ is a fermionic zero mode if and only if $(\dot{A},\dot{\varphi})$ obey in addition the generalised Gauss Law

 $\mathscr{D}^{\mathfrak{i}}(0)\dot{A}_{\mathfrak{i}}+[\varphi(0),\dot{\varphi}]+4\mathfrak{i}\lambda\dot{\varphi}=0$

- The last term might be surprising...
- The generalised Gauss Law is invariant under *G* and defines a complement to the tangent space to the gauge orbits

Supersymmetry between zero modes (II)

• Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^{\dagger} = -\lambda \zeta^{\dagger} \sigma_i$

イロト イポト イヨト イヨト

Supersymmetry between zero modes (II)

- Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^\dagger = -\lambda \zeta^\dagger \sigma_i$
- Let $\dot{\psi}$ be a fermionic zero mode

Supersymmetry between zero modes (II)

- Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^{\dagger} = -\lambda \zeta^{\dagger} \sigma_i$
- Let $\dot{\psi}$ be a fermionic zero mode
- Then $\dot{A}_i = -i\zeta^{\dagger}\sigma_i\dot{\psi}$ and $\dot{\phi} = -\zeta^{\dagger}\dot{\psi}$ obey the linearised Bogomol'nyi equation and the generalised Gauss Law

Supersymmetry between zero modes (II)

- Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^\dagger = -\lambda \zeta^\dagger \sigma_i$
- Let $\dot{\psi}$ be a fermionic zero mode
- Then $\dot{A}_i = -i\zeta^{\dagger}\sigma_i\dot{\psi}$ and $\dot{\varphi} = -\zeta^{\dagger}\dot{\psi}$ obey the linearised Bogomol'nyi equation and the generalised Gauss Law
- In summary, there are linear maps (parametrised by Killing spinors on H³) mapping between bosonic and fermionic zero modes

(日)

Supersymmetry between zero modes (II)

- Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^\dagger = -\lambda \zeta^\dagger \sigma_i$
- Let $\dot{\psi}$ be a fermionic zero mode
- Then $\dot{A}_i = -i\zeta^{\dagger}\sigma_i\dot{\psi}$ and $\dot{\phi} = -\zeta^{\dagger}\dot{\psi}$ obey the linearised Bogomol'nyi equation and the generalised Gauss Law
- In summary, there are linear maps (parametrised by Killing spinors on H³) mapping between bosonic and fermionic zero modes
- We will see these maps are isomorphisms, so that there are 4k fermionic zero modes as well

(日)

Supersymmetry between zero modes (II)

- Conversely, let ζ be a Killing spinor in H^3 obeying $\nabla_i \zeta^\dagger = -\lambda \zeta^\dagger \sigma_i$
- Let $\dot{\psi}$ be a fermionic zero mode
- Then $\dot{A}_i = -i\zeta^{\dagger}\sigma_i\dot{\psi}$ and $\dot{\varphi} = -\zeta^{\dagger}\dot{\psi}$ obey the linearised Bogomol'nyi equation and the generalised Gauss Law
- In summary, there are linear maps (parametrised by Killing spinors on H³) mapping between bosonic and fermionic zero modes
- We will see these maps are isomorphisms, so that there are 4k fermionic zero modes as well
- But it is easier to see this in a four-dimensional formalism

A four-dimensional formalism

• We work formally in $H^3 \times S^1$ but fields are S^1 -invariant

A four-dimensional formalism

- We work formally in $H^3 \times S^1$ but fields are S^1 -invariant
- Γ_{μ} are complex 4 × 4 matrices representing $C\ell(0, 4)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

A four-dimensional formalism

- We work formally in $H^3 \times S^1$ but fields are S^1 -invariant
- Γ_{μ} are complex 4×4 matrices representing $C\ell(0,4)$
- Spinors η and ζ^{\dagger} in H^3 lift to chiral spinors in $H^3 \times S^1$:

$$\eta_R = \begin{pmatrix} 0 \\ \eta \end{pmatrix} \qquad \qquad \zeta_R^\dagger = \begin{pmatrix} 0 & \zeta^\dagger \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

A four-dimensional formalism

- We work formally in $H^3 \times S^1$ but fields are S^1 -invariant
- Γ_{μ} are complex 4×4 matrices representing $C\ell(0,4)$
- Spinors η and ζ^{\dagger} in H^3 lift to chiral spinors in $H^3\times S^1$:

$$\eta_R = \begin{pmatrix} 0 \\ \eta \end{pmatrix} \qquad \qquad \zeta_R^\dagger = \begin{pmatrix} 0 & \zeta^\dagger \end{pmatrix}$$

• The Killing spinor equations in H³ become

 $\nabla_{i}\eta_{R} = -i\lambda\Gamma_{i}\Gamma_{4}\eta_{R} \qquad \nabla_{i}\zeta_{R}^{\dagger} = -i\lambda\zeta_{R}^{\dagger}\Gamma_{4}\Gamma_{i}$

in addition to $\nabla_4\eta_R=0$ and $\nabla_4\zeta_R^\dagger=0$

Zero modes in four-dimensional formalism

• In this formalism, a fermionic zero mode $\dot{\Psi}_L = \begin{pmatrix} \dot{\psi} \\ 0 \end{pmatrix}$ obeys

$$\mathscr{D}\dot{\Psi}_{L} = -i\lambda\Gamma_{4}\dot{\Psi}_{L}$$

Zero modes in four-dimensional formalism

• In this formalism, a fermionic zero mode $\dot{\Psi}_L = \begin{pmatrix} \dot{\psi} \\ 0 \end{pmatrix}$ obeys

$$\mathscr{D}\dot{\Psi}_{L} = -i\lambda\Gamma_{4}\dot{\Psi}_{L}$$

• and a bosonic zero mode $\dot{A}_{\mu}=(\dot{A}_{i},\dot{\varphi})$ obeys

$$\begin{aligned} \mathscr{D}_{[\mu}\dot{A}_{\nu]} &= -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}\mathscr{D}^{\rho}\dot{A}^{\sigma} \\ \mathscr{D}^{\mu}\dot{A}_{\mu} &= -4i\lambda\dot{A}_{4} \end{aligned}$$

イロト イポト イヨト イヨト

э

Zero modes in four-dimensional formalism

• In this formalism, a fermionic zero mode $\dot{\Psi}_{L} = \begin{pmatrix} \dot{\Psi} \\ 0 \end{pmatrix}$ obeys

$$\mathscr{D}\dot{\Psi}_{L} = -i\lambda\Gamma_{4}\dot{\Psi}_{L}$$

• and a bosonic zero mode $\dot{A}_{\mu}=(\dot{A}_{i},\dot{\varphi})$ obeys

$$\begin{split} \mathscr{D}_{[\mu}\dot{A}_{\nu]} &= -\frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}\mathscr{D}^{\rho}\dot{A}^{\sigma}\\ \mathscr{D}^{\mu}\dot{A}_{\mu} &= -4i\lambda\dot{A}_{4} \end{split}$$

• Of course, $\nabla_4 \dot{\Psi}_L = 0$ and $\nabla_4 \dot{A}_\mu = 0$

Supersymmetry between zero modes (III)

 Let Z₀ and Z₁ denote the vector space of bosonic and fermionic zero modes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetry between zero modes (III)

- Let Z₀ and Z₁ denote the vector space of bosonic and fermionic zero modes
- Let K^{\pm} denote the vector space of Killing spinors (on H^3)

 $K^{\pm} = \{\xi_R | \nabla_i \xi_R = \mp i \lambda \Gamma_i \Gamma_4 \xi_R \quad \text{and} \quad \nabla_4 \xi_R = 0\}$

イロト 不得 トイヨト イヨト

Supersymmetry between zero modes (III)

- Let Z₀ and Z₁ denote the vector space of bosonic and fermionic zero modes
- Let K^{\pm} denote the vector space of Killing spinors (on H^3)

 $K^{\pm} = \{\xi_R | \nabla_i \xi_R = \mp i \lambda \Gamma_i \Gamma_4 \xi_R \text{ and } \nabla_4 \xi_R = \mathbf{0} \}$

We have real bilinear maps

 $\begin{array}{ll} \mathsf{K}^+ \times \mathsf{Z}_0 \to \mathsf{Z}_1 \\ (\eta_R, \dot{A}_\mu) \mapsto \mathfrak{i} \dot{A}_\mu \Gamma^\mu \eta_R \end{array} \qquad \text{and} \qquad \begin{array}{ll} \mathsf{K}^- \times \mathsf{Z}_1 \to \mathsf{Z}_0 \\ (\zeta_R, \dot{\Psi}_L) \mapsto -\mathfrak{i} \zeta_R^\dagger \Gamma_\mu \dot{\Psi}_L \end{array}$

(日)

Supersymmetry between zero modes (IV)

We can compose them:

$$\begin{split} & \mathsf{K}^+\times\mathsf{K}^-\times\mathsf{Z}_1\to\mathsf{Z}_1\\ & (\eta_R,\zeta_R,\dot{\Psi}_L)\mapsto 2\zeta_R^\dagger\eta_R\dot{\Psi}_L \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetry between zero modes (IV)

We can compose them:

$$\begin{split} K^+ \times K^- \times Z_1 &\to Z_1 \\ (\eta_R, \zeta_R, \dot{\Psi}_L) &\mapsto 2 \zeta_R^\dagger \eta_R \dot{\Psi}_L \end{split}$$

• Normalising so that $2\zeta_R^{\dagger}\eta_R = 1$, we see that this composition is the identity

Supersymmetry between zero modes (IV)

We can compose them:

$$\begin{split} K^+ \times K^- \times Z_1 &\to Z_1 \\ (\eta_R, \zeta_R, \dot{\Psi}_L) &\mapsto 2 \zeta_R^\dagger \eta_R \dot{\Psi}_L \end{split}$$

- Normalising so that $2\zeta_R^{\dagger}\eta_R = 1$, we see that this composition is the identity
- In particular, both maps are isomorphisms and hence dim Z₀ = dim Z₁

Complex structures from Killing spinors (I)

• Let $\eta_R \in K^+$ and $\zeta_R \in K^-$

Complex structures from Killing spinors (I)

- Let $\eta_R \in K^+$ and $\zeta_R \in K^-$
- They define a complex-linear endomorphism of $T_{\mathbb{C}}(H^3\times S^1)$ by

 $E_{\mu}{}^{\nu} = -i\zeta_{R}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{R}$

Complex structures from Killing spinors (I)

- Let $\eta_R \in K^+$ and $\zeta_R \in K^-$
- They define a complex-linear endomorphism of $T_{\mathbb{C}}(H^3\times S^1)$ by

$$\mathsf{E}_{\mu}{}^{\nu} = -\mathfrak{i}\zeta_{\mathsf{R}}^{\dagger}\mathsf{\Gamma}_{\mu}{}^{\nu}\eta_{\mathsf{R}}$$

• It follows from the chirality of η_R and ζ_R that E is self-dual:

 $\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}E^{\rho\sigma}=E_{\mu\nu}$

< □ > < 同 > < 回 > < 回 > .

Complex structures from Killing spinors (I)

- Let $\eta_R \in K^+$ and $\zeta_R \in K^-$
- They define a complex-linear endomorphism of $T_{\mathbb{C}}(H^3\times S^1)$ by

$$\mathsf{E}_{\mu}{}^{\nu} = -\mathfrak{i}\zeta_{\mathsf{R}}^{\dagger}\mathsf{\Gamma}_{\mu}{}^{\nu}\eta_{\mathsf{R}}$$

- It follows from the chirality of η_R and ζ_R that E is self-dual: $\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}E^{\rho\sigma} = E_{\mu\nu}$
- Also it follows from Fierz identities that

$$\mathsf{E}_{\mu}{}^{\rho}\mathsf{E}_{\rho}{}^{\nu} = -(\zeta_{R}^{\dagger}\eta_{R})^{2}\delta_{\mu}{}^{\nu}$$

< □ > < 同 > < 回 > < 回 > .

Complex structures from Killing spinors (I)

- Let $\eta_R \in K^+$ and $\zeta_R \in K^-$
- They define a complex-linear endomorphism of $T_{\mathbb{C}}(H^3\times S^1)$ by

$$\mathsf{E}_{\mu}{}^{\nu} = -\mathfrak{i}\zeta_{\mathsf{R}}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{\mathsf{R}}$$

- It follows from the chirality of η_R and ζ_R that E is self-dual: $\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}E^{\rho\sigma} = E_{\mu\nu}$
- Also it follows from Fierz identities that

$$E_{\mu}{}^{\rho}E_{\rho}{}^{\nu}=-(\zeta_{R}^{\dagger}\eta_{R})^{2}\delta_{\mu}{}^{\nu}$$

• If we normalise $\zeta_R^{\dagger}\eta_R = 1$, then E is a complex structure

Complex structures from Killing spinors (II)

• Since η_R and ζ_R are Killing spinors, $\nabla_4 E_{\mu\nu} = 0$ and

 $\nabla_{i}E_{4j} = 2i\lambda E_{ij} \qquad \nabla_{i}E_{jk} = -2i\lambda \left(\delta_{ij}E_{4k} - \delta_{ik}E_{4j}\right)$

(日)

Complex structures from Killing spinors (II)

• Since η_R and ζ_R are Killing spinors, $\nabla_4 E_{\mu\nu} = 0$ and

 $\nabla_{i}E_{4j} = 2i\lambda E_{ij} \qquad \nabla_{i}E_{jk} = -2i\lambda \left(\delta_{ij}E_{4k} - \delta_{ik}E_{4j}\right)$

• This implies that if \dot{A}_{μ} is a bosonic zero mode, so is $E_{\mu}{}^{\nu}\dot{A}_{\nu}$

(日)

Complex structures from Killing spinors (II)

• Since η_R and ζ_R are Killing spinors, $\nabla_4 E_{\mu\nu}=0$ and

 $\nabla_{i}E_{4j} = 2i\lambda E_{ij} \qquad \nabla_{i}E_{jk} = -2i\lambda \left(\delta_{ij}E_{4k} - \delta_{ik}E_{4j}\right)$

- This implies that if \dot{A}_{μ} is a bosonic zero mode, so is $E_{\mu}{}^{\nu}\dot{A}_{\nu}$
- If $\dot{A}_{\alpha\mu}$ denotes a basis for Z₀, then

 $E_{\mu}{}^{\nu}\dot{A}_{a\nu}=\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}$

defines an almost complex structure $\mathscr E$ on $T_{\mathbb C}\mathscr M$

くロン (雪) (ヨ) (ヨ)

Complex structures from Killing spinors (II)

• Since η_R and ζ_R are Killing spinors, $\nabla_4 E_{\mu\nu}=0$ and

 $\nabla_{i}E_{4j} = 2i\lambda E_{ij} \qquad \nabla_{i}E_{jk} = -2i\lambda \left(\delta_{ij}E_{4k} - \delta_{ik}E_{4j}\right)$

- This implies that if \dot{A}_{μ} is a bosonic zero mode, so is $E_{\mu}{}^{\nu}\dot{A}_{\nu}$
- If $\dot{A}_{\alpha\mu}$ denotes a basis for Z₀, then

 $E_{\mu}{}^{\nu}\dot{A}_{a\nu}=\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}$

defines an almost complex structure ${\mathscr E}$ on $T_{\mathbb C}{\mathscr M}$

• Varying η_R and ζ_R subject to $\zeta_R^{\dagger} \eta_R = 1$, we find a 2-sphere worth of almost complex structures

くロン (雪) (ヨ) (ヨ)

Complex structures from Killing spinors (II)

• Since η_R and ζ_R are Killing spinors, $\nabla_4 E_{\mu\nu}=0$ and

 $\nabla_{i}E_{4j} = 2i\lambda E_{ij} \qquad \nabla_{i}E_{jk} = -2i\lambda \left(\delta_{ij}E_{4k} - \delta_{ik}E_{4j}\right)$

- This implies that if \dot{A}_{μ} is a bosonic zero mode, so is $E_{\mu}{}^{\nu}\dot{A}_{\nu}$
- If $\dot{A}_{\alpha\mu}$ denotes a basis for Z₀, then

 $E_{\mu}{}^{\nu}\dot{A}_{a\nu}=\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}$

defines an almost complex structure ${\mathscr E}$ on $T_{\mathbb C}{\mathscr M}$

- Varying η_R and ζ_R subject to $\zeta_R^{\dagger} \eta_R = 1$, we find a 2-sphere worth of almost complex structures
- Supersymmetry \implies they are integrable

Linearising the supersymmetry transformations (I)

• In 4d-language, the supersymmetry transformation of A_{μ} is

$$\delta_{\varepsilon}A_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Psi_{L} \implies \delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linearising the supersymmetry transformations (I)

• In 4d-language, the supersymmetry transformation of A_{μ} is

$$\delta_{\varepsilon}A_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Psi_{L} \implies \delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L}$$

• Choose a basis $\dot{A}_{\alpha\mu}$ for Z_0 and let $\dot{\Psi}_{L\alpha} = i\dot{A}_{\mu\alpha}\Gamma^{\mu}\eta_R$ be the corresponding basis for Z_1

< □ > < 同 > < 回 > < 回 > .

Linearising the supersymmetry transformations (I)

• In 4d-language, the supersymmetry transformation of A_{μ} is

$$\delta_{\varepsilon}A_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Psi_{L} \implies \delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L}$$

- Choose a basis $\dot{A}_{\alpha\mu}$ for Z_0 and let $\dot{\Psi}_{L\alpha} = i\dot{A}_{\mu\alpha}\Gamma^{\mu}\eta_R$ be the corresponding basis for Z_1
- Expand $\dot{A}_{\mu} = \dot{A}_{\alpha\mu} X^{\alpha}$ and $\dot{\Psi}_{L} = \dot{\Psi}_{L\alpha} \theta^{\alpha}$

(日)

Linearising the supersymmetry transformations (I)

• In 4d-language, the supersymmetry transformation of A_{μ} is

$$\delta_{\varepsilon}A_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Psi_{L} \implies \delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L}$$

- Choose a basis $\dot{A}_{a\mu}$ for Z_0 and let $\dot{\Psi}_{La} = i\dot{A}_{\mu a}\Gamma^{\mu}\eta_R$ be the corresponding basis for Z_1
- Expand $\dot{A}_{\mu} = \dot{A}_{\alpha\mu} X^{\alpha}$ and $\dot{\Psi}_{L} = \dot{\Psi}_{L\alpha} \theta^{\alpha}$
- On the one hand, $\delta_{\varepsilon}\dot{A}_{\mu} = \dot{A}_{\alpha\mu}\delta_{\varepsilon}X^{\alpha}$

Linearising the supersymmetry transformations (I)

• In 4d-language, the supersymmetry transformation of A_{μ} is

$$\delta_{\varepsilon}A_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Psi_{L} \implies \delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L}$$

- Choose a basis $\dot{A}_{\alpha\mu}$ for Z_0 and let $\dot{\Psi}_{L\alpha} = i\dot{A}_{\mu\alpha}\Gamma^{\mu}\eta_R$ be the corresponding basis for Z_1
- Expand $\dot{A}_{\mu} = \dot{A}_{\alpha\mu} X^{\alpha}$ and $\dot{\Psi}_{L} = \dot{\Psi}_{L\alpha} \theta^{\alpha}$
- On the one hand, $\delta_{\varepsilon}\dot{A}_{\mu} = \dot{A}_{\alpha\mu}\delta_{\varepsilon}X^{\alpha}$
- but also $\delta_{\varepsilon}\dot{A}_{\mu} = -i\varepsilon_{R}^{\dagger}\Gamma_{\mu}\dot{\Psi}_{L\alpha}\theta^{\alpha} = \dot{A}_{\alpha\nu}\varepsilon_{R}^{\dagger}\Gamma_{\mu}\Gamma^{\nu}\eta_{R}\theta^{\alpha}$

(日)

Linearising the supersymmetry transformations (II)

Putting both together and using the Clifford relations

 $\dot{A}_{\alpha\mu}\delta_{\varepsilon}X^{\alpha}=\dot{A}_{\alpha\mu}\varepsilon_{R}^{\dagger}\eta_{R}\theta^{\alpha}+\varepsilon_{R}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{R}\dot{A}_{\alpha\nu}\theta^{\alpha}$

(日)

э.

Linearising the supersymmetry transformations (II)

Putting both together and using the Clifford relations

$$\dot{A}_{\alpha\mu}\delta_{\varepsilon}X^{\alpha}=\dot{A}_{\alpha\mu}\varepsilon_{R}^{\dagger}\eta_{R}\theta^{\alpha}+\varepsilon_{R}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{R}\dot{A}_{\alpha\nu}\theta^{\alpha}$$

• Let
$$\epsilon_{R}^{\dagger}\eta_{R} = \epsilon^{1}$$
 and $\epsilon_{R}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{R} = \epsilon^{2}E_{\mu}{}^{\nu}$, so that
 $\dot{A}_{a\mu}\delta_{\epsilon}X^{a} = \dot{A}_{a\mu}\epsilon^{1}\theta^{a} + \epsilon^{2}\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}\theta^{a}$

where we have used $E_{\mu}{}^{\nu}\dot{A}_{a\nu}=\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}$

イロト イポト イヨト イヨト

Linearising the supersymmetry transformations (II)

Putting both together and using the Clifford relations

$$\dot{A}_{\alpha\mu}\delta_{\varepsilon}X^{\alpha}=\dot{A}_{\alpha\mu}\varepsilon_{R}^{\dagger}\eta_{R}\theta^{\alpha}+\varepsilon_{R}^{\dagger}\Gamma_{\mu}{}^{\nu}\eta_{R}\dot{A}_{\alpha\nu}\theta^{\alpha}$$

• Let
$$\epsilon_R^{\dagger} \eta_R = \epsilon^1$$
 and $\epsilon_R^{\dagger} \Gamma_{\mu}{}^{\nu} \eta_R = \epsilon^2 E_{\mu}{}^{\nu}$, so that

$$\dot{A}_{a\mu}\delta_{\varepsilon}X^{a} = \dot{A}_{a\mu}\varepsilon^{1}\theta^{a} + \varepsilon^{2}\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}\theta^{a}$$

where we have used $E_{\mu}{}^{\nu}\dot{A}_{a\nu}=\mathscr{E}_{a}{}^{b}\dot{A}_{b\mu}$

• Since the $\dot{A}_{\alpha\mu}$ are a basis,

$$\delta_{\varepsilon}X^{a} = \epsilon^{1}\theta^{a} + \epsilon^{2}\mathscr{E}_{b}{}^{a}\theta^{b}$$

A one-dimensional supersymmetric sigma model

By analogy with the case of euclidean monopoles, we will explore the geometry of *M* by considering a one-dimensional sigma model with fields X^α and θ^α

A one-dimensional supersymmetric sigma model

- By analogy with the case of euclidean monopoles, we will explore the geometry of *M* by considering a one-dimensional sigma model with fields X^α and θ^α
- In contrast with the case of euclidean monopoles, there is no action for this sigma model due to the lack of natural riemannian metric on *M*

A one-dimensional supersymmetric sigma model

- By analogy with the case of euclidean monopoles, we will explore the geometry of *M* by considering a one-dimensional sigma model with fields X^α and θ^α
- In contrast with the case of euclidean monopoles, there is no action for this sigma model due to the lack of natural riemannian metric on *M*
- Since hyperbolic monopoles are ¹/₂-BPS, we expect that this sigma model should have 4 real supercharges, although (in this talk) I work with two supercharges at a time

イロト イポト イヨト イヨト

Closing the supersymmetry algebra (I)

• Introduce odd derivations δ_1 and δ_2 by

$$\delta_{\varepsilon} X^{\alpha} = \varepsilon^1 \delta_1 X^{\alpha} + \varepsilon^2 \delta_2 X^{\alpha}$$

Closing the supersymmetry algebra (I)

• Introduce odd derivations δ_1 and δ_2 by

$$\delta_{\varepsilon} X^{\alpha} = \varepsilon^1 \delta_1 X^{\alpha} + \varepsilon^2 \delta_2 X^{\alpha}$$

Explicitly,

$$\delta_1 X^a = \theta^a \qquad \qquad \delta_2 X^a = \mathscr{E}_b{}^a \theta^b$$

Closing the supersymmetry algebra (I)

• Introduce odd derivations δ_1 and δ_2 by

$$\delta_{\varepsilon} X^{\alpha} = \varepsilon^1 \delta_1 X^{\alpha} + \varepsilon^2 \delta_2 X^{\alpha}$$

Explicitly,

$$\delta_1 X^a = \theta^a \qquad \qquad \delta_2 X^a = \mathscr{E}_b{}^a \theta^b$$

We demand that they obey the supersymmetry algebra

$$\delta_A\delta_B+\delta_B\delta_A=2i\delta_{AB}\frac{d}{dt}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Closing the supersymmetry algebra (I)

• Introduce odd derivations δ_1 and δ_2 by

$$\delta_{\varepsilon} X^{\alpha} = \varepsilon^1 \delta_1 X^{\alpha} + \varepsilon^2 \delta_2 X^{\alpha}$$

Explicitly,

$$\delta_1 X^a = \theta^a \qquad \qquad \delta_2 X^a = \mathscr{E}_b{}^a \theta^b$$

We demand that they obey the supersymmetry algebra

$$\delta_A\delta_B+\delta_B\delta_A=2i\delta_{AB}\frac{d}{dt}$$

• This implies that $\delta_1 \theta^a = i X'^a$ and

$$\delta_2\theta^{\mathfrak{a}} = -i X'^{\mathfrak{b}} \mathscr{E}_{\mathfrak{b}}{}^{\mathfrak{a}} + \theta^{\mathfrak{b}} \theta^{\mathfrak{c}} \partial_{\mathfrak{c}} \mathscr{E}_{\mathfrak{b}}{}^{\mathfrak{a}}$$

Closing the supersymmetry algebra (II)

Closure also requires

$$\partial_{[b}\mathscr{E}_{c]}{}^{a} - \partial_{d}\mathscr{E}_{[b}{}^{e}\mathscr{E}_{c]}{}^{d}\mathscr{E}_{e}{}^{a} = 0$$

Closing the supersymmetry algebra (II)

Closure also requires

$$\partial_{[b}\mathscr{E}_{c]}{}^{a} - \partial_{d}\mathscr{E}_{[b}{}^{e}\mathscr{E}_{c]}{}^{d}\mathscr{E}_{e}{}^{a} = 0$$

This is equivalent to

$$\partial_{[b}\mathscr{E}_{c]}{}^{\mathfrak{a}}\mathscr{E}_{\mathfrak{a}}{}^{\mathfrak{f}} + \partial_{\mathfrak{d}}\mathscr{E}_{[b}{}^{\mathfrak{f}}\mathscr{E}_{c]}{}^{\mathfrak{d}} = \mathbf{0}$$

Closing the supersymmetry algebra (II)

Closure also requires

$$\partial_{[b}\mathscr{E}_{c]}{}^{a} - \partial_{d}\mathscr{E}_{[b}{}^{e}\mathscr{E}_{c]}{}^{d}\mathscr{E}_{e}{}^{a} = 0$$

This is equivalent to

$$\partial_{[\mathbf{b}}\mathscr{E}_{\mathbf{c}]}{}^{\mathfrak{a}}\mathscr{E}_{\mathfrak{a}}{}^{\mathfrak{f}} + \partial_{\mathbf{d}}\mathscr{E}_{[\mathbf{b}}{}^{\mathfrak{f}}\mathscr{E}_{\mathbf{c}]}{}^{\mathfrak{d}} = \mathbf{0}$$

In terms of the Frölicher–Nijenhuis bracket: [𝔅, 𝔅] = 0

Closing the supersymmetry algebra (II)

Closure also requires

$$\partial_{[b}\mathscr{E}_{c]}{}^{a} - \partial_{d}\mathscr{E}_{[b}{}^{e}\mathscr{E}_{c]}{}^{d}\mathscr{E}_{e}{}^{a} = 0$$

This is equivalent to

$$\partial_{[\mathbf{b}}\mathscr{E}_{\mathbf{c}]}{}^{\mathbf{a}}\mathscr{E}_{\mathbf{a}}{}^{\mathbf{f}} + \partial_{\mathbf{d}}\mathscr{E}_{[\mathbf{b}}{}^{\mathbf{f}}\mathscr{E}_{\mathbf{c}]}{}^{\mathbf{d}} = \mathbf{0}$$

- In terms of the Frölicher–Nijenhuis bracket: [\$\mathcal{E}\$, \$\mathcal{E}\$] = 0
- This is equivalent to the integrability of &

Closing the supersymmetry algebra (II)

Closure also requires

$$\partial_{[b}\mathscr{E}_{c]}{}^{a} - \partial_{d}\mathscr{E}_{[b}{}^{e}\mathscr{E}_{c]}{}^{d}\mathscr{E}_{e}{}^{a} = 0$$

This is equivalent to

$$\partial_{[\mathbf{b}}\mathscr{E}_{\mathbf{c}]}{}^{\mathbf{a}}\mathscr{E}_{\mathbf{a}}{}^{\mathbf{f}} + \partial_{\mathbf{d}}\mathscr{E}_{[\mathbf{b}}{}^{\mathbf{f}}\mathscr{E}_{\mathbf{c}]}{}^{\mathbf{d}} = \mathbf{0}$$

- In terms of the Frölicher–Nijenhuis bracket: [𝔅, 𝔅] = 0
- This is equivalent to the integrability of &
- The closure on the θ^a gives no further constraints

The pluricomplex structure

• We have shown that for all $\eta_R \in K^+$ and $\zeta_R \in K^-$ such that $\zeta_R^{\dagger} \eta_R = 1$, there is an integrable complex structure \mathscr{E} on $T_{\mathbb{C}}\mathscr{M}$ acting complex linearly

< ロ > < 同 > < 回 > < 回 >

The pluricomplex structure

- We have shown that for all $\eta_R \in K^+$ and $\zeta_R \in K^-$ such that $\zeta_R^{\dagger} \eta_R = 1$, there is an integrable complex structure \mathscr{E} on $T_{\mathbb{C}}\mathscr{M}$ acting complex linearly
- By varying η_R and ζ_R, one can exhibit complex structures
 I, I and K obeying a quaternion algebra

The pluricomplex structure

- We have shown that for all $\eta_R \in K^+$ and $\zeta_R \in K^-$ such that $\zeta_R^{\dagger} \eta_R = 1$, there is an integrable complex structure \mathscr{E} on $T_{\mathbb{C}}\mathscr{M}$ acting complex linearly
- By varying η_R and ζ_R, one can exhibit complex structures
 I, I and K obeying a quaternion algebra
- This gives a 2-sphere worth of integrable complex structures acting complex-linearly on $T_{\mathbb C}\mathscr{M}$

The pluricomplex structure

- We have shown that for all $\eta_R \in K^+$ and $\zeta_R \in K^-$ such that $\zeta_R^{\dagger} \eta_R = 1$, there is an integrable complex structure \mathscr{E} on $T_{\mathbb{C}}\mathscr{M}$ acting complex linearly
- By varying η_R and ζ_R, one can exhibit complex structures
 I, I and K obeying a quaternion algebra
- This gives a 2-sphere worth of integrable complex structures acting complex-linearly on $T_{\mathbb C}\mathscr{M}$
- This defines a pluricomplex structure on *M*

< 口 > < 同 > < 回 > < 回 > .

The pluricomplex structure

- We have shown that for all $\eta_R \in K^+$ and $\zeta_R \in K^-$ such that $\zeta_R^{\dagger} \eta_R = 1$, there is an integrable complex structure \mathscr{E} on $T_{\mathbb{C}}\mathscr{M}$ acting complex linearly
- By varying η_R and ζ_R, one can exhibit complex structures
 I, I and K obeying a quaternion algebra
- This gives a 2-sphere worth of integrable complex structures acting complex-linearly on $T_{\mathbb{C}}\mathcal{M}$
- This defines a pluricomplex structure on *M*
- This means that the moduli X^{α} and θ^{α} belong to a multiplet of the d = 1 N = 4 **supersymmetry algebra**, as expected for $\frac{1}{2}$ -BPS configurations

(日)

э.

Hyperbolic monopoles

2 Supersymmetric Yang–Mills–Higgs in hyperbolic space

3 The geometry of the monopole moduli space

4 Conclusions and future directions

Conclusions

 We have presented a construction of a supersymmetric Yang–Mills–Higgs theory in H³

Conclusions

- We have presented a construction of a supersymmetric Yang–Mills–Higgs theory in H³
- whose bosonic BPS configurations are in one-to-one correspondence with (complexified) hyperbolic monopoles

Conclusions

- We have presented a construction of a supersymmetric Yang–Mills–Higgs theory in H³
- whose bosonic BPS configurations are in one-to-one correspondence with (complexified) hyperbolic monopoles
- We have shown that there is a supersymmetry relating the bosonic and fermionic moduli

Conclusions

- We have presented a construction of a supersymmetric Yang–Mills–Higgs theory in H³
- whose bosonic BPS configurations are in one-to-one correspondence with (complexified) hyperbolic monopoles
- We have shown that there is a supersymmetry relating the bosonic and fermionic moduli
- Closing the algebra requires a pluricomplex structure on the moduli space

Future directions

 It would be good to have a more direct construction of the theory: perhaps coupling supersymmetric Yang–Mills to a conformal supergravity theory in ℝ⁴

< ロ > < 同 > < 回 > < 回 >

Future directions

- It would be good to have a more direct construction of the theory: perhaps coupling supersymmetric Yang–Mills to a conformal supergravity theory in R⁴
- What rôle do the Hitchin metrics play? Are they perhaps regularised metrics?

Future directions

- It would be good to have a more direct construction of the theory: perhaps coupling supersymmetric Yang–Mills to a conformal supergravity theory in R⁴
- What rôle do the Hitchin metrics play? Are they perhaps regularised metrics?
- Can the pluricomplex structure be used to analyse the dynamics of hyperbolic monopoles?

Future directions

- It would be good to have a more direct construction of the theory: perhaps coupling supersymmetric Yang–Mills to a conformal supergravity theory in R⁴
- What rôle do the Hitchin metrics play? Are they perhaps regularised metrics?
- Can the pluricomplex structure be used to analyse the dynamics of hyperbolic monopoles?
- Pluricomplex manifolds have a unique torsion-free connection leaving the complex structures invariant. Are geodesics with respect to that connection perhaps the trajectories of low-energy hyperbolic monopoles?

イロト イポト イヨト イヨト